Supporting Information for:

One-pot, Three-Component Synthesis of Novel Pyrroloacridinones via Intramolecular Ipso-Dearomatization / Intramolecular Aza-Michael Addition Sequence

Yuliya S. Rozhkova*a, Kristina A. Galataa, Alexey A. Gorbunov*a, Yurii V. Shklyaev*a, Marina A. Ezhikova*b, Mikhail I. Kodessb

*a Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, 13 Akademika Koroleva St., 614107, Perm, Russian Federation
Fax: +7(342)2378262; E-mail: rjs@mail.ru

b Postovsky Institute of Organic Synthesis, Ural Branch of Russian Academy of Sciences, 22/20 Kovalevskoy/Akademicheskaya St., 620990, Yekaterinburg, Russian Federation
Table of contents

1. General Information
2. Experimental Procedures and Characterization Data
3. ORTEP Drawing and Crystallographic Data
4. ^1H and ^{13}C NMR Spectra
5. References and Notes
1. General Information.

All commercial reagents were used directly as obtained. Thin-layer chromatography was performed using commercially prepared Sorbfil UV-254 silica gel plates. Compounds on TLC were visualized under UV light (254 nm) and with a 0.5% p-chloranil solution in toluene. Column chromatography was performed using silica gel (0.06-0.20 mm, 70-230 mesh, Lancaster). Melting points (mp) were determined on a PTP apparatus and are uncorrected. Infra-red spectra (IR) were recorded on a Bruker IFS 66 FTIR spectrometer. 1H and 13C NMR spectra were recorded on a Varian Mercury Plus 300 spectrometer (1H: 300.06 MHz, 13C: 75.46 MHz) and a Bruker AVANCE-500 spectrometer (1H: 500.13 MHz, 13C: 125.76 MHz). The 1H chemical shifts were measured from internal SiMe$_4$, 13C — from the solvent signal (CDCl$_3$, δ$_C$ 77.0 ppm). All the signals in the 1H and 13C NMR spectra of the compounds 4g, 5h, 5h', 5i, 5i', 5j', and 7 were assigned on the basis of 2D 1H–1H COSY and NOEY, 1H–13C HSQC and HMBC experiments. The stereochemistry of 5a was determined by 2D 1H–1H NOESY experiment. Mass spectra (MS) were obtained on an Agilent 6890N/5975B GC-MS system (column: HP-5ms, 30 m × 0.25 mm, 0.25 μm; helium as a carrier gas, electron impact ionization mode (200°C, 70 eV)). Elemental analyses were carried out on a Leco CHNS-932 analyzer. X-ray data were collected at 295(2) K with an XCALIBUR-3 diffractometer, CCD detector (ω-scanning technique, MoKα radiation, graphite monochromator). Structures were solved by direct method and refined with SHELX-97 program package. All non-hydrogen atoms were refined anisotropically. Crystallographic data and data collection parameters are summarized in Table 1.
2. Experimental procedures and Characterization Data

2,6-Di-tert-butyl-4-(1-hydroxy-2-methylpropyl)phenol (6). To a stirred suspension of sodium borohydride (1.75 g, 46 mmol) in 15 ml of ethanol was added a solution of 1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropan-1-one\(^2\) (11.56 g, 42 mmol) in 15 ml of ethanol dropwise at such a rate that the temperature of the reaction mixture was maintained at 20-30 °C. The reaction mixture was stirred at room temperature for 4 hours. Then ethanol was removed on a rotary evaporator and 10 ml of a 10% NaOH solution was added. The aqueous phase was extracted with Et\(_2\)O (3×50 ml). The combined organic phases were washed with water, dried under Na\(_2\)SO\(_4\), and evaporated to dryness. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate 20:1) to give pure compound 6 (8.01 g, 69%) as a colorless solid: \(R_f\) 0.44 (hexane/ethyl acetate, 10:1); mp: 92.5-94.5 °C; IR (film) \(\nu\): 3398, 2957, 2872, 1435, 1365 cm\(^{-1}\). \(^1\)H NMR (500 MHz, CDCl\(_3\)), \(\delta\), ppm, J/Hz: 0.76 (d, 3H, \(J = 6.7\), Me), 1.01 (d, 3H, \(J = 6.7\), Me), 1.44 (s, 18H, C\(_2\)(Me\(_3\)), C\(_6\)(Me\(_3\))), 1.87 (d, 1H, \(J = 2.9\), OH-C\(_1\)'), 1.91 (m, 1H, H-2'), 4.23 (dd, 1H, \(J = 7.5, 2.9\), H-1'), 5.15 (s, 1H, OH-C\(_1\)'), 7.09 (s, 2H, H-3 and H-5); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)), \(\delta\), ppm: 18.59 (Me), 19.09 (Me), 30.27 (2C(Me\(_3\))), 34.23 (2C(Me\(_3\))), 35.05 (C-2'), 80.53 (C-1'), 123.13 (C-3, C-5), 134.20 (C-4), 135.38 (C-2, C-6), 152.93 (C-1); MS (EI) m/z (%): 278 [M\(^+\)] (3), 260 [M-H\(_2\)O\(^+\)] (7), 245 (9), 235 [M-CH(Me)\(_2\)]\(^+\) (100); Anal. Calcd for C\(_{18}\)H\(_{30}\)O\(_2\): C 77.65, H 10.85; found: C 77.65, H 10.86.

(6a\(R^*\),14a\(S^*\))-13,13-Dimethyl-6a,7,13,14-tetrahydrobenzo[a]pyrrolo[2,3-m]acridin-5(6H)-one (5a). A mixture of 1-methoxynaphthalene \(1a\) (316 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile \(3\) (236 mg, 2.0 mmol) was added dropwise to stirred concentrated sulfuric acid (92%, 1 ml, 17 mmol) at 5-7 °C. The reaction mixture was stirred at room temperature for 25 min and poured into a mixture of ice (25 g) and NH\(_3\) (aq) (7 mL). The product was extracted with CH\(_2\)Cl\(_2\) (3×15 ml), and the combined organic layers were washed with water, dried over anhydrous Na\(_2\)SO\(_4\), and filtered. After the solvent was removed, the crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 4:1 to 2:1) to give pure 5a (516 mg, 82%). Data for 5a: Pale yellow solid; \(R_f\) 0.63 (hexane/ethyl acetate, 2:1); mp: 267-269 °C; IR (film) v: 3364, 3066, 3026, 2964, 2867, 1674, 1610 cm\(^{-1}\). \(^1\)H NMR (500 MHz, CDCl\(_3\)), \(\delta\), ppm, J/Hz: 1.42 (s, 3H, Me-C\(_{13}\)), 1.47 (s, 3H, Me-C\(_{13}\)), 2.05 (d, 1H, \(J = 13.1\), H-14\(^B\)), 2.10 (d, 1H, \(J = 13.1\), H-14\(^A\)), 2.79 (dd, 1H, \(J = 18.0, 3.0\), H-6\(^B\)), 3.02 (dd, 1H, \(J = 18.0, 3.0\), H-6\(^A\)),
3.96 (t, 1H, J = 3.0, H-6a), 4.32 (br s, 1H, NH), 6.41 (br d, 1H, J = 7.9, 7.1, 1.2, H-10), 7.06-7.10 (m, 2H, H-1 and H-9), 7.29 (td, 1H, J = 7.6, 1.0, H-3), 7.41 (td, 1H, J = 7.6, 1.4, H-2), 7.92 (dd, 1H, J = 7.9, 1.5, H-11), 8.03 (dd, 1H, J = 7.8, 1.4, H-4);

\[
\text{13C NMR (75 MHz, CDCl}_3\text{, }\delta, \text{ ppm: 29.29 (Me-C13), 32.46 (Me-C13), 40.53, 48.41 (C-6, C-14), 56.30 (C-14a), 58.45 (C-6a), 72.87 (C-13), 114.75 (C-8), 115.62 (C-11a), 118.32 (C-10), 126.85, 127.00, 127.31 and 127.90 (C-1, C-4, C-9, and C-11), 131.08 (C-4a), 131.81 and 134.17 (C-2, C-3), 143.59 and 147.00 (C-7a and C-14b), 166.59 (C-11b), 195.23 (C-5); MS (EI) m/z (%): 316 [M] + (78), 316 [M-Me] + (100); Anal. Calcd for C21H20N2O: C 79.72, H 6.37, N 8.85; found: C 79.42, H 6.43, N 8.64.}

(3aS*,7aR*)-2,2-Dimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5b). The title compound was prepared from anisole 1b (216 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile 3 in a similar manner as described for the preparation of 5a. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 2:1) to give starting 2-aminobenzonitrile 3 (71 mg, 30%), and 5b (213 mg, 40%). Data for 5b: Yellow solid; Rf 0.30 (hexane/ethyl acetate, 1:1); mp: 230.5-232 °C; IR (film) ν: 3265, 3030, 2968, 2924, 1670, 1605 cm⁻¹. \[^1\text{H NMR (500 MHz, CDCl}_3\text{, }\delta, \text{ ppm, J/Hz: 1.40 (s, 3H, Me-C2), 1.48 (s, 3H, Me-C2), 2.04 (d, 1H, J = 12.9, H-3B), 2.19 (d, 1H, J = 12.9, H-3A), 2.56 (ddd, 1H, J = 17.1, 3.0, 0.9, H-7B), 2.75 (dd, 1H, J = 17.1, 2.7, H-7A), 3.85 (q, 1H, J = 2.6, H-7a), 4.39 (s, 1H, NH), 5.96 (dd, 1H, J = 10.0, 0.9, H-5), 6.57 (dd, 1H, J = 8.3, 1.0, H-9), 6.63 (dd, 1H, J = 10.0, 2.3, H-4), 6.72 (ddd, 1H, J = 7.9, 7.1, 1.0, H-11), 7.18 (dd, 1H, J = 8.3, 7.1, 1.5, H-10), 7.85 (dd, 1H, J = 7.9, 1.5, H-12); 13C NMR (75 MHz, CDCl}_3\text{, }\delta, \text{ ppm: 30.02 and 31.27 (2Me-C2), 40.85 (C-7), 49.24 (C-3), 53.71 (C-3a), 58.26 (C-7a), 72.13 (C-2), 114.69 (C-9), 114.97 (C-12a), 118.20 (C-11), 126.98 and 128.27 (C-12 and C-5), 132.51 (C-10), 146.40 (C-8a), 148.40 (C-4), 166.08 (C-12b), 195.80 (C-6); MS (EI) m/z (%): 266 [M] + (100); Anal. Calcd for C17H18N2O: C 76.66, H 6.81, N 10.52; found: C 76.83, H 6.58, N 10.48.}

(3aS*,7aR*)-2,2,5-Trimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5c). The title compound was prepared from 2-methylanisole 1c (244 mg, 2.0 mmol), isobutyraldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5a. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 2:1) to give pure 5c (406 mg, 73%).
Data for 5c: Yellow solid; R_f 0.33 (hexane/ethyl acetate, 2:1); mp: 202-203.5 °C; IR (film) v: 3332, 2956, 1668, 1606 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$), δ, ppm, J/Hz: 1.41 (s, 3H, Me-C$_2$), 1.47 (s, 3H, Me-C$_2$), 1.74 (d, 3H, $J = 1.5$, Me-C$_3$), 2.02 (d, 1H, $J = 12.8$, H-3B), 2.17 (d, 1H, $J = 12.8$, H-3A), 2.57 (dd, 1H, $J = 17.1$, 3.2, H-7B), 2.76 (dd, 1H, $J = 17.1$, 2.7, H-7A), 3.81 (q, 1H, $J = 2.7$, H-7a), 4.37 (s, 1H, NH), 6.38 (qd, 1H, $J = 1.7$, 1.5, H-4), 6.56 (dd, 1H, $J = 8.2$, 1.0, H-9), 6.71 (ddd, 1H, $J = 7.9$, 7.0, 1.0, H-11), 7.18 (ddd, 1H, $J = 8.2$, 7.1, 1.5, H-10), 7.85 (dd, 1H, $J = 7.9$, 1.5, H-12); 13C NMR (75 MHz, CDCl$_3$), δ, ppm: 15.93 (Me-C$_5$), 30.00 and 31.28 (2Me-C$_2$), 40.84 (C-7), 49.25 (C-3), 53.96 (C-3a), 58.60 (C-7a), 71.91 (C-2), 114.66 (C-9), 114.94 (C-2a), 117.92 (C-11), 126.95 (C-12), 132.30 (C-10), 134.51 (C-5), 143.35 (C-4), 146.57 (C-8a), 166.59 (C-12b), 196.29 (C-6); MS (EI) m/z (%): 280 [M$^+$] (100); Anal. Calcd for C$_{18}$H$_{20}$N$_2$O: C 77.11, H 7.19, N 9.99; found: C 76.92, H 7.06, N 9.93.

($3a^S$,7aR*)-4,5-Dimethoxy-2,2-dimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5d). A solution of 1,2,3-trimethoxybenzene 1d (336 mg, 2.0 mmol) and isobutyric aldehyde 2 (216 mg, 3.0 mmol) in CH$_2$Cl$_2$ (0.5 ml) was added dropwise to stirred solution of 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in concentrated sulfuric acid (92%, 1 ml, 17 mmol) at 5-7 °C. The reaction mixture was stirred at room temperature for 1.5 h and poured into a mixture of ice (25 g) and NH$_3$ (aq) (7 mL). The product was extracted with CH$_2$Cl$_2$ (3×15 ml), and the combined organic layers were washed with water, dried over anhydrous Na$_2$SO$_4$, and filtered. After the solvent was removed, the crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 3:1 to 1:1) to give starting 2-aminobenzonitrile 3 (89 mg, 38%) and 5d (290 mg, 44%). **Data for 5d:** Pale yellow solid; R_f 0.25 (hexane/ethyl acetate, 1:1); mp: 197-199 °C; IR (film) v: 3348, 3245, 3004, 2962, 1665, 1632, 1612 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$), δ, ppm, J/Hz: 1.41 (s, 3H, Me-C$_2$), 1.44 (s, 3H, Me-C$_2$), 2.02 (d, 1H, $J = 13.4$, H-3B), 2.13 (d, 1H, $J = 13.4$, H-3A), 2.53 (dd, 1H, $J = 17.2$, 3.0, H-7B), 2.74 (dd, 1H, $J = 17.2$, 3.0, H-7A), 3.59 (s, 3H, OMe), 3.74 (t, 1H, $J = 3.0$, H-7a), 3.93 (s, 3H, OMe), 4.40 (s, 1H, NH), 6.55 (dd, 1H, $J = 8.2$, 0.9, H-9), 6.69 (ddd, 1H, $J = 7.8$, 7.1, 0.9, H-11), 7.15 (ddd, 1H, $J = 8.2$, 7.1, 1.5, H-10), 7.75 (dd, 1H, $J = 7.8$, 1.5, H-12); 13C NMR (126 MHz, CDCl$_3$), δ, ppm: 28.65 and 31.86 (2Me-C$_2$), 40.21 (C-7), 48.02 (C-3), 57.05 (OMe), 57.98 (C-7a), 60.89 (C-3a), 60.92 (OMe), 72.96 (C-2), 114.18 (C-9), 115.75 (C-12a), 117.77 (C-11), 126.79 (C-12), 131.85 (C-10), 135.72 (C-5), 145.96 (C-8a), 162.85 (C-4), 163.87 (C-12b), 192.41 (C-6); MS (EI) m/z (%): 326 [M$^+$] (98), 311 [M-Me$^-$] (59), 208 (16), 193 (40), 183 (17), 159 (100); Anal. Calcd for C$_{19}$H$_{22}$N$_2$O$_3$: C 69.92, H 6.79, N 8.58; found: C 70.03, H 6.68, N 8.51.
(3aS*,7aR*)-5-Methoxy-2,2,7a-trimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5e). The title compound was prepared from 1,2-dimethoxy-4-methylbenzene 1e (304 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol) and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5a. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 2:1) to give starting 2-aminobenzonitrile 3 (77 mg, 33%) and 5e (340 mg, 55%).

Data for 5e: Pale yellow solid; R_t 0.18 (hexane/ethyl acetate, 2:1); mp: 245-247 °C; IR (film) ν: 3322, 2967, 1687, 1617 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)), δ, ppm, J/Hz: 1.23 (s, 3H, Me-C\(^{7a}\)), 1.45 (s, 3H, Me-C\(^{2}\)), 1.47 (s, 3H, Me-C\(^{2}\)), 1.97 (d, 1H, J = 13.4, H-3\(^B\)), 2.26 (d, 1H, J = 13.4, H-3\(^A\)), 2.62 (d, 1H, J = 16.9, H-7\(^B\)), 2.71 (d, 1H, J = 16.9, H-7\(^A\)), 3.50 (s, 3H, OMe), 4.14 (s, 1H, NH), 5.45 (s, 1H, H-4\(^A\)), 6.53 (d, 1H, J = 8.3, H-9), 6.71 (ddd, 1H, J = 7.9, 7.1, 0.9, H-11), 7.18 (ddd, 1H, J = 8.3, 7.1, 1.5, H-10), 7.91 (dd, 1H, J = 7.9, 1.5, H-12); \(^13\)C NMR (75 MHz, CDCl\(_3\)), δ, ppm: 23.15 (Me-C\(^{7a}\)), 30.59 and 31.54 (2Me-C\(^{2}\)), 45.81 (C-3), 48.35 (C-7), 54.91 (OMe), 57.81, 57.84 (C-3a, C-7a), 71.90 (C-2), 114.19 (C-12a), 115.14 (C-9), 117.04 and 117.67 (C-4, C-11), 126.96 (C-12), 132.24 (C-10), 145.16 (C-8a), 149.60 (C-5), 165.69 (C-12b), 192.18 (C-6); MS (EI) m/z (%): 310 [M] (+ 95), 295 [M-Me] (+ 100); Anal. Calcd for C\(_{19}\)H\(_{22}\)N\(_2\)O\(_2\): C 73.52, H 7.14, N 9.03; found: C 73.60, H 7.05, N 8.94.

1-(2-aminophenyl)-9-isopropyl-3,3,6-trimethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-one (4f) and (3aS*,7aR*)-5-isopropyl-2,2,7a-trimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5f). The title compounds were prepared from 1-isopropyl-2-methoxy-4-methylbenzene 1f (328 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol) and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5a. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 4:1 to 1:1) to give 4f (59 mg, 9%) and 5f (340 mg, 53%).

Data for 4f: Colorless solid; R_t 0.75 (hexane/ethyl acetate, 2:1); mp: 136-138 °C; IR (film) ν: 3426, 3254, 2964, 2874, 1656, 1616 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)), δ, ppm, J/Hz: 1.04 (d, 3H, J = 6.9, Me-C\(^9\)), 1.09 (d, 3H, J = 6.9, Me-C\(^9\)), 1.47 (s, 3H, Me-C\(^3\)), 1.53 (s, 3H, Me-C\(^3\)), 1.83 (d, 3H, J = 1.3, Me-C\(^6\)), 1.98 (d, 1H, J = 13.8, H-4\(^B\)), 2.15 (d, 1H, J = 13.8, H-4\(^A\)), 3.07 (spd, 2H, J = 6.9, 1.1, H-9\(^a\)), 6.24 (q, 1H, J = 1.3, H-7), 6.40 (ddd, 1H, J = 8.1, 7.0, 1.2, H-5\(^a\)), 6.55 (br s, 2H, NH\(_2\)), 6.66 (dd, 1H, J = 8.3, 1.2, H-3\(^b\)), 6.77 (d, 1H, J = 1.1, H-10), 7.02 (dd, 1H, J = 8.1, 1.5, H-6\(^\prime\)), 7.08 (ddd, 1H, J = 8.3, 7.0, 1.5, H-4\(^\prime\)); \(^13\)C NMR
(75 MHz, CDCl₃), δ, ppm: 19.94 (Me-C⁶), 21.36 and 21.59 (2Me-C⁶), 25.84 (C-9'), 31.16 and 31.61 (2Me-C⁵), 49.47 (C-4), 65.29 (C-5), 72.06 (C-3), 114.11 (C-1'), 115.66 and 116.16 (C-3', C-5'), 127.69 and 128.65 (C-4', C-6'), 131.25 (C-7), 142.32 (C-9), 145.31 (C-10), 149.22 (C-2'), 160.28 (C-6), 167.36 (C-1), 185.41 (C-8); MS (EI) m/z (%): 322 [M]⁺ (14), 204 [M-H₂NC₆H₄CN]⁺ (79), 189 [M-H₂NC₆H₄CN-Me]⁺ (100); Anal. Calcd for C₂₁H₂₆N₂O: C 78.22, H 8.13, N 8.69; found: C 78.22, H 8.02, N 8.64.

Data for 5f: Pale yellow solid; Rₜ 0.38 (hexane/ethyl acetate, 2:1); mp: 166.5-167 °C; IR (film): 3359, 3316, 2963, 2876, 1669, 1618 cm⁻¹. ¹H NMR (500 MHz, CDCl₃), δ, ppm, J/Hz: 0.87 (d, 3H, J = 6.9, Me-C⁵'); 0.96 (d, 3H, J = 6.9, Me-C⁵'); 1.22 (s, 3H, Me-C⁷a), 1.43 (s, 3H, Me-C²), 1.46 (s, 3H, Me-C²), 1.88 (d, 1H, J = 13.4, H-3B), 2.22 (d, 1H, J = 13.4, H-3A), 2.52 (d, 1H, J = 16.7, H-7B), 2.60 (d, 1H, J = 16.7, H-7A), 2.80 (spd, 1H, J = 6.9, 1.1, H-5'), 3.86 (s, 1H, NH), 6.25 (d, 1H, J = 1.1, H-4), 6.49 (dd, 1H, J = 8.3, 0.9, H-9), 6.70 (ddd, 1H, J = 7.9, 7.1, 0.9, H-11), 7.16 (ddd, 1H, J = 8.3, 7.1, 1.5, H-10), 7.87 (dd, 1H, J = 7.9, 1.5, H-12); ¹³C NMR (75 MHz, CDCl₃), δ, ppm: 21.35 and 21.63 (2Me-C⁵), 23.30 and 26.00 (C5' and Me-C⁷a), 30.58 and 31.56 (2Me-C²), 45.40 (C-3), 45.51 (C-7), 57.68 and 58.51 (C-3a and C-7a), 71.88 (C-2), 114.12 (C-12a), 114.80 (C-9), 117.37 (C-11), 126.84 (C-12), 132.23 (C-10), 142.49, 142.83 and 145.19 (C-4, C-5, C-8a), 165.72 (C-12b), 196.92 (C-6); MS (EI) m/z (%): 322 [M]⁺ (74), 307 [M-Me]⁺ (100); Anal. Calcd for C₂₁H₂₆N₂O: C 78.20, H 8.12, N 8.66.

1-(2-Aminophenyl)-3,3,6,9-tetramethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-one (4g) and (3aS*,7aR*)-2,2,5,7a-tetramethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5g). The title compounds were prepared from 2-methoxy-1,4-dimethylbenzene 1f (272 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5a. The crude mixture was purified by column chromatography on silica gel (hexane/ethyl acetate, 3:1 to 1:1) to give 4g (67 mg, 11%) and 5g (372 mg, 63%).

Data for 4g: Colorless solid; Rₜ 0.75 (hexane/ethyl acetate, 2:1); mp: 193-197 °C; IR (film): 3348, 3245, 3004, 2942, 2962, 1665, 1632, 1612 cm⁻¹; ¹H NMR (500 MHz, CDCl₃), δ, ppm, J/Hz: 1.46 (s, 3H, Me-C³), 1.53 (s, 3H, Me-C³), 1.84 (d, 3H, J = 1.3, Me-C⁶), 1.94 (d, 3H, J = 1.5, Me-C⁶), 2.03 (d, 1H, J = 13.9, H-4B), 2.14 (d, 1H, J = 13.9, H-4A), 2.62 (q, 1H, J = 1.3, H-7), 6.42 (ddd, 1H, J = 8.1, 7.0, 1.2, H-5'), 6.56 (br s, 2H, NH₂), 6.66 (dd, 1H, J = 8.2, 1.2, H-3'), 6.88 (q, 1H, J = 1.5, H-10), 7.04 (dd, 1H, J = 8.1, 1.4, H-6'), 7.09 (ddd,
1H, J = 8.2, 7.0, 1.4, H-4'); \textbf{13C NMR} (126 MHz, CDCl$_3$), δ, ppm: 15.70 (Me-C$_5$), 20.11 (Me-C$_5$), 31.23 and 31.64 (2Me-C$_3$), 49.29 (C-4), 65.60 (C-5), 72.18 (C-3), 114.16 (C-1'), 115.88 (C-5'), 116.21 (C-3'), 127.22 (C-7), 128.69 (C-6'), 131.33 (C-4'), 132.92 (C-9), 148.33 (C-10), 149.29 (C-2'), 161.31 (C-6), 167.17 (C-1), 186.47 (C-8); \textbf{MS} (EI) m/z (%): 294 [M$^+$] (10), 176 [M-H$_2$NC$_6$H$_4$CN]$^+$ (60), 161 [M-H$_2$NC$_6$H$_4$CN-Me]$^+$ (62), 118 [H$_2$NC$_6$H$_4$CN]$^+$ (100); \textbf{Anal. Calcd for} C$_{19}$H$_{22}$N$_2$O: C 77.52, H 7.53, N 9.52; found: C 77.70, H 7.42, N 9.50.

\textbf{Data for 5g:} Yellow solid; R_f 0.38 (hexane/ethyl acetate, 2:1); mp: 228-229 °C; \textbf{IR} (film) ν: 3325, 2967, 1661, 1612 cm$^{-1}$; \textbf{1H NMR} (500 MHz, CDCl$_3$), δ, ppm, J/Hz: 1.23 (s, 3H, Me-C$_7$), 1.43 (s, 3H, Me-C$_2$), 1.46 (s, 3H, Me-C$_2$), 1.72 (d, 3H, J = 1.5, Me-C$_5$), 1.93 (d, 1H, J = 13.5, H-3B), 2.22 (d, 1H, J = 13.5, H-3A), 2.54 (d, 1H, J = 16.8, H-7B), 2.60 (d, 1H, J = 16.8, H-7A), 4.18 (s, 1H, NH), 6.36 (q, 1H, J = 1.5, H-4), 6.52 (dd, 1H, J = 8.3, 1.0, H-9), 6.70 (ddd, 1H, J = 7.9, 7.0, 1.0, H-11), 7.17 (ddd, 1H, J = 8.3, 7.0, 1.5, H-10), 7.88 (dd, 1H, J = 7.9, 1.5, H-12); \textbf{13C NMR} (126 MHz, CDCl$_3$), δ, ppm: 15.51 (Me-C$_5$), 23.38 (Me-C$_7$), 30.56 and 31.54 (2Me-C$_3$), 45.08 (C-3), 48.06 (C-7), 58.19 and 58.79 (C-3a and C-7a), 71.97 (C-2), 114.24 (C-12a), 114.97 (C-9), 117.50 (C-11), 126.88 and 132.25 (C10 and C12), 133.04 (C-5), 145.39 (C-8a), 145.52 (C-4), 165.44 (C-12b), 197.73 (C-6); \textbf{MS} (EI) m/z (%): 294 [M$^+$] (79), 279 [M-Me]$^+$ (100); \textbf{Anal. Calcd for} C$_{19}$H$_{22}$N$_2$O: C 77.52, H 7.53, N 9.52; found: C 77.26, H 7.52, N 9.48.

(3as,7S*,7aR*)-2,2,5,7-Tetramethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5h) and (3as,7R*,7aR*)-2,2,5,7-tetramethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5h'). 2,6-Dimethylphenol 1h (244 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) were combined in CH$_2$Cl$_2$ (0.5 ml) and the mixture was added dropwise to stirred concentrated sulfuric acid (92%, 1 ml, 17 mmol) at 5-7 °C. The reaction mixture was stirred at room temperature for 25 min and poured into mixture of ice (25 g) and NH$_3$ (aq) (7 mL). The product was extracted with CH$_2$Cl$_2$ (3×15 ml), and the combined organic layers were washed with water, dried over anhydrous Na$_2$SO$_4$, and filtered. After the solvent was removed, the crude mixture was purified by column chromatography on silica gel (hexane/acetone, 7:1) to give a mixture of diastereomers 5h and 5h' (390 mg, 66%; 5h:5h' = 84:16). Pure 5h was obtained after recrystallization of the mixture of diastereomers from ethyl acetate.

\textbf{Data for 5h:} Pale yellow solid; R_f 0.25 (hexane/acetone, 7:1); mp: 248-250°C; \textbf{IR} (film) ν: 3372, 2956, 2861, 1669, 1611 cm$^{-1}$; \textbf{1H NMR} (500 MHz, CDCl$_3$), δ, ppm, J/Hz: 1.29 (d, 3H, J = 7.2, Me-C$_7$), 1.41 (s, 3H,
1.48 (s, 3H, Me-C2), 1.73 (d, 3H, J = 1.5, Me-C5), 2.06 (d, 1H, J = 12.7, H-3B), 2.19 (d, 1H, J = 12.7, H-3A), 2.28 (qd, 1H, J = 2.2, 2.2, H-7), 3.65 (t, 1H, J = 2.3, H-7a), 4.12 (s, 1H, NH), 6.31 (dq, 1H, J = 2.5, 1.5, H-4), 6.55 (dd, 1H, J = 8.3, 1.0, H-9), 6.72 (ddd, 1H, J = 7.9, 7.0, 1.0, H-11), 7.18 (ddd, 1H, J = 8.3, 7.0, 1.5, H-10), 7.86 (ddd, 1H, J = 7.9, 1.5, H-12); 13C NMR (126 MHz, CDCl3), δ ppm: 11.43 (Me-C5), 16.01 (Me-C7), 30.00 and 31.37 (2Me-C2), 42.16 (C-7), 49.07 (C-3), 54.87 (C-3a), 64.20 (C-7a), 71.90 (C-2), 114.85 (C-9), 115.43 (C-12a), 118.01 (C-11), 126.90 (C-12), 132.21 (C-5), 142.09 (C-4), 146.32 (C-8a), 166.60 (C-12b), 198.80 (C-6); MS (EI) m/z (%): 294 [M]+ (100); Anal. Calcd for C19H22N2O: C 77.52, H 7.53, N 9.52; found: C 77.44, H 7.31, N 9.46.

The title compounds were prepared from 2,6-diisopropylphenol 1i (356 mg, 2.0 mmol), isobutyric aldehyde 2 (216 mg, 3.0 mmol), and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5h/5h’. The crude mixture was purified by column chromatography on silica gel (hexanes/ethyl acetate, 5:1) to give 4i (155 mg, 22%), starting 2-aminobenzonitrile 3 (60 mg, 25%), and mixture of diastereomers 5i and 5i’ (305 mg, 44%; 5i:5i’=25:75). The mixture 5i+5i’ (305 mg) was separated by using silica gel column chromatography (hexane/isopropanol, 30:1) to give 5i (60 mg), 5i+5i’ (27 mg), and 5i’ (204 mg).

Data for 4i: Colorless solid; Rf 0.70 (hexane/ethyl acetate, 5:1); mp: 118-122 °C; IR (film) ν: 3439, 3252, 2964, 2873, 1623, 1611, 1550 cm−1; 1H NMR (500 MHz, CDCl3), δ ppm, J/Hz: 1.03 and 1.08 (both d, 3H, J = 6.9, Me-C7 and Me-C8), 1.49 (s, 6H, 2Me-C3), 2.07 (s, 2H, H-4), 3.10 (sp, 2H, J = 6.9, H-7, H-9), 6.37 (ddd, 1H, J = 8.2, 7.0, 1.2, H-5’), 6.55 (br s, 2H, NH2), 6.65 (dd, 1H, J = 8.2, 1.2, H-3’), 6.72 (s, 2H, H-6, H-10), 7.06 (ddd, 1H, J = 8.2, 7.0, 1.5, H-4’), 7.09 (ddd, 1H, J = 8.2, 1.5, H-6’); 13C NMR (75 MHz, CDCl3), δ ppm:
21.48 and 21.68 (2Me-C7, 2Me-C9), 26.31 (C-7', C-9'), 31.24 (2Me-C3), 49.68 (C-4), 61.36 (C-5), 71.82 (C-3), 114.51 (C-1'), 115.30, 116.09 (C-3', C-5'), 129.49, 131.13 (C-4', C-6'), 143.56 (C-7, C-9), 144.32 (C-6, C-10), 149.19 (C-2'), 167.82 (C-1), 184.29 (C-8); MS (EI) m/z (%): 350 [M]+ (11), 232 [M-H\textsubscript{2}NC\textsubscript{6}H\textsubscript{4}CN]+ (100); Anal. Calcd for C\textsubscript{23}H\textsubscript{30}N\textsubscript{2}O: C 78.82, H 8.63, N 7.99; found: C 78.62, H 8.50, N 7.92.

Data for 5i: Pale yellow solid; R\textsubscript{f} 0.25 (hexane/isopropanol, 30:1); mp: 169-171°C; IR (film) ν: 3391, 3326, 2961, 2871, 1677, 1618 cm-1; 1H NMR (500 MHz, CDCl\textsubscript{3}), δ, ppm, J/Hz: 0.89 (d, 3H, J = 6.9, Me-C5), 0.95 (d, 3H, J = 6.9, Me-C5), 1.01 (d, 3H, J = 6.5, Me-C7), 1.42 (s, 3H, Me-C2), 1.49 (s, 3H, Me-C2), 2.00 (d, 1H, J = 12.8, H-3B), 2.15 (d, 1H, J = 12.8, H-3A), 2.34 (dd, 1H, J = 8.2, 1.7, H-7), 2.82 (spd, 1H, J = 6.9, 1.1, H-5'), 3.84 (dd, 1H, J = 2.1, 1.7, H-7a), 4.06 (s, 1H, NH), 6.13 (dd, 1H, J = 2.1, 1.1, H-4), 6.49 (dd, 1H, J = 8.4, 1.0, H-9), 6.69 (ddd, 1H, J = 7.8, 7.0, 1.0, H-11), 7.14 (ddd, 1H, J = 8.4, 7.0, 1.5, H-10), 7.85 (dd, 1H, J = 7.8, 1.5, H-12); 13C NMR (126 MHz, CDCl\textsubscript{3}), δ, ppm: 19.73 (Me-C5), 23.32 (Me-C7), 24.05 (C-7'), 26.49 (C-5'), 30.00 and 31.45 (2Me-C2), 49.29 (C-3), 53.80 (C-7), 54.66 (C-3a), 60.65 (C-7a), 71.65 (C-2), 114.58 (C-9), 115.27 (C-12a), 117.76 (C-11), 126.88 (C-12), 132.11 (C-10), 137.27 (C-4), 144.78 (C-5), 146.30 (C-8a), 166.89 (C-12b), 197.98 (C-6); MS (EI) m/z (%): 350 [M]+ (100); Anal. Calcd for C\textsubscript{23}H\textsubscript{30}N\textsubscript{2}O: C 78.82, H 8.63, N 7.99; found: C 78.62, H 8.69, N 7.85.

Data for 5i': Pale yellow solid; R\textsubscript{f} 0.20 (hexane/isopropanol, 30:1); mp: 187-189°C; IR (film) ν: 3255, 2964, 2871, 1667, 1612 cm-1; 1H NMR (500 MHz, CDCl\textsubscript{3}), δ, ppm, J/Hz: 0.90 (d, 3H, J = 6.4, Me-C5), 0.96 (d, 3H, J = 6.9, Me-C5), 1.08 (d, 3H, J = 6.4, Me-C7), 1.43 (s, 3H, Me-C2), 1.48 (s, 3H, Me-C2), 1.99 (dsp, 1H, J = 11.2, 6.4, H-7'), 2.07 (dd, 1H, J = 11.2, 2.9, H-7), 2.16 (d, 1H, J = 12.9, H-3B), 2.28 (d, 1H, J = 12.9, H-3A), 2.82 (spd, 1H, J = 6.9, 1.1, H-5'), 3.98 (t, 1H, J = 2.5, H-7a), 4.25 (s, 1H, NH), 6.12 (dd, 1H, J = 2.3, 1.1, H-4), 6.49 (dd, 1H, J = 8.3, 1.0, H-9), 6.63 (ddd, 1H, J = 7.9, 7.0, 1.0, H-11), 7.10 (ddd, 1H, J = 8.3, 7.0, 1.5, H-10), 7.84 (dd, 1H, J = 7.9, 1.5, H-12); 13C NMR (126 MHz, CDCl\textsubscript{3}), δ, ppm: 20.98 (Me-C5), 21.57 (Me-C7), 21.91 and 21.94 (Me-C5, Me-C7), 26.26 (C-7'), 26.46 (C-5'), 29.79 and 31.78 (2Me-C2), 51.10 (C-3), 53.28 (C-3a), 59.36 (C-7a), 61.05 (C-7), 71.65 (C-2), 114.13 (C-9), 114.20 (C-12a), 117.19 (C-11), 126.60 (C-12), 132.05 (C-10), 138.04 (C-4), 142.76 (C-5), 146.17 (C-8a), 166.50 (C-12b), 199.21 (C-6); MS (EI) m/z (%): 350 [M]+ (100); Anal. Calcd for C\textsubscript{23}H\textsubscript{30}N\textsubscript{2}O: C 78.82, H 8.63, N 7.99; found: C 78.68, H 8.64, N 7.95.

S11
1-(2-aminophenyl)-7,9-di-tert-butyl-3,3-dimethyl-2-azaspiro[4.5]deca-1,6,9-trien-8-one (4j), (3aS*,7R*,7aR*)-5,7-Di-tert-butyl-2,2-dimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (5j'), and (3aS*,7R*,7aR*)-5,7,11-tri-tert-butyl-2,2-dimethyl-2,3,7a,8-tetrahydropyrrolo[3,2-l]acridin-6(7H)-one (7). Method A. The title compounds were prepared from 2,6-di-tert-butylphenol (416 mg, 2.0 mmol), isobutyric aldehyde (216 mg, 3.0 mmol), and 2-aminobenzonitrile (236 mg, 2.0 mmol) in a similar manner as described for the preparation of 5h/5h'. The crude mixture was purified by column chromatography on silica gel (hexanes/ethyl acetate, 7:1) to give starting 2-aminobenzonitrile 3 (52 mg, 22 %), spirodienone 4j' (56 mg, 7 %) and 5j (36 mg, 5 %). Method B. 2,6-Di-tert-butyl-4-(1-hydroxy-2-methylpropyl)phenol 6 (556 mg, 2.0 mmol) and 2-aminobenzonitrile 3 (236 mg, 2.0 mmol) were combined in CH2Cl2 (1 ml) and the mixture was added dropwise to stirred concentrated sulfuric acid (92%, 1 ml, 17 mmol) at 5-7 °C. The reaction mixture was stirred at room temperature for 25 min and poured into a mixture of ice (25 g) and NH3 (aq) (7 mL). The product was extracted with CH2Cl2 (3×15 mL), and the combined organic layers were washed with water, dried over anhydrous Na2SO4, and filtered. The crude mixture was purified by column chromatography on silica gel (hexane/acetone, 7:1) to give 4j (100 mg, 13 %), a mixture of 5j' and 7 (120 mg) and pure 5j' (310 mg, 41 %). The mixture of 5j' and 7 (120 mg) was separated by column chromatography on silica gel (hexane/acetone, 15:1) to give pure compound 7 (60 mg, 7 %).

Data for 4j: Colorless solid; Rf 0.63 (hexane/acetone, 7:1); mp: 156-158 °C; IR (film) v: 3451, 3260, 2968, 2871, 1658, 1586, 1549 cm^-1; H NMR (300 MHz, CDCl3), δ, ppm, J/Hz: 1.23 (s, 18H, t-Bu-C7, t-Bu-C9), 1.48 (s, 6H, 2Me-C3), 2.06 (s, 2H, H-4), 6.39 (ddd, 1H, J = 8.1, 7.0, 1.2, H-5'), 6.54 (br s, 2H, NH2), 6.65 (dd, 1H, J = 8.3, 1.20, H-3'), 6.73 (s, 2H, H-6, H-10), 7.06 (ddd, 1H, J = 8.3, 7.0, 1.5, H-4'), 7.11 (dd, 1H, J = 8.1, 1.5, H-6'); C NMR (75 MHz, CDCl3), δ, ppm: 29.20 (6C, t-Bu-C7, t-Bu-C9), 31.22 (2Me-C3), 34.83 (C-7', C-9'), 50.02 (C-4), 61.18 (C-5), 71.80 (C-3), 114.53 (C-1'), 115.34 and 116.22 (C-3', C-5'), 129.50 and 131.13 (C-4', C-6'), 143.95 (C-6, C-10), 145.55 (C-2'), 149.16 (C-7, C-9), 168.38 (C-1), 185.78 (C-8); MS (EI) m/z (%): 378 [M]+ (11), 260 [M-H2NC6H4CN]+ (100); Anal. Calcd for C25H34N2O: C 79.32, H 9.05, N 7.40; found: C 79.38, H 8.99, N 7.34.

Data for 5j': Pale yellow solid; Rf 0.37 (hexane/acetone, 7:1); mp: 217-218 °C. IR (film) v: 3383, 3260, 2960, 2871, 1658, 1614, 1520 cm^-1; H NMR (500 MHz, CDCl3), δ, ppm, J/Hz: 1.11 (s, 18H, t-Bu-C5, t-Bu-C7), 1.38 (s, 3H, Me-C2), 1.46 (s, 3H, Me-C2), 2.10 (d, 1H, J = 2.0, H-7), 2.07 (d, 1H, J = 12.6, H-38), 2.19 (d, 1H, J = 12.6, H-38), 3.76 (s, 1H, NH), 3.91 (t,
1H, \(J = 2.0, \) H-7a), 6.16 (d, 1H, \(J = 2.1, \) H-4), 6.48 (d, 1H, \(J = 8.3, \) H-9), 6.66 (ddd, 1H, \(J = 7.9, 7.0, 1.0, \) H-11), 7.14 (ddd, 1H, \(J = 8.3, 7.0, 1.4, \) H-10), 7.86 (dd, 1H, \(J = 7.9, 1.4, \) H-12); \(^{13}\text{C NMR} \) (126 MHz, CDCl\(_3\)), \(\delta, \) ppm: 29.31 and 29.36 (t-Bu-C\(^5\), t-Bu-C\(^7\)); 29.75 and 31.67 (2Me-C\(^2\)), 32.77 (C-7'), 34.89 (C-5'), 52.74 (C-3a), 52.97 (C-3), 58.65 (C-7a), 65.12 (C-7), 71.08 (C-2), 113.89 (C-12a), 113.96 (C-9), 117.42 (C-11), 126.78 (C-12), 132.23 (C-10), 138.41 (C-4), 146.02 (C-8a), 146.94 (C-5), 166.59 (C-12b), 199.71 (C-6); \textbf{MS} \) (EI) m/z (%): 378 [M]\(^+\) (100). \textbf{Anal. Calcd for} C\(_{25}\)H\(_{34}\)N\(_2\)O: C 79.32, H 9.05, N 7.40; found: C 79.09, H 9.27, N 7.44.

Data for 7: pale yellow solid; \(R_f \) 0.46 (hexane/acetone, 7:1); mp: 215-217 °C; \textbf{IR} \) (film) \(\nu \): 3378, 3269, 2958, 2871, 1664, 1617, 1506 cm\(^{-1}\); \(^1\text{H NMR} \) (500 MHz, CDCl\(_3\)), \(\delta, \) ppm, \(J/Hz:\)
1.11 (s, 9H, t-Bu), 1.12 (s, 9H, t-Bu), 1.29 (s, 9H, t-Bu-C\(^{11}\)), 1.37 (s, 3H, Me-C\(^2\)), 1.46 (s, 3H, Me-C\(^2\)), 2.02 (d, 1H, \(J = 12.4, \) H-3\(^B\)), 2.07 (d, 1H, \(J = 2.0, \) H-7), 2.13 (d, 1H, \(J = 12.4, \) H-3\(^A\)), 3.64 (s, 1H, NH), 3.85 (t, 1H, \(J = 2.0, \) H-7a), 6.17 (d, 1H, \(J = 2.0, \) H-4), 6.45 (d, 1H, \(J = 8.6, \) H-9), 7.22 (dd, 1H, \(J = 8.6, 2.3, \) H-10), 7.83 (d, 1H, \(J = 2.3, \) H-12); \(^{13}\text{C NMR} \) (126 MHz, CDCl\(_3\)), \(\delta, \) ppm: 29.29 and 29.34 (t-Bu-C\(^5\), t-Bu-C\(^7\)), 29.72 (Me-C\(^2\)), 31.41 (t-Bu-C\(^{11}\)), 31.66 (Me-C\(^2\)), 32.71 (C-7'), 34.08 (C-11'), 34.90 (C-5'), 52.99 (C-3a), 53.35 (C-3), 58.64 (C-7a), 65.28 (C-7), 70.98 (C-2), 113.50 (C-12a), 114.03 (C-9), 122.72 (C-12), 129.99 (C-10), 138.52 (C-4), 140.36 (C-11), 144.05 (C-8a), 147.15 (C-5), 166.96 (C-12b), 200.11 (C-6); \textbf{MS} \) (EI) m/z (%): 434 [M]\(^+\) (60), 419 [M-Me]\(^+\) (100). \textbf{Anal. Calcd for} C\(_{25}\)H\(_{34}\)N\(_2\)O: C 80.13, H 9.74, N 6.44; found: C 80.12, N 9.57, H 6.69.
3. ORTEP Drawing and Crystallographic Data

Figure 1.
ORTEP drawing of (±)-5h (CDCC No 988502)

Figure 2.
ORTEP drawing of 4i (CDCC No 988501)

Figure 3.
ORTEP drawing of (±)-5i (CDCC No 988503)

Figure 4.
ORTEP drawing of (±)-5j' (CDCC No 988504)
<table>
<thead>
<tr>
<th>Identification code</th>
<th>5h</th>
<th>4i</th>
<th>5i</th>
<th>5j'</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDCC No</td>
<td>988502</td>
<td>988501</td>
<td>988503</td>
<td>988504</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C₁₉H₂₂N₂O</td>
<td>C₂₃H₃₀N₂O</td>
<td>C₂₃H₃₀N₂O</td>
<td>C₂₅H₃₄N₂O</td>
</tr>
<tr>
<td>Formula weight</td>
<td>294.39</td>
<td>350.49</td>
<td>350.49</td>
<td>378.54</td>
</tr>
<tr>
<td>Crystal description</td>
<td>prism</td>
<td>prism</td>
<td>prism</td>
<td>prism</td>
</tr>
<tr>
<td>Crystal colour</td>
<td>colorless</td>
<td>colorless</td>
<td>yellow</td>
<td>colorless</td>
</tr>
<tr>
<td>Crystal size, mm</td>
<td>0.25×0.19×0.16</td>
<td>0.21×0.16×0.09</td>
<td>0.21×0.15×0.09</td>
<td>0.25×0.20×0.15</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2₁/n</td>
<td>P 2₁/c</td>
<td>C 2/c</td>
<td>P 2₁/c</td>
</tr>
<tr>
<td>a, Å</td>
<td>12.2990(9)</td>
<td>9.5020(15)</td>
<td>19.2894(4)</td>
<td>9.7929(7)</td>
</tr>
<tr>
<td>b, Å</td>
<td>10.4923(8)</td>
<td>21.727(3)</td>
<td>9.7066(9)</td>
<td>9.9455(10)</td>
</tr>
<tr>
<td>c, Å</td>
<td>12.5948(12)</td>
<td>10.9938(11)</td>
<td>22.2610(18)</td>
<td>22.885(2)</td>
</tr>
<tr>
<td>α, º</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>β, º</td>
<td>97.493(7)</td>
<td>113.802(12)</td>
<td>98.072(13)</td>
<td>93.459(7)</td>
</tr>
<tr>
<td>γ, º</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>V, Å³</td>
<td>1611.4(2)</td>
<td>2076.7(5)</td>
<td>4126.7(5)</td>
<td>2224.8(4)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>ρ calcld, g/cm³</td>
<td>1.213</td>
<td>1.121</td>
<td>1.128</td>
<td>1.130</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>0.075</td>
<td>0.068</td>
<td>0.069</td>
<td>0.068</td>
</tr>
<tr>
<td>F(000)</td>
<td>632</td>
<td>760</td>
<td>1520</td>
<td>824</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.92-28.28</td>
<td>3.00-26.38</td>
<td>2.90-26.40</td>
<td>2.66-26.41</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8823</td>
<td>15767</td>
<td>9782</td>
<td>13376</td>
</tr>
<tr>
<td>Independent reflections (Rint)</td>
<td>3899 (0.0311)</td>
<td>4193 (0.0704)</td>
<td>4156 (0.0418)</td>
<td>4511 (0.0457)</td>
</tr>
<tr>
<td>Data / restraints / parameter</td>
<td>3899/0/231</td>
<td>4193/0/243</td>
<td>4156/0/257</td>
<td>4511/0/265</td>
</tr>
<tr>
<td>Goodness-of-Fit on F2</td>
<td>1.005</td>
<td>1.000</td>
<td>1.000</td>
<td>1.006</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R₁=0.0400</td>
<td>R₁=0.1344</td>
<td>R₁=0.1045</td>
<td>R₁=0.0989</td>
</tr>
<tr>
<td>wR²=0.0774</td>
<td>wR²=0.1562</td>
<td>wR²=0.0888</td>
<td>wR²=0.0885</td>
<td></td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁=0.0998</td>
<td>R₁=0.0600</td>
<td>R₁=0.0414</td>
<td>R₁=0.0440</td>
</tr>
<tr>
<td>wR²=0.0825</td>
<td>wR²=0.1426</td>
<td>wR²=0.0835</td>
<td>wR²=0.0817</td>
<td></td>
</tr>
<tr>
<td>Completeness to theta (deg)</td>
<td>97.5 (28.28)</td>
<td>98.8 (26.38)</td>
<td>98.2 (26.40)</td>
<td>98.5 (26.41)</td>
</tr>
<tr>
<td>Largest diff. peak and hole, e·Å⁻³</td>
<td>0.134 and -0.140</td>
<td>0.344 and -0.206</td>
<td>0.182 and -0.176</td>
<td>0.192 and -0.187</td>
</tr>
</tbody>
</table>
4. 1H and 13C NMR Spectra

1H NMR spectrum (500 MHz, CDCl$_3$) of compound 6.
\[13^C\text{ NMR spectrum (75 MHz, CDCl}_3\text{) of compound 6.}\]
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5a.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5a.
\(^1\)H NMR spectrum (500 MHz, CDCl\(_3\)) of compound 5b.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5b.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5c.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5c.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5d.
13C NMR spectrum (126 MHz, CDCl$_3$) of compound 5d.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5e.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5e.
1H NMR spectrum (500 MHz, CDCl₃) of compound 4f.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 4f.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5f.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 5f.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 4g.
\(^{13}\text{C} \text{NMR spectrum (126 MHz, CDCl}_3\text{) of compound 4g.}\)
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5g.
1H NMR spectrum of compound 5g.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5h.
13C NMR spectrum (126 MHz, CDCl$_3$) of compound 5h.
1H NMR spectrum (500 MHz, CDCl$_3$) of mixture of diastereomers 5h and 5h'.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 4i.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 4i.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5i.
13C NMR spectrum (126 MHz, CDCl₃) of compound 5i.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5i'.
13C NMR spectrum (126 MHz, CDCl$_3$) of compound 5i'.

S44
1H NMR spectrum (300 MHz, CDCl$_3$) of compound 4j.
13C NMR spectrum (75 MHz, CDCl$_3$) of compound 4j.
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 5j*.
13C NMR spectrum (126 MHz, CDCl$_3$) of compound 5j'.

S48
1H NMR spectrum (500 MHz, CDCl$_3$) of compound 7.
13C NMR spectrum (126 MHz, CDCl$_3$) of compound 7.
5. References and notes
