Proline-catalyzed Dehydrogenative Cross-Coupling Reaction between Chromene and Aldehydes

Zi-Jun Wu, Jian Qian, Tian-Tian Wang, and Zhi-Zhen Huang

a Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
b Zhejiang Jianye Chemical Co., Ltd., Hangzhou, 311604, P. R. China
c State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, P. R. China

*corresponding author; email: huangzhizhen@zju.edu.cn

Supporting Information

Contents

1. General Information .. 2
2. Optimizations of DCC Reaction .. 3
3. Experimental Procedures .. 4
4. Characterization of Products ... 4
5. References .. 7
6. 1H NMR, 13C NMR and HR-MS Spectra of Products 8
1. General Information

Unless otherwise indicated, all reagents were purchased from commercial distributors and used without further purification. 1H and 13C NMR were recorded with 1H at 400 MHz and 13C at 100 MHz, respectively, using tetramethylsilane as an internal reference. Mass spectroscopy data were collected on an HRMS-ESI instrument. Melting points were uncollected. Flash column chromatography was performed over silica gel 200-300. Chromene was prepared according to a reported method.
2. Optimizations of the DCC Reaction

Table S1. Screening of reaction conditions.a

![Chemical Structures](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat. (20 mol %)</th>
<th>Oxident (1.2 eq)</th>
<th>Additive 1 (1.2 eq)</th>
<th>Additive 2 (75 mg)</th>
<th>Solvent (2mL)</th>
<th>Yield(%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A DDQ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>MeCN</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>A DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A DDQ LiClO₄ 4Å MS</td>
<td>4Å MS</td>
<td>MeCN</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>D TBHP LiClO₄ 4Å MS</td>
<td>4Å MS</td>
<td>MeCN</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>D O₂ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>toluene</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>THF</td>
<td>trace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>CHCl₃</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13b</td>
<td>D DDQ LiClO₄</td>
<td>-</td>
<td>MeCN</td>
<td>38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Reaction conditions: 1 (0.3 mmol), LiClO₄ (1.2 eq), 4 Å MS (75 mg), and DDQ (0.36 mmol) in solvent (2 mL). 0°C; 2a (0.9 mmol), organocatalyst (20 mol%), 20 °C, 24 h; NaBH₄ (1.0 mmol).

b Under air.

c Isolated yield.
3. Experimental Procedures

General procedure for the DCC reaction of chromene 1 with aldehyde 2a-i.

The mixture of chromene (39.6 mg, 0.3 mmol), LiClO$_4$ (38.16 mg, 0.36 mmol), 4 Å MS (75 mg), DDQ (81.72 mg, 0.36 mmol) was stirred for 0.5 h in freshly distilled acetonitrile (2 mL) at 0°C. Then aldehyde (0.9 mmol) and L-proline (6.9 mg, 0.06 mmol) was added, and the reaction mixture was stirred for 24 h at room temperature (about 20°C). After evaporation of solvent under reduced pressure, NaBH$_4$ (37.83 mg, 1.0 mmol) and ethanol (2 mL) were added to the mixture. The reaction mixture was stirred for 2 h at 0°C. After water (10 mL) was added, the mixture was extracted with EtOAc (10 mL ×3). The combined organic layer was dried over Na$_2$SO$_4$ and evaporated. The residue was purified by column chromatography (silica gel, ethyl acetate/petroleum ether = 1/10 or 1/20 as eluent) to give desired product 3.

4. Characterization of Products:

2-(2H-chromen-2-yl) butan-1-ol 3a

Yield: 84%; light yellow oil. Low polar diastereomer3: 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.03 (td, $J = 7.6$ Hz, $J = 1.6$ Hz, 1H), 6.90 (dd, $J = 7.4$ Hz, $J = 1.8$ Hz, 1H), 6.79 (td, $J = 7.4$ Hz, $J = 1.1$ Hz, 1H), 6.70 (d, $J = 8.4$ Hz, 1H), 6.38 (dd, $J = 10$ Hz, $J = 1.6$ Hz, 1H), 5.69 (dd, $J = 10$ Hz, $J = 3.2$ Hz 1H), 4.89-4.86 (m, 1H), 3.83-3.80 (m, 1H), 3.75-3.71 (m, 1H), 1.87 (bs, 1H), 1.76-1.71 (m, 1H), 1.54-1.46 (m, 2H), 0.92 (t, $J = 7.4$ Hz, 3H). High polar diastereomer3: 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.02 (t, $J = 7.6$ Hz, 1H), 6.88 (d, $J = 7.6$ Hz, 1H), 6.77 (t, $J = 7.4$ Hz, 1H), 6.67 (d, $J = 8.4$ Hz, 1H), 6.38 (dd, $J = 10$ Hz, $J = 1.6$ Hz, 1H), 5.60 (dd, $J = 10$ Hz, $J = 2.8$ Hz 1H), 5.08 (d, $J = 2.4$ Hz, 1H), 3.80-3.75 (m, 2H), 1.87 (bs, 1H), 1.75-1.70 (m, 1H), 1.49-1.38 (m, 2H), 0.92 (t, $J = 7.4$ Hz, 3H). MS (EI): m/z: 204 [M$^+$], 131(100), 77, 31.

2-(2H-chromen-2-yl) propan-1-ol 3b

Yield: 76%; light yellow oil. Low polar diastereomer3: 1H NMR (400 MHz, CDCl$_3$), δ (ppm): 7.10 (td, $J = 7.6$ Hz, $J = 1.6$ Hz, 1H), 6.96 (dd, $J = 8.8$ Hz, $J = 1.4$ Hz, 1H), 6.85 (td, $J = 7.4$ Hz, $J = 1.1$ Hz, 1H), 6.77 (d, $J = 8$ Hz, 1H), 6.44 (dd, $J = 10$ Hz, $J = 1.2$ Hz, 1H), 5.76 (dd, $J = 10$ Hz, 1H).
Hz, \(J = 3.2 \) Hz (1H), 4.83-4.80 (m, 1H), 3.75 (d, \(J = 5.2 \) Hz, 2H), 2.16-2.10 (m, 1H), 2.03 (bs, 1H), 1.02 (d, \(J = 6.8 \) Hz, 3H). High polar diastereomer: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta \) (ppm): 7.08 (td, \(J = 7.6 \) Hz, \(J = 1.6 \) Hz, 1H), 6.94 (dd, \(J = 7.6 \) Hz, \(J = 1.6 \) Hz, 1H), 6.83 (td, \(J = 7.6 \) Hz, \(J = 1.2 \) Hz, 1H), 6.74 (\(d \), \(J = 8 \) Hz, 1H), 6.45 (dd, \(J = 9.8 \) Hz, \(J = 1.8 \) Hz, 1H), 5.63 (dd, \(J = 10 \) Hz, \(J = 2.8 \) Hz, 1H), 5.10 (\(d \), \(J = 2.4 \) Hz, 1H), 3.83-3.70 (m, 2H), 2.03-1.99 (m, 1H), 1.04 (d, \(J = 7.2 \) Hz, 3H). MS (EI): \(m/z \): 190 [M\(^+\)], 131 (100), 77, 31.

2-(2H-chromen-2-yl) pentan-1-ol 3c

Yield: 66%; yellow oil. Mixture of two diastereomers: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta \) (ppm): 7.12-7.06 (m, 1H), 6.98-6.93 (m, 1H), 6.88-6.82 (m, 1H), 6.78 (\(d \), \(J = 8.0 \) Hz, 0.54H), 6.74 (\(d \), \(J = 8.0 \) Hz, 0.46H), 6.47 (\(d \), \(J = 10 \) Hz, 1H), 5.76 (dd, \(J = 10 \) Hz, \(J = 3.2 \) Hz, 0.54H), 5.65 (dd, \(J = 10 \) Hz, \(J = 2.8 \) Hz, 0.46H), 5.15-5.13 (m, 0.46H), 4.94-4.91 (m, 0.54H), 3.89-3.75 (m, 2H), 2.03 (bs, 1H), 1.9-1.88 (m, 1H), 1.51-1.31 (m, 4H), 0.95-0.90 (m, 3H). MS (EI): \(m/z \): 218 [M\(^+\)], 131 (100), 77, 31.

2-(2H-chromen-2-yl) hexan-1-ol 3d

Yield: 80%; yellow oil. Mixture of two diastereomers: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta \) (ppm): 7.04-6.99 (m, 1H), 6.90-6.86 (m, 1H), 6.80-6.74 (m, 1H), 6.70 (\(d \), \(J = 8.0 \) Hz, 0.53H), 6.67 (\(d \), \(J = 8.0 \) Hz, 0.47H), 6.37 (\(d \), \(J = 10 \) Hz, 1H), 5.69 (dd, \(J = 10 \) Hz, \(J = 3.2 \) Hz, 0.52H), 5.58 (dd, \(J = 10 \) Hz, \(J = 2.8 \) Hz, 0.48H), 5.06 (dd, \(J = 6.0 \) Hz, \(J = 3.2 \) Hz, 0.47H), 4.87-4.84 (m, 0.53H), 3.82-3.68 (m, 2H), 1.932 (bs, 1H), 1.81-1.78 (m, 1H), 1.43-1.40 (m, 2H), 1.30-1.22 (m, 4H), 0.85-0.80 (m, 3H). MS (EI): \(m/z \): 232 [M\(^+\)], 131 (100), 77, 31.

2-(2H-chromen-2-yl) heptan-1-ol 3e

Yield: 90%; yellow oil. Mixture of two diastereomers: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta \) (ppm): 7.11-7.05 (m, 2H), 6.97-6.92 (m, 2H), 6.87-6.81 (m, 2H), 6.76 (\(d \), \(J = 8.4 \) Hz, 1H), 6.73 (\(d \), \(J = 8.0 \) Hz, 1H), 6.44 (\(d \), \(J = 10 \) Hz, 2H), 5.75 (dd, \(J = 9.8 \) Hz, \(J = 3.0 \) Hz, 1H), 5.65 (dd, \(J = 10.0 \) Hz, \(J = 3.2 \) Hz, 1H), 5.14-5.12 (m, 1H), 4.94-4.91 (m, 1H), 3.88-3.74 (m, 4H), 2.25 (bs, 2H), 1.89-1.84 (m, 2H), 1.52-1.46 (m, 4H), 1.44-1.26 (m, 12H), 0.90-0.85 (m, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)), \(\delta \) (ppm): 153.7, 153.4, 129.2, 126.6, 125.1, 125.0, 124.7, 124.3, 122.2, 121.8, 121.4, 121.2, 115.8, 115.6, 77.3, 76.9, 63.0,
62.6, 45.5, 45.4, 32.1 (2 C), 27.2, 27.0, 26.9 (2 C), 25.9(2 C), 22.6(2 C), 14.1(2 C).

HRMS (TOF MS EI\(^+\)): m/z calcd for C\(_{16}\)H\(_{22}\)O\(_2\), 246.1620; found 246.1621.

2-(2H-chromen-2-yl) octan-1-ol 3f

Yield: 82%; yellow oil. Mixture of two diastereomers: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.12-7.06 (m, 1H), 7.00-6.93 (m, 1H), 6.88-6.82(m, 1H), 6.77 (d, \(J = 8.0\) Hz, 0.54H), 6.74 (d, \(J = 8.4\) Hz, 0.48H), 6.45 (d, \(J = 10.0\) Hz, 1H), 5.76 (dd, \(J = 9.8\) Hz, \(J = 6.0\) Hz, 0.54H), 5.66 (dd, \(J = 10.0\) Hz, \(J = 2.8\) Hz,0.48H), 5.15-5.13(m, 0.49H), 4.94-4.91 (m, 0.54H), 3.90-3.75 (m, 2H), 2.02(bs, 1H),1.90-1.85 (m, 1H),1.52-1.46 (m,2H), 1.28-1.26 (m,8H), 0.88-0.86 (m, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 153.7, 153.4, 129.2, 126.6, 125.2, 125.1, 124.7, 124.2, 122.2, 121.8, 121.4, 121.2 115.8, 115.6, 77.4, 77.0, 63, 2, 62.7, 45.4 (2 C), 31.8, 31.7, 29.6, 29.5, 27.5 (2 C), 27.2, 27.1, 25.9(2 C), 22.6 (2C), 14.1 (2 C). HRMS (TOF MS EI\(^+\)): m/z calcd for C\(_{17}\)H\(_{24}\)O\(_2\), 260.1776; found 260.1780.

2-(2H-chromen-2-yl) nonan-1-ol 3g

Yield: 90%; light yellow oil. Mixture of two diastereomers: \(^1\)H NMR (400 MHz, CDCl\(_3\)), \(\delta\) (ppm): 7.12-7.06 (m, 2H), 6.97-6.93 (m, 2H), 6.87-6.81 (m, 2H), 6.77 (d, \(J = 8.0\) Hz, 1H), 6.74 (d, \(J = 8.0\) Hz, 1H), 6.44(d, \(J = 10\) Hz,2H), 5.76 (dd, \(J = 10.0\) Hz, \(J = 3.2\)Hz, 1H), 5.66 (dd, \(J = 9.8\) Hz, \(J = 3.0\) Hz, 1H), 5.15-5.12 (m, 1H), 4.94-4.91(m,1H), 3.89-3.75 (m, 4H), 2.05 (bs, 2H), 1.90-1.86 (m, 2H), 1.51-1.45 (m, 4H), 1.31-1.24 (m, 18H), 0.90-0.85 (m, 6H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)), \(\delta\) (ppm): 153.7, 153.4, 129.2, 126.6, 125.2, 125.1, 124.7, 124.2, 122.2, 121.8, 121.4, 121.2, 115.8, 115.6, 77.4, 77.0, 63.2, 62.7, 45.4 (2 C), 31.8, 31.7, 29.6, 29.5, 27.5 (2 C), 27.2, 27.1, 25.9 (2C), 22.6 (2C), 14.1 (2 C). HRMS (TOF MS EI\(^+\)): m/z calcd for C\(_{18}\)H\(_{26}\)O\(_2\), 274.1933; found 260.1936.

2-(2H-chromen-2-yl)-3-methylbutan-1-ol 3h

Yield: 93%; yellow oil. Low polar diastereomer: \(^1\)H NMR (CDCl\(_3\), 400 MHz), \(\delta\) (ppm): 7.09 (td, \(J = 7.6\) Hz, \(J = 1.5\) Hz, 1H), 6.97 (dd, \(J = 7.6\) Hz, \(J = 1.6\) Hz, 1H), 6.86 (td, \(J = 7.4\) Hz, \(J = 1.1\)Hz, 1H), 6.76 (d, \(J = 8.0\) Hz, 1H), 6.45 (dd, \(J = 10.0\) Hz, \(J = 2.0\) Hz,1H), 5.72 (dd, \(J = 10.0\) Hz, \(J = 2.8\) Hz, 1H), 5.13-5.11 (m, 1H), 3.97-3.88 (m, 2H), 2.28-2.06 (m, 2H), 1.62-1.57 (m, 1H), 1.04 (d, \(J = 6.8\) Hz, 3H), 1.00 (d, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz,
CDCl₃), δ (ppm): 153.2, 129.3, 126.6, 126.0, 124.9, 122.2, 121.6, 115.9, 76.6, 61.4, 51.2, 26.0, 21.1, 19.8; High polar diastereomer: ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.09 (td, J = 3.6 Hz, J = 1.6 Hz, 1H), 6.96 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 6.85 (td, J = 7.4 Hz, J = 1.1 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.65 (dd, J = 10 Hz, J = 2.0 Hz, 1H), 5.78 (dd, J = 9.8 Hz, J = 3.0 Hz, 1H), 5.17 (dd, J = 5.2 Hz, J = 2.4 Hz,1H), 3.91-3.84 (m, 2H), 2.07-1.99 (m, 1H), 1.90 (bs , 1H), 1.82-1.76 (m, 1H), 1.02 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 153.6, 129.2, 126.5, 125.0, 124.5, 122.0, 121.2, 115.8, 76.1, 61.1, 51.0, 25.9, 21.5, 20.2; HRMS (TOF MS El⁺): m/z calcd for C₁₄H₁₈O₂, 218.1307; found 218.1304.

2-(2H-chromen-2-yl)-3-phenylpropan-1-ol 3i²

Yield: 64%; yellow oil. Mixture of two diastereomers: ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.21-7.17 (m, 3H), 7.15-7.10 (m, 2H), 7.06-7.01(m, 1H), 6.91-6.87 (m, 1H), 6.81-6.77(m, 1H), 6.75 (d, J = 8.8 Hz, 0.55H), 6.71 (d, J = 8 Hz, 0.5H) 6.42-6.37 (m, 1H), 5.67 (t, J = 2.8 Hz, 0.52H), 5.65 (t, J = 2.8 Hz, 0.48H), 5.10-5.08 (m, 0.51H), 4.88-4.86 (m, 0.49H), 3.67-3.66 (m, 1H), 2.90-2.83 (m, 1H), 2.79-2.73 (m, 0.53H), 2.70-2.64 (m, 0.62H), 2.09-2.07 (m, 1H), 1.79 (bs, 1H); MS (EI): m/z: 266 [M⁺], 131(100), 91, 77, 57, 31.

4. References

[3] There is no literature on anti- and syn-configurations of diastereomers 3a-i.
5. 1H NMR, 13C NMR and HR-MS Spectra of Products.

1H NMR of 2-(2H-chromen-2-yl) butan-1-ol 3a (low polar)
1H NMR of 2-(2H-chromen-2-yl) butan-1-ol 3a (high polar)
MS of 2-(2H-chromen-2-yl) butan-1-ol 3a
1H NMR of 2-(2H-chromen-2-yl) propan-1-ol 3b (low polar)
1H NMR of 2-(2H-chromen-2-yl) propan-1-ol 3b (high polar)
MS of 2-(2H-chromen-2-yl) propan-1-ol 3b
1H NMR of 2-(2H-chromen-2-yl) pentan-1-ol 3c (mixture of two diastereomers)
MS of 2-(2H-chromen-2-yl) pentan-1-ol 3c
1H NMR of 2-(2H-chromen-2-yl) hexan-1-ol 3d (mixture of two diastereomers)
MS of 2-(2H-chromen-2-yl) hexan-1-ol 3d
1H NMR of 2-(2H-chromen-2-yl) heptan-1-ol 3e (mixture of two diastereomers)
13C NMR of 2-(2H-chromen-2-yl) heptan-1-ol 3e (mixture of two diastereomers)
Elemental Composition Report

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
20 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-100 H: 0-200 O: 0-6
w(14-7 112 (1.867)
TOF MS El+

Minimum:
Maximin:

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>I-PIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>246.1621</td>
<td>246.1620</td>
<td>0.1</td>
<td>0.4</td>
<td>6.0</td>
<td>55.47888.0</td>
<td>C16 H22 O2</td>
</tr>
</tbody>
</table>
1H NMR of 2-(2H-chromen-2-yl) octan-1-ol 3f (mixture of two diastereomers)

13C NMR of 2-(2H-chromen-2-yl) octan-1-ol 3f (mixture of two diastereomers)
HR-MS of 2-(2H-chromen-2-yl) octan-1-ol 3f
Elemental Composition Report

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 60.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
22 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
 C: 0-100 H: 0-200 O: 0-5
wzj4-8 118 (1.957)
TOF MS EI+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>260.1780</td>
<td>260.1776</td>
<td>0.4</td>
<td>1.5</td>
<td>6.0</td>
<td>5550634.5</td>
<td>C17 H24 O2</td>
</tr>
</tbody>
</table>
13C NMR of 2-(2H-chromen-2-yl) nonan-1-ol 3g (mixture of two diastereomers)
HR-MS of 2-(2H-chromen-2-yl) nonan-1-ol 3g
Elemental Composition Report

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
22 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 0-100 H: 0-200 O: 0-5

\[\text{MW (140.152, 1.594)} \]

TOF MS EI

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>1-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>274.1936</td>
<td>274.1933</td>
<td>0.3</td>
<td>1.1</td>
<td>6.0</td>
<td>5547169.5</td>
<td>C18 H26 O2</td>
</tr>
</tbody>
</table>

Diagram

A graph showing mass distribution with a peak at 274.1936 m/z.
13C NMR of 2-(2H-chromen-2-yl)-3-methylbutan-1-ol 3h (low polar)
1H NMR of 2-(2H-chromen-2-yl)-3-methylbutan-1-ol 3h (high polar)
13C NMR of 2-(2H-chromen-2-yl)-3-methylbutan-1-ol 3h (high polar)
HR-MS of 2-(2H-chromen-2-yl)-3-methylbutan-1-ol 3h
Elemental Composition Report

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0
Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions
18 formula(s) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:
C: 0-100 H: 0-200 O: 0-5

w2/14 iso-s 86 (1.433)
TOF MS El+

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>218.1304</td>
<td>218.1307</td>
<td>-0.3</td>
<td>-1.4</td>
<td>6.0</td>
<td>5549107.5</td>
<td>C14 H18 O2</td>
</tr>
</tbody>
</table>