Supporting Information

Palladium(II)-Catalyzed oxidative ortho Arylation of 2-phenylpyridines

1. General information
2. General Procedure for the Arylation of indoles
3. Product date
4. NMR spectra
1. General information
 All the reagents were commercially available and used without any further purification. The solvents were dried before use. GC analyses were performed on an Agilent 7890A instrument (Column: Agilent 19091J-413: 30m×320μm×0.25μm, carrier gas: N2, Injector: 300 °C, FID detection detector: initial temperature 80 °C, temperature program: 15 °C /min, final temperature 325 °C. H2 30mL/min, air 400mL/min, N2 25mL/min). GC-MS analyses were performed on an Agilent 7890A-5975C instrument (Column: DB-5 MS). 1H NMR was recorded on Bruker DRX 500 and tetramethylsilane (TMS) was used as a reference.

2. General Procedure for the Arylation of indoles
 A sealed tube was charged with 2-phenylpyridine (1; 68.0 mg, 0.44 mmol), phenylboronic acid (2.5 equiv), Cu(OTf)2 (0.2 equiv), TBHP (2 equiv), and Pd(OAc)2 (10 mol%) in acetonitrile (15 mL). The mixture was heated to 60 °C and stirred violently at this temperature for 24 h. After being cooled to room temperature, the mixture was filtered. The filtrate was evaporated under vacuum. Subsequently, the residue was purified by chromatography (silica gel, n-hexane:EtOAc, 10:1).

3. Product data
 All the known products were identified by comparison of their spectroscopic data with those of authentic samples. New products (3m, 3n, 3p) were characterized with 1H-NMR, 13C-NMR and Mass Spectrometry. Characterization datas are given as following.

 2-((1,1’-biphenyl)-2-yl)pyridine 3a
 1H NMR (500 MHz, CDCl3) δ 8.66 (d, J = 4.5 Hz, 1H), 7.70 (t, J = 4.3 Hz, 1H), 7.48-7.41 (m, 3H), 7.38 (td, J = 7.5, 1.4 Hz, 1H), 7.25-7.22 (m, 3H), 7.17-7.14 (m, 2H), 7.10 (dd, J = 6.6, 5.4 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 158.18, 157.28, 148.32, 140.33, 139.65, 138.31, 134.35, 129.52, 128.73, 127.60, 127.09, 126.69, 125.73, 124.49, 120.40; MS (EI+) m/z 231 [M]+.

 2-(3’-methyl-[1,1’-biphenyl]-2-yl)pyridine 3c
 1H NMR (500 MHz, CDCl3) δ 8.66 (d, J = 4.6 Hz, 1H), 7.77 – 7.68 (m, 1H), 7.53 – 7.40 (m, 4H), 7.13 (dd, J = 14.4, 7.0 Hz, 2H), 7.09 – 7.02 (m, 2H), 6.93 (d, J = 7.7 Hz, 2H), 2.28 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 158.23, 148.14, 140.18, 139.77,
2-(3'-nitro-[1,1'-biphenyl]-2-yl)pyridine 3d
1H NMR (500 MHz, CDCl$_3$) δ 8.60 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 8.13 – 8.07 (m, 2H), 7.73 – 7.68 (m, 1H), 7.57 – 7.50 (m, 3H), 7.50 – 7.47 (m, 1H), 7.45 – 7.41 (m, 1H), 7.41 – 7.36 (m, 1H), 7.16 (ddd, J = 7.6, 4.9, 1.1 Hz, 1H), 7.04 (dt, J = 7.9, 1.0 Hz, 1H); 13C NMR (126 MHz, CDCl$_3$) δ 157.60, 148.57, 147.13, 142.15, 138.72, 137.72, 137.20, 134.88, 134.83, 129.71, 129.36, 127.92, 127.83, 127.70, 124.05, 123.34, 120.86, 120.63, 76.29, 76.03, 75.78; MS (EI$^+$) m/z 246 [M+H]$^+$.

2-(4'-methoxy-[1,1'-biphenyl]-2-yl)pyridine 3e
1H NMR (500 MHz, CDCl$_3$) δ 8.66 (d, J = 4.2 Hz, 1H), 7.72 – 7.67 (m, 1H), 7.51 – 7.38 (m, 4H), 7.26 – 7.20 (m, 2H), 7.16 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.94 (d, J = 7.9 Hz, 1H), 3.81 (s, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 158.50, 157.55, 148.46, 139.21, 138.42, 134.22, 132.76, 129.78, 129.49, 129.44, 127.50, 126.30, 124.41, 120.27, 112.56, 54.21; MS (EI$^+$) m/z 268 [M+H]$^+$.

2-(4'-chloro-[1,1'-biphenyl]-2-yl)pyridine 3f
1H NMR (500 MHz, CDCl$_3$) δ 8.68 – 8.62 (m, 1H), 7.73 – 7.67 (m, 1H), 7.55 – 7.40 (m, 4H), 7.26 – 7.20 (m, 2H), 7.16 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H), 7.13 – 7.07 (m, 2H), 6.94 (d, J = 7.9 Hz, 1H); 13C NMR (126 MHz, CDCl$_3$) δ 158.08, 148.54, 138.89, 138.57, 138.39, 134.46, 131.85, 129.96, 129.59, 129.32, 127.62, 127.27, 126.95, 124.24, 120.50; MS (EI$^+$) m/z 267 [M+H]$^+$.

2-(4-methyl-[1,1'-biphenyl]-2-yl)pyridine 3h
1H NMR (500 MHz, CDCl$_3$) δ 8.65 (d, J = 4.6 Hz, 1H), 7.54 (s, 1H), 7.42 – 7.33 (m, 2H), 7.30 (dd, J = 7.8, 1.1 Hz, 1H), 7.26 – 7.19 (m, 3H), 7.18 – 7.13 (m, 2H), 7.11 (m, 1H), 6.88 (d, J = 7.9 Hz, 1H), 2.47 (s, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 158.39, 148.39, 140.33, 138.26, 136.85, 136.43, 134.16, 130.08, 129.48, 128.75, 128.31, 127.03, 125.52, 124.50, 120.31, 76.31, 76.05, 75.80, 20.09; MS (EI$^+$) m/z 245 [M+H]$^+$.

2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine 3i
1H NMR (500 MHz, CDCl$_3$) δ 8.64 (d, J = 4.8 Hz, 1H), 7.46 (td, J = 7.7, 1.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.30 (dd, J = 15.3, 7.3 Hz, 2H), 7.18 – 7.06 (m, 6H), 6.90 (d, J = 7.8 Hz, 1H), 2.21 (s, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 159.81, 149.03, 141.89, 141.49, 139.53, 136.92, 135.93, 129.87, 129.63, 128.26, 128.81, 126.44, 125.86, 121.51, 77.51, 77.25, 77.00, 20.68; MS (EI$^+$) m/z 245 [M+H]$^+$.

4'-(trifluoromethyl)-1,1':2',1''-terphenyl 3j
1H NMR (500 MHz, CDCl$_3$) δ 8.67 (d, J = 4.7 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.44 (dd, J = 7.7, 1.6 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.32 (s, 1H), 7.29 (s, 1H), 7.28 (s, 1H), 7.20 (d, J = 2.9 Hz, 1H), 7.19 (s, 1H), 7.18 (d, J = 1.8 Hz, 1H), 7.16 (d, J = 3.5 Hz,
2-(5-chloro-[1,1'-biphenyl]-2-yl)pyridine 3k
1H NMR (500 MHz, CDCl$_3$) δ 8.65 (d, $J = 4.8$ Hz, 1H), 7.67 (d, $J = 8.9$ Hz, 1H), 7.46 (dd, $J = 6.2, 2.1$ Hz, 2H), 7.40 (d, $J = 1.7$ Hz, 1H), 7.27 – 7.25 (m, 2H), 7.19 – 7.08 (m, 4H), 6.86 (d, $J = 7.9$ Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 158.34, 149.72, 142.44, 140.30, 138.10, 135.56, 134.57, 132.12, 130.55, 128.45, 127.89, 127.47, 125.53, 121.83; MS (EI$^+$) m/z 265 [M+H$^+$].

2-(5-methoxy-[1,1'-biphenyl]-2-yl)pyridine 3l
1H NMR (500 MHz, CDCl$_3$) δ 8.62 (ddd, $J = 4.9, 1.7, 0.9$ Hz, 1H), 7.68 (d, $J = 8.5$ Hz, 1H), 7.36 (td, $J = 7.7, 1.8$ Hz, 1H), 7.28 – 7.24 (m, 3H), 7.22 – 7.17 (m, 2H), 7.10 – 7.07 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 158.64, 157.93, 148.36, 141.00, 134.10, 131.27, 130.92, 128.64, 127.13, 125.90, 124.39, 119.95, 114.73, 112.31, 54.47; MS (EI$^+$) m/z 268 [M+H$^+$].

2-([1,1'-biphenyl]-2-yl)-6-phenylpyridine 3m
1H NMR (500 MHz, CDCl$_3$) δ 7.84 – 7.80 (m, 3H), 7.57 (t, $J = 3.9$ Hz, 2H), 7.53 – 7.48 (m, 3H), 7.45 – 7.39 (m, 3H), 7.31 – 7.29 (m, 1H), 7.28 – 7.23 (m, 4H), 7.05 – 7.00 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 157.95, 155.79, 140.90, 139.98, 138.67, 138.56, 135.26, 129.72, 129.68, 128.76, 127.76, 127.55, 127.06, 126.59, 126.02, 125.58, 122.28, 117.06.; MS (EI$^+$) m/z 308 [M+H$^+$].

2-(([1,1'-terphenyl]-2'-yl)-6-phenylpyridine 3n
1H NMR (500 MHz, CDCl$_3$) δ 7.93 (dd, $J = 9.7, 8.3$ Hz, 5H), 7.60 – 7.53 (m, 6H), 7.50 – 7.45 (m, 4H), 7.39 (d, $J = 2.5$ Hz, 2H), 7.36 (t, $J = 7.2$ Hz, 2H), 7.15 (d, $J = 2.5$ Hz, 2H). 13C NMR (126 MHz, CDCl$_3$) δ 155.95, 150.77, 147.31, 135.04, 127.73, 127.71, 127.01, 126.36, 125.47, 124.78, 123.20, 121.52, 119.70, 113.82, 110.93, 104.30; MS (EI$^+$) m/z 384 [M+H$^+$].

2-(([1,1':3',1''-terphenyl]-2'-yl)-1H-indole 3p
1H NMR (500 MHz, CDCl$_3$) δ 8.11 (s, 1H), 7.52 (dd, $J = 6.6, 3.0$ Hz, 2H), 7.49 -7.42 (m, 2H), 7.35 (d, $J = 8.1$ Hz, 1H), 7.18 (m, 8H), 7.02 (d, $J = 8.1$ Hz, 1H), 6.95 (t, $J = 7.6$ Hz, 1H), 6.82 (t, $J = 7.4$ Hz, 1H), 6.74 (d, $J = 8.2$ Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 158.27, 136.17, 134.55, 128.75, 127.29, 126.77, 126.77, 126.52, 125.80, 124.43, 121.41, 120.60, 119.04, 118.23, 111.30, 109.71; MS (EI$^+$) m/z 346 [M+H$^+$].

1-([1,1'-biphenyl]-2-yl)-1H-pyrazole 3q
1H NMR (500 MHz, CDCl$_3$): 1H NMR (500 MHz, CDCl$_3$) δ 7.69 – 7.61 (m, 2H), 7.54 – 7.46 (m, 3H), 7.34 – 7.29 (m, 3H), 7.17 – 7.06 (m, 3H), 6.21 (t, $J = 2.1$ Hz, 1H);
13C NMR (126 MHz, CDCl$_3$) δ 139.26, 137.58, 135.73, 130.35, 130.03, 127.55, 127.45, 127.37, 127.27, 126.43, 125.58, 105.38. MS (EI$^+$) m/z 221 [M+H]$^+$.
4. NMR spectra

2-([1,1'-biphenyl]-2-yl)pyridine 3a 1H NMR

2-([1,1'-biphenyl]-2-yl)pyridine 3a 13C NMR
2-(3'-methyl-[1,1'-biphenyl]-2-yl)pyridine $3c$ 1H NMR

2-(3'-methyl-[1,1'-biphenyl]-2-yl)pyridine $3c$ 13C NMR
2-(3'-nitro-[1,1'-biphenyl]-2-yl)pyridine 3d 1H NMR

2-(3'-nitro-[1,1'-biphenyl]-2-yl)pyridine 3d 13C NMR
2-(4'-methoxy-[1,1'-biphenyl]-2-yl)pyridine 3e 1H NMR

2-(4'-methoxy-[1,1'-biphenyl]-2-yl)pyridine 3e 13C NMR
2-(4'-chloro-[1,1'-biphenyl]-2-yl)pyridine 3f 1H NMR

2-(4'-chloro-[1,1'-biphenyl]-2-yl)pyridine 3f 13C NMR
2-(4-methyl-[1,1′-biphenyl]-2-yl)pyridine 3h 1H NMR

2-(4-methyl-[1,1′-biphenyl]-2-yl)pyridine 3h 13C NMR
2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine 3i 1H NMR

2-(3-methyl-[1,1'-biphenyl]-2-yl)pyridine 3i 13C NMR
$4'-(trifluoromethyl)-1,1':2',1''$-terphenyl 3j

1H NMR

$4'-(trifluoromethyl)-1,1':2',1''$-terphenyl 3j

13C NMR
2-(5-chloro-[1,1'-biphenyl]-2-yl)pyridine 3k 1H NMR

2-(5-chloro-[1,1'-biphenyl]-2-yl)pyridine 3k 13C NMR
2-(5-methoxy-[1,1'-biphenyl]-2-yl)pyridine 31 1H NMR

1H NMR spectrum showing peaks at various ppm values.

2-(5-methoxy-[1,1'-biphenyl]-2-yl)pyridine 31 13C NMR

13C NMR spectrum showing peaks at various ppm values.
2-([1,1′:3′,1″-terphenyl]-2′-yl)-6-phenylpyridine 3m 1H NMR

2-([1,1′:3′,1″-terphenyl]-2′-yl)-6-phenylpyridine 3m 13C NMR
2-[[1,1′:3′,1″-terphenyl]-2′-yl]-6-phenylpyridine 3n 1H NMR

2-[[1,1′:3′,1″-terphenyl]-2′-yl]-6-phenylpyridine 3n 13C NMR
2-([1,1':3',1''-terphenyl]-2'-yl)-1H-indole 3p ^{1}H NMR

2-([1,1':3',1''-terphenyl]-2'-yl)-1H-indole 3p ^{13}C NMR
$1-([1,1'-biphenyl]-2-yl)-1H-pyrazole \ 3q \ ^1H\ NMR$

$1-([1,1'-biphenyl]-2-yl)-1H-pyrazole \ 3q \ ^13C\ NMR$