Supporting information

A one-pot saponification-coupling sequence suitable for C-terminus peptide elongation
Rabah Azzouz, Sylvain Petit, Jean-Baptiste Rouchet, Laurent Bischoff*

IRCOF-INSA Rouen, Université de Rouen, Place Emile Blondel,
76130 Mont Saint Aignan Cedex, France

General remarks
pp 1

di- and tripeptides 1-6
pp 4-14

tri- and tetrapeptides 7-17
pp 15-24
General:
Reactions were carried out under a nitrogen atmosphere to avoid lithine carbonatation, using commercially-available solvents. TLC analyses were performed with Merck silica gel 60 F254 pre-coated aluminium plates (0.25 mm). Flash chromatography purifications were performed with indicated eluents using silica gel (particle size 30-63 mm) purchased from Merck.

Materials:
Unless otherwise stated, reagents were used without prior purification. T3P was provided by Archimica (Germany, Frankfurt am Main).

Instrumentation:
1H and 13C NMR spectra were recorded at 300 MHz for 1H and 75 MHz for 13C. Chemical shifts are reported relative to TMS, calibrated with chloroform or DMSO. Coupling constants J are in Hz and reported as d (doublet), t (triplet), q (quartet).

HPLC analyses were carried out using a Hypersil Gold column (150mm x 4.6mm - 3μm particle size) at a flow rate of 1.0mL/min.

The eluting gradient was the following:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>MeOH</th>
<th>H$_2$O/TFA 0.1 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10 %</td>
<td>90 %</td>
</tr>
<tr>
<td>33</td>
<td>90 %</td>
<td>10 %</td>
</tr>
<tr>
<td>50</td>
<td>100 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Examples with compounds 1a and 1b: Solutions of authentic samples of 1a and 1b (ca 1 mg/mL in methanol) were prepared. Aliquots of 10μL were injected separately and as a mixture. HPLC of the mixture is presented below, followed by HPLC of the same compound (crude material), obtained via coupling with HBTU/DIEA then HATU/DIEA.
Examples of HPLC for compound 5:

a) Coupling with HBTU/DIEA:

b) Coupling with HATU (no base):
(LLL)-Cbz-Ala-Phe-Trp-OtBu 1a

Following the above procedure, and starting from Z-Ala-Phe-OMe (300 mg, 0.81 mmol) and H-Trp-Ot-Bu.HCl (230 mg, 0.89 mmol), compound 1a was obtained as a white powder.

White powder (0.45g, 90%) ; mp : 100-102°C ; [α]25D = -0.27 (c=1, MeOH) ; TLC [EtOAc : petroleum ether = 1 : 1] : Rf = 0.28 ; 1H NMR (d6-DMSO) : δ 1.10 (3H, d, J = 7.2 Hz), 1.27 (9H, s), 2.81 (1H, dd, J=15.8, 9.3 Hz), 3.06 (3H, m), 4.00 (1H, m), 4.44 (1H, q, J = 7.4 Hz), 4.59 (1H, m), 4.97 (1H, d, J= 12.6 Hz), 5.02 (1H, d, J= 12.6 Hz), 6.96-7.36 (15H, m), 7.53 (1H, d, J = 7.7 Hz), 7.88 (1H, d, J = 8.5 Hz), 8.40 (1H, d, J = 7.4 Hz), 10.87 (1H, d, J = 1.7 Hz); 13C NMR (CDCl3): δ 18.5, 27.8, 38.5, 50.5, 53.6, 54.1, 66.9, 82.1, 109.6, 111.3, 118.6, 119.1, 121.8, 123.2, 126.9, 127.6, 128.0, 128.1, 128.4, 128.5, 129.4, 136.0, 136.4, 156.1, 170.6, 170.8, 172.7; HRMS (ESI) : [M+H]⁺ calcd for C35H40N4O6 613.2981 ; found : 613.2912.
Following procedure A, and starting from Z-Ala-Phe-OMe (300 mg, 0.81 mmol) and H-Trp-Ot-Bu.HCl (230 mg, 0.89 mmol), compound 1b was obtained as a white powder (0.44 g, 88%).

mp : 98-100°C ; $[\alpha]_D^{25} = -0.2$ (c=0.5, MeOH) ; TLC [EtOAc : petroleum ether = 1 : 1] : $R_f = 0.13$; 1H NMR (d6-DMSO) : δ 0.95 (3H, d, $J= 7.2$ Hz), 1.32 (9H, s), 2.57 (1H, dd, $J= 13.5, 9.6$Hz), 2.85 (1H, dd, 13.5, 4.0Hz), 2.99 (1H, dd, 10.4, 5.3Hz), 3.16 (1H, dd, 14.3, 8.9Hz), 4.03 (1H, m), 4.41 (1H, m), 4.48 (1H, m), 4.94 (1H, d, $J= 12.6$ Hz), 5.02 (1H, d, $J= 12.6Hz$), 6.98-7.39 (15H, m), 7.54 (1H, d, $J = 7.7$ Hz), 8.00 (1H, d, $J = 8.7$ Hz), 8.40 (1H, d, $J = 7.7$ Hz), 10.86 (1H, d, $J = 1.7$ Hz) ; 13C NMR (d6-DMSO) : δ 18.1, 27.4, 27.5, 50.0, 53.2, 53.6, 65.4, 80.6, 109.5, 111.4, 118.1, 118.4, 121.0, 123.9, 126.1, 127.1, 127.8, 128.3, 129.3, 136.1, 136.9, 137.4, 155.6, 170.7, 170.9, 172.2 ; HRMS (ESI) : [M+H]$^+$ calcd for C35H40N4O6 613.2981 ; found : 613.2923.
Boc-Phe-Met-OMe

Prepared from Boc-Phe-OH and H-Met-OMe.HCl, by coupling with T3P/DIEA. White powder (93%); mp : 86-88°C ; [α]D²⁵ = -13.7 (c=1, EtOH) ; TLC [EtOAc : petroleum ether = 1 : 2] : Rf = 0.4 ; ¹H NMR (CDCl₃) : δ 1.42 (9H, s), 1.83-2.18 (2H, m), 2.06 (3H, s), 2.43 (2H, t, J = 7.6 Hz), 3.06 (1H, d, J= 2.5Hz), 3.09 (1H, d, J= 1.5Hz), 3.71 (1H, s), 4.42 (1H, m), 4.66 (1H, q, J = 7.5Hz), 5.25 (1H, d, J = 7.74 Hz), 6.85 (1H, d, J = 7.5 Hz), 7.25 (5H, m) ; ¹³C NMR (CDCl₃): δ 15.3, 28.2, 29.7, 31.5, 38.1, 51.5, 52.4, 55.6, 80.1, 126.8, 128.5, 129.3, 136.5, 155.4, 171.3, 171.8 ; HR-MS (ESI) : [M+H]+ calcd for C₂₀H₃₀N₂O₅S 411.1954 ; found : 411.1948
Cbz-Ala-Phe-OMe

Prepared from Cbz-Ala-OH and H-Phe-OMe.HCl, by coupling with T3P/DIEA. White powder (97%); mp 104-106°C ; [α]D25 = -10 (c=1, EtOH) ; TLC [EtOAc : petroleum ether = 1 : 1] : Rf = 0.53 ; 1H NMR (CDCl3) : δ 1.35 (3H, d, J = 7.0 Hz), 3.08 (1H, dd, J=13.8, 6.2Hz), 3.17 (1H, dd, J= 14.0, 5.9Hz), 3.73 (3H, s), 4.34 (1H, t, J = 7.0 Hz), 4.90 (1H, q, J = 6.0 Hz), 5.08 (1H, d, J=12.5Hz), 5.15 (1H, d, J=12.1Hz), 5.63 (1H, d, J = 7.6 Hz), 6.86 (1H, d, J = 7.4 Hz), 7.12-7.40 (10H, m) ; 13C NMR (CDCl3): δ 18.5, 37.9, 50.5, 52.5, 53.3, 67.2, 127.3, 128.2, 128.4, 128.6, 128.7, 129.4, 135.7, 136.3, 155.5, 171.8, 171.9 ; HRMS (ESI): [M+H]+ calced for C21H24N2O5 385.1763 ; found : 385.1757
Cbz-Ala-Phe-Gly-OMe 2

Following procedure A, and starting from Cbz-Ala-Phe-OMe (380 mg, 0.99 mmol) and H-Gly-OMe.HCl (137 mg, 1.09 mmol), compound 2 was obtained as a white powder (376 mg, 86%). ; TLC [EtOAc : CH₂Cl₂ = 1 : 1] : Rₚ = 0.25 ; ¹H NMR (CDCl₃) : δ 1.25 (3H, d, J = 7.2 Hz), 3.02 (1H, dd, J = 14.0, 7.4 Hz), 3.13 (1H, dd, J = 14.0, 6.4 Hz), 3.2 (3H, s), 3.81 (1H, dd, J = 17.9, 4.5 Hz), 4.20 (1H, m), 4.69 (1H, q, J = 7.4 Hz), 5.01 (1H, d, J = 12.2 Hz), 5.09 (1H, d, J = 12.2 Hz), 5.37 (1H,d, J= 6.6 Hz), 6.81 (2H, m), 7.14-7.33 (11H, m); ¹³C NMR (CDCl₃); δ 18.4, 38.2, 41.5, 51.3, 52.8, 54.6, 67.8, 127.9, 129.0, 129.2, 129.5, 129.6, 130.2, 137.0, 137.3, 157.3, 171.2, 172.3, 173.7 ; HRMS (ESI) : [M+H]+ calcd for C₂₃H₂₇N₃O₆ 442.1978 ; found : 442.1994
Cbz-Ala-Phe-Leu-OMe 3

Following procedure A, and starting from Cbz-Ala-Phe-OMe (380 mg, 0.99 mmol) and H-Leu-OMe.HCl (198 mg, 1.09 mmol), compound 3 was obtained as a white powder (428 mg, 87%).

mp 139-141°C ; [α]D25 = -44.9 (c=1, MeOH) ; TLC [EtOAc : petroleum ether = 1 : 1] : Rf = 0.35 ; 1H NMR (CDCl3) : δ 0.84 (6H, d, J = 4.0 Hz), 1.28 (4H, d, J = 7.0 Hz), 1.52 (3H, m), 3.03 (2H, m), 3.63 (3H, s), 4.40 (1H, t, 7.1 Hz), 4.53 (1H, m), 4.86 (1H, q, 7.1 Hz), 5.02 (1H, d, J = 12.3 Hz), 5.11 (1H, d, J = 12.1 Hz), 5.92 (1H, d, J = 7.6 Hz), 7.11-7.31 (11H, m), 7.41 (1H, d, J = 8.1 Hz) ; 13C NMR (CDCl3): δ 18.8, 21.9, 22.7, 24.7, 29.7, 38.4, 41.1, 50.5, 50.8, 52.2, 54.2, 66.9, 126.8, 128.0, 128.1, 128.4, 128.5, 129.4, 136.3, 136.4, 156.0, 170.8, 172.6, 172.9 ; HRMS (ESI) : [M+H]+ calcld for C27H35N3O6 498.2604 ; found : 498.2591
Following procedure A, and starting from Cbz-Ala-Phe-OMe (391 mg, 1.02 mmol) and H-Val-OMe.HCl (168 mg, 1.12 mmol), compound 4 was obtained as a white powder (414 mg, 84 %).

mp. 148-150°C ; [\alpha]\textsc{D}^25 = -40.2 (EtOH, c=0.5) ; 1H NMR (CDCl\textsubscript{3}) : \delta 0.83 (6H, m), 1.27 (3H, d, J = 6.99 Hz), 2.04 (1H, m), 2.99 (1H, dd, J=13.6, 7.4Hz), 3.04 (1H, dd, J=13.8, 7.2Hz), 3.61 (3H, s), 4.49 (2H, m), 4.98 (1H, q, J = 7.5 Hz), 5.05 (1H, d, J = 12.3Hz), 5.13 (1H, d, J=12.1Hz), 6.13 (1H, d, J = 8.1 Hz), 7.07-7.35 (10H, m), 7.48 (1H, d, J = 8.9 Hz), 7.63 (1H, d, J = 8.1 Hz) ; 13C NMR (CDCl\textsubscript{3}) : \delta 17.9, 18.9, 31.2, 38.1, 52.3, 54.5, 57.5, 67.2, 127.1, 128.3, 128.4, 128.7, 128.8, 129.4, 136.2, 136.4, 156.1, 170.7, 171.8, 172.4 ; HRMS (ESI) : [M+H]+ calcd for C\textsubscript{26}H\textsubscript{33}N\textsubscript{3}O\textsubscript{6} 484.2448 ; found : 484.2433
Cbz-Ala-Phe-Met-OMe 5

Following procedure A, and starting from Cbz-Ala-Phe-OMe (425 mg, 1.11 mmol) and H-Met-OMe.HCl (122 mg, 243 mmol), compound 5 was obtained as a white powder (451 mg, 79 %).

mp. 137-139°C ; $[\alpha]_{D}^{25} = -51$ (c=1, MeOH), 1H NMR (CDCl$_3$) : δ 1.29 (3H, d, 7.0Hz), 1.84-2.12 (2H, m), 2.02 (3H, s), 2.38 (2H, t, $J = 7.5$Hz), 3.04 (2H, d, $J = 6.6$Hz), 3.66 (3H, s), 4.33 (1H, t, $J = 6.9$Hz), 4.60 (1H, dd, $J = 13.0$, 7.7Hz), 4.80 (1H, q, $J = 7.2$Hz), 5.01 (1H, d, $J = 12.3$Hz), 5.11 (1H, d, $J = 12.3$Hz), 5.86 (1H, dd, $J = 13.0$, 7.7Hz), 7.04 (1H, t, $J = 7.7$Hz).
12.1 Hz), 5.77 (1H, d, $J = 7.2$ Hz), 7.12-7.34 (12H, m); 13C NMR (CDCl$_3$): δ 15.4, 18.7, 29.8, 31.4, 38.2, 50.6, 51.6, 52.5, 54.3, 67.1, 126.9, 128.1, 128.2, 128.5, 128.6, 129.4, 136.2, 136.3, 156.1, 170.8, 171.9, 172.5; HRMS (ESI): [M+H]$^+$ calcd for C$_{26}$H$_{33}$N$_3$O$_6$S 516.2168; found: 516.2185

Cbz-Ala-Phe-His-OMe 6
Following procedure A, and starting from Cbz-Ala-Phe-OMe (365 mg, 0.95 mmol) and H-His-OMe.2HCl (253 mg, 1.04 mmol), compound 6 was obtained as a white powder (425 mg, 86%).

^1^H NMR (MeOD): δ 1.19 (3H, d, J = 7.2 Hz), 2.85-3.2 (4H, m), 3.66 (3H, s), 4.06 (1H, q, J = 7.2 Hz), 4.63 (2H, m), 5.01 (1H, d, J = 12.3 Hz), 5.08 (1H, d, J = 12.5Hz), 6.85 (1H, s), 7.15-7.33 (10H, m), 7.58 (1H, s); ^1^3^C NMR (MeOD): δ 18.0, 29.9, 38.4, 52.2, 52.8, 54.1, 55.7, 67.7, 127.7, 128.9, 129.0, 129.4, 129.5, 130.4, 136.4, 138.0, 138.3, 158.4, 172.8, 173.2, 175.4; HR-MS (ESI): [M+H]^+ calcd for C_{27}H_{31}N_{5}O_{6} 521.2274 ; found : 521.2278
Cbz-Ala-Phe-Leu-Leu-OMe 7

Following procedure A, and starting from Cbz-Ala-Phe-Leu-OMe (150mg, 0.3mmol) and H-Leu-OMe.HCl (60mg, 0.33mmol), compound 7 was obtained as a white powder (147mg, 80%).

mp 195-197°C ; \([\alpha]_D^{25} = -50.4\ (c=1, \text{MeOH})\) ; \(^1\)H NMR (CDCl\(_3\)) : \(\delta\) 0.87 (12H, m), 1.28 (4H, m), 1.63 (5H, m), 2.97 (2H, d, \(J = 6.4\) Hz), 3.69 (3H, s), 4.58 (2H, m), 4.72 (1H, q, \(J = 7.4\) Hz), 4.97 (1H, d, \(J=12.3\)Hz), 5.10 (1H, d, \(J=\) 12.3Hz), 6.03 (1H, d, \(J = 6.8\) Hz), 7.05-7.40 (10H, m), 7.65 (2H, m), 7.99 (1H, m) ; \(^{13}\)C NMR (CDCl\(_3\)) : \(\delta\) 19.4, 22.0, 22.6, 22.9, 24.8, 25.0, 38.7, 40.8, 41.4, 50.6, 50.9, 51.8, 52.2, 54.1, 66.9, 126.9, 128.0, 128.2, 128.5, 128.6, 129.4, 136.4, 156.2, 171.1, 172.0, 172.8, 173.3 ; HRMS (ESI) : [M+H]\(^+\) calcd for C\(_{33}\)H\(_{46}\)N\(_4\)O\(_7\) 611.3366 ; found : 611.3362
Following procedure A, and starting from Cbz-Ala-Phe-Met-OMe (150mg, 0.29mmol) and H-Leu-OMe.HCl (58mg, 0.32mmol), compound 9 was obtained as a white powder (166mg, 91%). mp. 190-192°C ; 1H NMR (CDCl$_3$) : δ 0.92 (7H, m), 1.32 (5H, m), 1.63 (2H, m), 1.87-2.14 (2H, m), 2.05 (3H, s), 2.45 (2H, t, $J = 7.7$Hz), 2.99, (1H, dd, $J= 13.8$, 6.1Hz), 3.09 (1H, dd, $J= 13.6$, 6.4Hz), 3.70 (3H, s), 4.29 (1H, m), 4.55 (1H, dd, $J=16.6$, 8.5Hz), 4.73 (1H, dd, $J=10.8$, 7.4Hz), 4.94 (1H, d, $J=12.1$Hz), 5.09 (1H, d, $J= 12.1$Hz), 5.57 (1H, d, $J= 5.9$Hz), 7.11-7.39 (13H, m) ; 13C NMR (CDCl$_3$): δ 15.2, 19.0, 21.9, 22.9, 24.9, 29.8, 29.9, 31.9, 38.5, 40.9, 50.9, 52.4, 54.3, 67.2, 127.2, 128.1, 128.4, 128.7, 129.4, 136.1, 136.2, 156.3, 170.8, 170.9, 172.7, 173.1 ; HRMS (ESI) : [M+H]$^+$ calcd for C$_{32}$H$_{44}$N$_4$O$_7$S 629.3009 ; found : 629.3003
Boc-Phe-Met-Leu-OMe 11

Following procedure A, and starting from Boc-Phe-Met-OMe (410mg, 1.0mmol) and H-Leu-OMe.HCl (200mg, 1.1mmol), compound 11 was obtained as a white powder (477mg, 96%)

mp: 136-137°C ; α_d^{25} = -21 (c=1, EtOH) ; TLC [EtOAc : CH$_2$Cl$_2$ = 1 : 1] : R_f = 0.75 ; RMN 1H (CDCl$_3$) : δ 0.91 (3H, d, $J = 4.0$ Hz), 0.92 (3H, d, $J = 4.0$Hz), 1.38 (9H, s), 1.61 (3H, m), 1.98 (2H, m), 2.06 (3H, s), 2.5 (2H, t, $J = 7.4$ Hz), 3.05 (2H, d, $J = 6.4$ Hz), 3.7 (3H, s), 4.37 (1H, m), 4.52 (1H, m), 4.62 (1H, q, $J = 6.6$ Hz), 5.06 (1H, d, $J = 7.4$ Hz), 6.82 (1H, d, $J = 8.1$ Hz), 6.94 (1H, m), 7.15-7.30 (5H, m). 13C NMR (CDCl$_3$) : δ 15.0, 21.9, 22.9, 24.9, 28.3, 29.8, 31.1, 38.1, 41.1, 51.0, 52.1, 52.4, 80.5, 127.1, 128.8, 129.4, 136.4, 155.6, 170.6, 171.4, 173.0 ; HRMS (ESI) : [M+H]$^+$ calcd for C$_{26}$H$_{41}$N$_3$O$_6$S 524.2794 ; found : 524.2795
Following procedure A, and starting from Boc-Phe-Met-OMe (410mg, 1.0mmol) and H-Val-OMe.HCl (184mg, 1.1mmol), compound 12 was obtained as a white powder (464mg, 91%).

mp: 120-122°C ; $[\alpha]_D^{25} = -18.2 \ (\text{c}=1, \text{EtOH})$; TLC [EtOAc : CH$_2Cl_2$ = 1 : 2] : $R_f = 0.6$; 1H NMR (CDCl$_3$) : δ 0.87 (3H, d, $J = 6.8$ Hz), 0.91 (3H, d, $J = 6.8$ Hz), 1.34 (9H, s), 1.96 (2H, m), 2.05 (3H, s), 2.16 (1H, m), 2.49 (2H, $J = 7.2$ Hz), 3.02 (2H, m), 3.7 (3H, s), 4.45 (2H, m), 4.73 (1H, q, $J = 6.8$ Hz), 5.24 (1H, d, $J = 7.7$ Hz), 7.20 (7H, m) ; 13C NMR (CDCl$_3$) : δ 15.0, 17.9, 19.1, 28.3, 29.7, 30.9, 31.4, 38.3, 52.1, 52.2, 55.6, 57.5, 80.2, 126.9, 128.6, 129.4, 136.5, 155.4, 170.8, 171.5, 172.0 ; HRMS (ESI) : [M+H]$^+$ calcd for C$_{25}$H$_{39}$N$_3$O$_6$S 510.2638 ; found : 510.2628

Boc-Phe-Met-Val-OMe 12
Following procedure A, and starting from Boc-Phe-Met-OMe (410mg, 1.0mmol) and H-Ala-OMe.HCl (154mg, 1.1mmol), compound 13 was obtained as a white powder (424mg, 88%).

Mp : 106-108°C ; [α]D25 = -22.1 (C=1, EtOH) ; TLC [EtOAc : CH2Cl2 = 1 : 2] : Rf = 0.3 ; 1H NMR(CDCl3) : δ 1.33 (9H, s), 1.36 (3H, d, J=7.6Hz), 1.96 (2H, m), 2.01 (3H, s), 2.46 (2H, t, J = 7.3 Hz), 3.00 (2H, m), 3.68 (3H, s), 4.49 (2H, m), 4.70 (1H, q, J = 6.7 Hz), 5.49 (1H, d, J = 7.7 Hz), 7.16 (5H, m), 7.44 (2H, m) ; 13C NMR (CDCl3): δ 15.1, 17.7, 28.2, 29.6, 31.9, 38.4, 48.1, 52.0, 52.3, 55.6,
Following procedure A, and starting from Boc-Phe-Met-Leu-OMe (157mg, 0.3mmol) and H-Leu-OMe.HCl (60mg, 0.33mmol), compound \textbf{14} was obtained as a white powder (172 mg, 90%).

mp. 128-130°C; \([\alpha]_D^{25} = -25.6 (c=0.5, \text{MeOH})\); \(^1\text{H} \text{NMR (CDCl}_3\)) : \(\delta 0.92 (6\text{H}, d, J=4.1\text{Hz}), 0.94 (6\text{H}, d, J=4.1\text{Hz}), 1.39 (9\text{H}, s), 1.64 (6\text{H}, m), 1.99 (2\text{H}, q, J=6.6 \text{Hz}), 2.09 (3\text{H}, s), 2.54 (2\text{H}, t, J=7.0 \text{Hz})\)
Boc-Phe-Met-Leu-Ala-OMe 15

Following procedure A, and starting from Boc-Phe-Met-Leu-OMe (157mg, 0.3mmol) and H-Ala-OMe.HCl (46mg, 0.33mmol), compound 15 was obtained as a white powder (143mg, 80%).

1H NMR (CDCl₃) : δ 0.92 (6H, m), 1.39 (9H, s), 1.64 (6H, m), 1.99 (2H, q, $J=6.6$ Hz), 2.09 (3H, s), 2.53 (2H, t, $J=7.0$ Hz), 3.08 (2H, d, $J=6.4$ Hz), 3.72 (3H, s), 4.34 (1H, m), 4.56 (2H, m), 4.92 (1H, d, $J=7.6$ Hz), 6.64 (1H, d, $J=7.9$ Hz), 6.81 (1H, d, $J=7.4$ Hz), 7.17-7.33 (8H, m) ; 13C NMR (CDCl₃) : δ 14.9, 21.9, 22.9, 24.9, 28.4, 29.8, 29.9, 30.8, 38.0, 41.2, 51.0, 52.1, 52.5, 55.9, 81.2, 127.2, 128.9, 129.4, 136.4, 155.5, 170.5, 170.7, 171.2, 173.0 ; HRMS (ESI) : [M+H]$^+$ calcd for C₃₂H₅₂N₄O₇S 637.3635 ; found : 637.3627
m), 6.64 (1H, d, J = 7.9 Hz), 6.81 (1H, d, J = 7.4 Hz), 7.27 (6H, m). HRMS (ESI) : [M+H]+ calcd for C_{29}H_{46}N_{4}O_{7}S 594.3087 ; found : 594.3096

Boc-Phe-Met-Val-Leu-OMe 16

Following procedure A, and starting from Boc-Phe-Met-Val-OMe (153mg, 0.3mmol) and H-Leu-OMe.HCl (60mg, 0.33mmol), compound 16 was obtained as a white powder (142mg, 76%).

mp: 196-198°C ; [α]_{D}^{25} = -42.6 (c=1, MeOH) ; ^{1}H NMR (CDCl₃) : δ 0.91 (12H, m), 1.33 (9H, s), 1.62 (3H, m), 1.95-2.11 (3H, m), 2.02 (3H, s), 2.48 (2H, t, J = 7.3 Hz), 2.93 (2H, m), 3.70 (3H, s), 4.55 (2H, m), 4.84 (1H, m), 5.00 (1H, m), 5.84 (1H, d, J = 8.5 Hz), 7.08 (5H, m), 7.82 (1H, d, J = 7.0 Hz), 7.95 (1H, brs), 8.27 (1H, d, J = 6.1 Hz) ; ^{13}C NMR (CDCl₃): δ 15.2, 18.9, 21.9, 22.9, 25.1, 28.5, 29.8, 29.9, 31.1, 33.0, 39.6, 40.5, 50.9, 51.8, 52.2, 55.2, 58.8, 79.4, 126.5, 128.2, 129.6, 136.9, 155.7, 171.6, 171.7, 171.9, 173.3 ; HRMS (ESI) : [M+H]+ calcd for C_{31}H_{50}N_{4}O_{7}S 623.3478 ; found : 623.3479
Following procedure A, and starting from Boc-Phe-Met-Ala-OMe (144mg, 0.3mmol) and H-Leu-OMe.HCl (60mg, 0.33mmol), compound 17 was obtained as a white powder (139mg, 78%).

mp : 208-210°C ; $[\alpha]_D^{25} = -22.1$ (c=1, EtOH) ; 1H NMR (CDCl$_3$) : \(\delta \) 0.90 (3H, d, \(J = 6.6 \) Hz), 0.92 (3H, d, \(J = 6.6 \) Hz), 1.36 (12H, m), 1.61 (3H, m), 1.97 (2H, m), 1.98 (3H, s), 2.46 (2H, t, \(J = 7.2 \) Hz), 2.98 (1H, dd, \(J=14.0, 7.6Hz \)), 3.09 (1H, dd, \(J=14.0, 5.5Hz \)), 3.70 (3H, s), 4.30 (1H, m), 4.63 (3H, m), 5.04 (1H, d, \(J = 6.6 \) Hz), 6.91 (1H, d, \(J=7.9Hz \)), 7.14-7.33 (6H, m) ; 13C NMR (CDCl$_3$) : \(\delta \) 15.2, 18.0,
21.8, 23.1, 24.9, 28.4, 30.2, 38.0, 41.1, 49.1, 50.9, 52.4, 53.4, 56.6, 81.1, 127.4, 128.9, 129.3, 136.1, 156.2, 170.6, 172.0, 172.1, 173.2; HR-MS (ESI): [M+H]^+ calcd for C_{29}H_{46}N_{4}O_{7}S 595.3165; found: 595.3177.