Supporting Information

Kishor V. Wagh and Bhalchandra M. Bhanage*

Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019. India.

Tel.: +91-22-33612601; fax: +91-22-33611020;

E-mail: bm.bhanage@gmail.com, bm.bhanage@ictmumbai.edu.in

INDEX

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Contents</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General information</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Spectral details</td>
<td>2-3</td>
</tr>
<tr>
<td>3</td>
<td>Copies of 1H NMR and 13C NMR Spectra</td>
<td>4-7</td>
</tr>
</tbody>
</table>
1. General information: VSWDFA

All the reagents were purchased from Sigma-Aldrich and Alfa Aesar. The solvents were purchased from commercial suppliers and used without further purification. GC equipped with flame ionization detector and a capillary column (Elite-1, 30 m x 0.32 mm x 0.25 μm) was used for gas chromatography analysis. The mass of the products were identified using GCMS-QP 2010 instrument (Rtx-17, 30 m x 25 mm ID, film thickness (df) = 0.25 μm) (column flow 2 mLmin⁻¹, 80 °C to 240 °C at 10 °C/min rise). Products were purified by column chromatography on 60–120 mesh silica gels. The ¹H NMR spectra was recorded at 400 MHz spectrometer in CDCl₃ using TMS as an internal standard. The ¹³C NMR spectra were recorded at 100 MHz in CDCl₃ using TMS as an internal standard. Chemical shifts are reported in parts per million (δ) relative to tetramethylsilane as internal standard. J (coupling constant) values were reported in Hz. Splitting patterns of proton are described as s (singlet), d (doublet), t (triplet) and m (multiplet).

Temperature programme for GC-MS analysis

3. Copies of ¹H NMR and ¹³C NMR Spectra:

(3a) 1,3,3-triphenylpropan-1-one

![Chemical structure of 1,3,3-triphenylpropan-1-one](image)

White solid; yield: 213 mg (75%); ¹H NMR (CDCl₃, 400 MHz) δ 7.98-7.96 (m, 2H), 7.58-7.56 (m, 1H), 7.49-7.45 (m, 2H), 7.31-7.28 (m, 8H), 7.23-7.18 (m, 2H), 4.87 (t, J = 8Hz, 1H), 3.78 (d, J= 8Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 198.01, 144.17, 137.11, 128.61,
128.57, 128.07, 127.86, 126.39, 45.97, 44.76; GCMS (EI): m/z 286 (10.5, M^+), 167 (31.3), 165 (15.5), 155 (28.0), 105 (100.0), 77 (28.3), 71(10.5), 43(11.4).

(3b) 3,3-diphenyl-1-p-tolylpropan-1-one

White solid; yield: 228 mg (76%); ^1H NMR (CDCl$_3$, 400 MHz) δ 7.90-7.88 (m, 2H), 7.31-7.26 (m, 7H), 7.23-7.20 (m, 5H), 4.87 (t, J = 8Hz, 1H), 3.76 (d, J= 8Hz, 2H), 2.44 (s, 3H); ^13C NMR (CDCl$_3$, 100 MHz) 197.63, 144.27, 143.88, 134.65, 129.29, 128.56, 128.22, 127.88, 126.36, 46.01, 44.62, 21.65; GCMS (EI): m/z 300 (10.7, M^+), 167 (25.8), 165 (12.8), 120 (9.9), 119 (100.0), 91 (24.8), 77 (4.9).

(3f) 3-(4-methoxyphenyl)-1,3-diphenylpropan-1-one

White solid; yield: 240 mg (76%); ^1H NMR (CDCl$_3$, 400 MHz) δ 7.98-7.96 (m, 2H), 7.58-7.56 (m, 1H), 7.49-7.45 (m, 2H), 7.31-7.19 (m, 7H), 6.86-6.84 (m, 2H), 4.83 (t, 1H), 3.79 (s, 3H), 3.74 (d, 2H); ^13C NMR (CDCl$_3$, 100 MHz) 198.16, 158.10, 144.57, 137.17, 136.32, 133.05, 128.80, 128.69, 128.61, 128.56, 128.21, 128.09, 127.90, 127.77, 126.32, 113.98, 55.22, 45.32, 44.98; GCMS (EI): m/z 316 (12.7, M^+), 198 (15.6), 197 (100.0), 165 (12.3), 121 (15.1), 105 (91.1), 77 (24.7).

(3g) 1,3-diphenyl-3-o-tolylpropan-1-one

White solid; yield: 210 mg (70%); ^1H NMR (CDCl$_3$, 400 MHz) δ 7.93-7.91 (m, 2H), 7.78-7.56 (m, 1H), 7.56-7.52 (m, 2H), 7.45-7.41 (m, 1H), 7.21-7.08 (m, 3H), 7.04-6.76 (m, 5H), 4.82 (t, 1H), 3.83 (dd, 2H), 2.29 (s, 3H); ^13C NMR (CDCl$_3$, 100 MHz) 198.00, 144.08, 142.27, 137.05, 136.06, 133.30, 128.83, 128.54, 128.20, 128.15, 126.62, 126.32, 126.29, 126.26, 44.74, 41.77, 19.96; GCMS (EI): m/z 300 (2.9, M^+), 282 (43.1), 191 (11.6), 181 (30.7), 180 (15.9), 179 (20.3), 178 (10.6), 166 (17.8), 165 (22.7), 105 (100.0), 103 (12.3), 77 (39.1), 51 (7.2).
(3a) 1H NMR

(3a) 13C NMR
(3b) 1H NMR

(3b) 13C NMR
(3f) 1H NMR

(3f) 13C NMR
(3g) 1H NMR

(3g) 13C NMR