Synthesis of 1,2,4-benzotriazines via
CuI/1H-pyrrole-2-carboxylic acid catalyzed coupling of
o-haloacetanilides and N-Boc hydrazine

Yijun Zhou, Zhigao Zhang, Yongwen Jiang, Xianhua Pan, Dawei Ma

Supporting information

Contents

1. General remarks
2. Experimental procedure
3. Characterized data
4. 1H and 13C NMR spectra of compounds (8a-10j)
1. General remarks

All solvents were purified and dried prior to use. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance 500 MHz, and assigned in parts per million (δ). 1H NMR chemical shifts were given on the δ scale (ppm) and were referenced to internal TMS. Reference peaks for chloroform in 13C NMR spectra were set at 77.0 ppm. Low-resolution mass spectra were recorded on a LCMS-2010EV instrument (ESI). High-resolution mass spectra were recorded on an IonSpec 4.7 Tesla FTMS instrument. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography.

2. Experimental procedure

1. Experimental procedure for synthesis of aromatic azo compounds.

A Schlenk tube was charged with 2-iodoacetanilide 4 (0.5 mmol), N-Boc hydrazine (70 mg, 0.53 mmol), CuI (5 mg, 0.025 mmol), 1H-pyrrole-2-carboxylic acid (9 mg, 0.08 mmol), sodium iodide (15 mg, 0.1 mmol) and K$_2$CO$_3$ (138 mg, 1.0 mmol), evacuated and backfilled with argon. DMSO (1.5 mL) was successively added. The reaction mixture was stirred at 25 °C for 24-30 hours. Then the oxygen was introduced and the reaction mixture was stirred at 25 °C for 3-5 hours. The mixture was extracted by EtOAc (3* 10 mL). The combined organic phase was washed with brine and dried over Na$_2$SO$_4$. After concentration in vacuo, the residue was purified by column chromatography on silica gel to provide the desired product 9.

2. Experimental procedure for synthesis of substituted benzo[e][1,2,4]triazines.

To a solution of aromatic azo compounds (0.2 mmol) in CH$_2$Cl$_2$ (2.0 mL) was added TFA (0.5 mL). The solution was stirred at room temperature for 2 hours. Then aq. NaHCO$_3$ (5 mL) was added and the mixture was extracted by CH$_2$Cl$_2$ (3* 5 mL). The organic phase was dried over Na$_2$SO$_4$, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel to provide desired product 10.
3. Characterized data

tert-Butyl 2-(2-butyramidophenyl)hydrazine-1-carboxylate (8a). 1H NMR (500 MHz, CDCl$_3$) δ 8.60 (s, 1H), 7.27 (t, $J = 3.5$ Hz, 1H), 7.04 (d, $J = 7.1$ Hz, 1H), 6.93 – 6.81 (m, 2H), 6.50 (s, 1H), 6.36 (s, 1H), 2.08 (t, $J = 7.4$ Hz, 2H), 1.53 - 1.60 (m, 2H), 1.49 (s, 9H), 0.89 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 172.63, 156.68, 140.61, 126.06, 124.88, 121.63, 114.68, 81.08, 38.26, 28.28(3C), 18.95, 13.74. ESI-MS m/z 316.3 (M+Na)$^+$; ESI-HRMS m/z calcd for C$_{15}$H$_{24}$N$_3$O$_3$ (M+H)$^+$ 294.1812, found 294.1811.

![8a](image)

tert-Butyl (E)-2-(2-butyramidophenyl)diazene-1-carboxylate (9a). red liquid, 122 mg, 84 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.54 (s, 1H), 8.70 (dd, $J = 8.5$, 1.1 Hz, 1H), 7.74 (dd, $J = 8.2$, 1.5 Hz, 1H), 7.54 (ddd, $J = 8.6$, 7.5, 1.5 Hz, 1H), 7.09 (dd, $J = 8.4$, 7.3, 1.3 Hz, 2H), 2.41 (t, $J = 7.4$ Hz, 2H) 1.80 – 1.72 (m, 2H), 1.65 (s, 9H), 1.00 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 171.66, 160.23, 138.25, 138.05, 136.01, 123.11, 120.55, 119.36, 84.97, 40.16, 27.85 (3C), 18.75, 13.68. ESI-MS m/z 314.2 (M+Na)$^+$; ESI-HRMS m/z calcd for C$_{15}$H$_{24}$N$_3$O$_3$ (M+H)$^+$ 292.1656, found 292.1653.

![9a](image)

tert-Butyl (E)-2-(2-acetamidophenyl)diazene-1-carboxylate (9b). red liquid, 88 mg, 67 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.42 (s, 1H), 8.64 (d, $J = 8.5$ Hz, 1H), 7.70 (d, $J = 8.2$ Hz, 1H), 7.52 (dd, $J = 8.3$, 7.4 Hz, 1H), 7.07 (dd, $J = 8.1$, 7.3 Hz, 1H), 2.21 (s, 3H), 1.64 (s, 9H). 13C NMR (125 MHz, CDCl$_3$) δ 168.62, 160.34, 138.49, 138.04, 135.95, 123.18, 120.53, 118.39, 85.04, 27.84, 25.22. ESI-MS m/z 286.2 (M+Na)$^+$; ESI-HRMS m/z calcd for C$_{13}$H$_{18}$N$_3$O$_3$ (M+H)$^+$ 264.1343, found 264.1343.
tert-Butyl (E)-2-(2-isobutyramidophenyl)diazene-1-carboxylate (9c). red liquid, 113 mg, 78 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.72 (s, 1H), 8.69 (dd, J = 8.5, 1.1 Hz, 1H), 7.75 (dd, J = 8.2, 1.5 Hz, 1H), 7.53 (ddd, J = 8.6, 7.5, 1.5 Hz, 1H), 7.09 (ddd, J = 8.4, 7.3, 1.3 Hz, 1H), 2.64 – 2.53 (m, 1H), 1.64 (s, 9H), 1.25 (d, J = 7.0 Hz, 6H). 13C NMR (125 MHz, CDCl$_3$) δ 175.68, 160.07, 138.18, 138.04, 136.00, 123.11, 120.53, 120.29, 84.89, 37.18, 27.83 (3C), 19.38 (2C). ESI-MS m/z 314.2 (M+Na)$^+$; ESI-HRMS m/z calcd for C$_{15}$H$_{22}$N$_3$O$_3$ $^+$ (M+H)$^+$ 292.1656, found 292.1653.

tert-Butyl (E)-2-(2-pivalamidophenyl)diazene-1-carboxylate (9d). red liquid, 110 mg, 72 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 10.24 (s, 1H), 8.70 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 1.62 (s, 9H), 1.29 (s, 9H). 13C NMR (125 MHz, CDCl$_3$) δ 177.43, 159.66, 138.30, 137.36, 136.00, 123.08, 122.53, 120.31, 84.65, 40.41, 27.78 (3C), 27.41 (3C). ESI-MS m/z 306.2 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{16}$H$_{24}$N$_3$O$_3$ $^+$ (M+H)$^+$ 306.1812, found 306.1811.

tert-Butyl (E)-2-(2-(cyclopropanecarboxamido)phenyl)diazene-1-carboxylate (9e). red liquid, 112 mg, 78 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.73 (s, 1H), 8.69 (dd, J = 8.5, 0.7 Hz, 1H), 7.76 (dd, J = 8.2, 1.5 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.12 – 7.07 (m, 1H), 1.68 (s, 9H), 1.66 – 1.60 (m, 1H), 1.15 – 1.10 (m, 2H), 0.93 – 0.88 (m, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 172.37, 160.37, 138.61, 137.88, 136.11, 122.95, 120.54, 118.93, 85.06, 27.89 (3C), 16.51, 8.59 (2C). ESI-MS m/z 312.2 (M+Na)$^+$; ESI-HRMS m/z calcd for C$_{15}$H$_{20}$N$_3$O$_3$ $^+$ (M+H)$^+$ 290.1499, found 290.1497.
tert-Butyl (E)-2-((cyclohexanecarboxamido)phenyl)diazene-1-carboxylate (9f). red liquid, 129 mg, 78 % yield. ¹H NMR (500 MHz, CDCl₃) δ 9.79 (s, 1H), 8.71 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H), 2.31 (tt, J = 11.6, 3.3 Hz, 1H), 1.99 (d, J = 11.9 Hz, 2H), 1.81 (dd, J = 10.0, 3.0 Hz, 2H), 1.73 – 1.61 (m, 10H), 1.51 (qd, J = 12.5, 2.8 Hz, 2H), 1.37 – 1.18 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 174.85, 159.96, 138.19, 137.89, 136.02, 123.07, 120.92, 120.55, 84.81, 46.82, 29.48 (2C), 27.85 (3C), 25.70, 25.61 (2C). ESI-MS m/z 354.3 (M+Na)⁺; ESI-HRMS m/z calcd for C₁₈H₂₆N₃O₃⁺ (M+H)⁺ 332.1969, found 332.1968.

tert-Butyl (E)-2-((tetrahydro-2H-pyran-4-carboxamido)phenyl)diazene-1-carboxylate (9g). red liquid, 114 mg, 69 % yield. ¹H NMR (500 MHz, CDCl₃) δ 9.89 (s, 1H), 8.72 (d, J = 8.5 Hz, 1H), 7.83 (dd, J = 8.1, 1.2 Hz, 1H), 7.58 (dd, J = 8.4, 7.3 Hz, 1H), 7.16 (dd, J = 8.2, 2.1, 1.1 Hz, 1H), 4.06 (dt, J = 11.7, 3.2 Hz, 1H), 3.55 – 3.41 (m, 1H), 2.64 – 2.53 (m, 1H), 1.93 – 1.88 (m, 1H), 1.68 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 173.01, 159.77, 138.23, 137.48, 136.13, 123.42, 121.42, 120.57, 85.02, 67.16 (2C), 43.57, 29.04 (2C), 27.87 (3C). ESI-MS m/z 356.2 (M+Na)⁺; ESI-HRMS m/z calcd for C₁₇H₂₄N₃O₄⁺ (M+H)⁺ 334.1761, found 334.1759.

tert-Butyl (E)-2-((benzyl oxy)acetamido)phenyl)diazene-1-carboxylate (9h). red liquid, 136 mg, 74 % yield. ¹H NMR (500 MHz, CDCl₃) δ 10.45 (s, 1H), 8.73 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.36 (t, J = 6.1 Hz, 4H), 7.33 – 7.27 (m, 1H), 7.13 (ddd, J = 8.1, 5.0, 2.4 Hz, 1H), 4.67 (d, J = 1.5 Hz, 2H), 4.12 (s, 2H), 1.61 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 168.20, 160.59, 138.67, 137.67, 136.55, 135.71, 128.68 (2C),
128.18, 127.83 (2C), 123.65, 120.57, 118.08, 84.84, 73.59, 69.68, 27.85 (3C). ESI-MS m/z 392.2 (M+Na)+; ESI-HRMS m/z calc'd for C_{20}H_{24}N_{3}O_{4} (M+H)+ 370.1761, found 370.1759.

tert-Butyl (E)-2-(2-acrylamidophenyl)diazene-1-carboxylate (9i). red liquid, 80 mg, 58 % yield. \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 9.76 (s, 1H), 8.77 (dd, \(J = 8.5, 0.9\) Hz, 1H), 7.77 (dd, \(J = 8.2, 1.5\) Hz, 1H), 7.60 – 7.53 (m, 1H), 7.15 – 7.11 (m, 1H), 6.43 (ddd, \(J = 17.0, 3.4, 1.0\) Hz, 1H), 6.30 (dd, \(J = 17.0, 10.2\) Hz, 1H), 5.80 (dd, \(J = 10.2, 1.0\) Hz, 1H), 1.66 (s, 9H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 163.67, 160.11, 138.23, 138.02, 136.04, 131.66, 128.07, 123.52, 120.69, 119.77, 85.09, 27.86 (3C). ESI-MS m/z 298.2 (M+Na)+; ESI-HRMS m/z calc'd for C_{14}H_{18}N_{3}O_{3} (M+H)+ 276.1343, found 276.1340.

tert-Butyl (E)-2-(2-benzamidophenyl)diazene-1-carboxylate (9j). red solid, 69 mg, 42 % yield. \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 11.02 (s, 1H), 8.94 (dd, \(J = 8.5, 1.1\) Hz, 1H), 8.00 – 7.96 (m, 2H), 7.95 (dd, \(J = 8.1, 1.6\) Hz, 1H), 7.67 – 7.62 (m, 1H), 7.61 – 7.56 (m, 1H), 7.54 – 7.49 (m, 2H), 7.23 (ddd, \(J = 8.3, 7.4, 1.2\) Hz, 1H), 1.70 (s, 9H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 165.63, 159.41, 138.37, 136.95, 136.25, 134.46, 132.24, 128.81 (2C), 127.37 (2C), 124.25, 123.54, 120.48, 84.91, 27.89 (3C). ESI-MS m/z 348.3 (M+Na)+; ESI-HRMS m/z calc'd for C_{18}H_{20}N_{3}O_{3} (M+H)+ 326.1499, found 326.1498.

tert-Butyl (E)-2-(2-(thiophene-2-carboxamido)phenyl)diazene-1-carboxylate (9k). red solid, 69 mg, 42 % yield. \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 11.10 (s, 1H), 8.83 (dd, \(J = 8.5, 1.1\) Hz, 1H), 7.95 (dd, \(J = 8.1, 1.6\) Hz, 1H), 7.71 (dd, \(J = 3.8, 1.1\) Hz, 1H), 7.62 (dd, \(J = 7.3, 1.4\) Hz, 1H), 7.59 (dd, \(J = 5.0, 1.0\) Hz, 1H), 7.22 (dd, \(J = 8.3, 7.4, 1.2\) Hz, 1H), 7.14 (dd, \(J = 5.0, 3.8\) Hz, 1H), 1.71 (s, 9H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 160.30, 159.14, 139.74, 138.01,
136.45, 136.30, 131.71, 128.83, 127.88, 125.30, 123.50, 120.31, 84.95, 27.88 (3C). ESI-MS m/z 354.2 (M+Na); ESI-HRMS m/z calcld for C_{16}H_{18}N_{3}O_{3}S^+ (M+H)^+ 332.1063, found 332.1061.

tert-Butyl (E)-2-(2-butyramido-5-methylphenyl)diazene-1-carboxylate (9l). red liquid, 131 mg, 86 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.39 (s, 1H), 8.57 (d, $J = 8.6$ Hz, 1H), 7.55 (s, 1H), 7.37 (d, $J = 8.6$ Hz, 1H), 2.40 (t, $J = 7.5$ Hz, 2H), 2.30 (s, 3H), 1.80 – 1.70 (m, 2H), 1.65 (s, 9H), 1.00 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 171.45, 160.24, 138.02, 137.02, 136.29, 132.94, 120.46, 118.70, 84.84, 40.10, 27.85 (3C), 20.55, 18.77, 13.69. ESI-MS m/z 306.2 (M+H)$^+$; ESI-HRMS m/z calcld for C$_{16}$H$_{24}$N$_3$O$_3^+$ (M+H)$^+$ 306.1812, found 306.1812.

tert-Butyl (E)-2-(2-butyramido-5-methoxyphenyl)diazene-1-carboxylate (9m). red liquid, 130 mg, 81 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.16 (s, 1H), 8.59 (d, $J = 9.1$ Hz, 1H), 7.17 (d, $J = 3.0$ Hz, 1H), 7.15 (dd, $J = 9.1$, 3.0 Hz, 1H), 3.77 (s, 3H), 2.38 (t, $J = 7.4$ Hz, 2H), 1.78 – 1.69 (m, 2H), 1.65 (s, 9H), 0.99 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 171.10, 160.40, 155.43, 138.76, 133.54, 124.37, 122.01, 99.53, 84.94, 55.56, 39.99, 27.85 (3C), 18.81, 13.68. ESI-MS m/z 344.3 (M+Na)$^+$; ESI-HRMS m/z calcld for C$_{16}$H$_{24}$N$_3$O$_4^+$ (M+H)$^+$ 322.1761, found 322.1759.

tert-Butyl (E)-2-(2-butyramido-5-(methoxycarbonyl)phenyl)diazene-1-carboxylate (9n). red liquid, 85 mg, 49 % yield. 1H NMR (400 MHz, CDCl$_3$) δ 9.61 (s, 1H), 8.78 (d, $J = 8.9$ Hz, 1H), 8.40 (d, $J = 1.9$ Hz, 1H), 8.18 (dd, $J = 8.9$, 1.9 Hz, 1H), 3.88 (s, 3H), 2.43 (t, $J = 7.4$ Hz, 2H), 1.82 – 1.69 (m, 2H), 1.65 (s, 9H), 0.99 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$)
tert-Butyl (E)-2-(2-butyramido-5-fluorophenyl)diazene-1-carboxylate (9o). red liquid, 86 mg, 57 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.15 (s, 1H), 8.71 (dd, $J = 9.3$, 5.2 Hz, 1H), 7.40 (dd, $J = 8.8$, 3.0 Hz, 1H), 7.31 – 7.25 (m, 1H), 2.41 (t, $J = 7.5$ Hz, 2H), 1.81 – 1.71 (m, 2H), 1.66 (s, 9H), 1.00 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 171.36, 160.15, 158.27 (d, $J = 246.5$ Hz), 138.75 (d, $J = 6.3$ Hz), 135.54 (d, $J = 2.6$ Hz), 122.77 (d, $J = 23.1$ Hz), 122.27 (d, $J = 7.4$ Hz), 103.54 (d, $J = 23.9$ Hz), 85.45, 39.96, 27.84 (3C), 18.74, 13.66. ESI-MS m/z 310.2 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{15}$H$_{21}$FN$_3$O$_3$ $(M+H)^+$ 310.1561, found 310.1564.

![Chemical Structure](image)

3-Propylbenzo[e][1,2,4]triazine (10a). yellow solid, 31.5 mg, 91 % yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.49 (d, $J = 8.4$ Hz, 1H), 7.99 (d, $J = 7.9$ Hz, 1H), 7.96 – 7.90 (m, 1H), 7.83 – 7.77 (m, 1H), 3.35 (t, $J = 9.6$ Hz, 2H), 2.08 – 1.97 (m, 2H), 1.06 (t, $J = 7.4$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 166.45, 146.18, 140.85, 135.25, 129.82, 129.53, 128.51, 39.69, 22.28, 13.92. ESI-MS m/z 174.1 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{10}$H$_{12}$N$_3^+$ (M+H)$^+$ 174.1026,
3-Methylbenzo[e][1,2,4]triazine (10b). yellow solid, 26 mg, 90 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 8.51 – 8.45 (d, $J = 8.3$ Hz, 1H), 7.98 – 7.89 (m, 2H), 7.80 (ddd, $J = 8.2$, 6.4, 1.7 Hz, 1H), 3.12 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 163.36, 145.97, 140.71, 135.40, 129.87, 129.51, 128.30, 24.24. ESI-MS m/z 146.1 (M+H)$^+$; ESI-HRMS m/z calcd for C$_8$H$_8$N$_3^+$ (M+H)$^+$ 146.0713, found 146.0713.

3-(tert-Butyl)benzo[e][1,2,4]triazine (10c). yellow solid, 35.5 mg, 95 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 8.51 (ddd, $J = 8.5$, 1.3, 0.6 Hz, 1H), 8.04 (ddd, $J = 8.6$, 1.2, 0.6 Hz, 1H), 7.94 (ddd, $J = 8.5$, 6.8, 1.4 Hz, 1H), 7.81 (ddd, $J = 10.3$, 5.8, 2.4 Hz, 1H), 1.64 (s, 9H). 13C NMR (125 MHz, CDCl$_3$) δ 172.20, 145.76, 140.54, 134.87, 129.71, 129.36, 128.91, 39.08, 29.64 (3C). ESI-MS m/z 188.2 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{11}$H$_{14}$N$_3^+$ (M+H)$^+$ 188.1182, found 188.1181.

3-Cyclopropylbenzo[e][1,2,4]triazine (10d). yellow solid, 30.5 mg, 89 % yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (d, $J = 8.4$ Hz, 1H), 7.89 (d, $J = 3.6$ Hz, 2H), 7.76 – 7.70 (m, 1H), 2.70 (ddd, $J = 12.9$, 8.4, 4.8 Hz, 1H), 1.42 (dt, $J = 8.2$, 4.3 Hz, 2H), 1.32 – 1.25 (m, 2H). 13C NMR (125 MHz, CDCl$_3$) δ 167.42, 146.35, 140.97, 135.23, 129.56, 129.12, 128.20, 17.22, 11.89 (2C). ESI-MS m/z 172.1 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{10}$H$_{10}$N$_3^+$ (M+H)$^+$ 172.0869, found 172.0867.

3-Cyclohexylbenzo[e][1,2,4]triazine (10e). yellow solid, 41 mg, 96 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 8.49 (d, $J = 7.8$ Hz, 1H), 8.01 (d, $J = 8.5$ Hz, 1H), 7.93 (t, $J = 7.5$ Hz, 1H), 7.64 – 7.57 (m, 1H), 7.44 (m, 1H), 7.35 – 7.25 (m, 1H), 1.75 – 1.68 (m, 1H), 1.25 – 1.13 (m, 2H), 1.09 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 165.07, 145.45, 140.68, 135.59, 130.00, 129.52, 128.25, 127.51, 21.24, 14.60 (2C). ESI-MS m/z 190.2 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{12}$H$_{14}$N$_3^+$ (M+H)$^+$ 190.1181, found 190.1181.

Found 174.1025.
7.80 (t, J = 7.8 Hz, 1H), 3.41 (tt, J = 11.7, 3.4 Hz, 1H), 2.17 (dd, J = 13.5, 1.7 Hz, 2H), 1.93 (ddd, J = 15.1, 7.6, 4.4 Hz, 2H), 1.89 – 1.79 (m, 3H), 1.52 (qt, J = 12.3, 3.2 Hz, 2H), 1.44 – 1.36 (m, 1H). 13C NMR (125 MHz, CDCl3) δ 169.53, 146.33, 140.95, 135.07, 129.70, 129.49, 128.66, 46.04, 31.94 (2C), 26.25 (2C), 25.90. ESI-MS m/z 214.2 (M+H)+; ESI-HRMS m/z calc'd for C13H16N3+ (M+H)+ 214.1339, found 214.1337.

3-(Tetrahydro-2H-pyran-4-yl)benzo[e][1,2,4]triazine (10f). yellow solid, 38 mg, 88 % yield. 1H NMR (500 MHz, CDCl3) δ 8.52 (dd, J = 8.4, 0.6 Hz, 1H), 8.06 – 8.01 (m, 1H), 7.97 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.84 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 4.21 – 4.14 (m, 2H), 3.68 (tt, J = 11.5, 3.8 Hz, 3H), 2.28 – 2.23 (m, 1H), 2.20 (dd, J = 11.7, 4.4 Hz, 1H), 2.17 – 2.11 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 167.68, 146.47, 140.93, 135.33, 130.07, 129.53, 128.72, 67.80 (2C), 42.88, 31.37 (2C). ESI-MS m/z 216.2 (M+H)+; ESI-HRMS m/z calc'd for C13H14N3O+ (M+H)+ 216.1131, found 216.1130.

3-Phenylbenzo[e][1,2,4]triazine (10g). yellow solid, 38 mg, 92 % yield. 1H NMR (500 MHz, CDCl3) δ 8.81 – 8.74 (m, 2H), 8.55 (dd, J = 8.4, 0.6 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.98 (ddd, J = 8.4, 6.9, 1.3 Hz, 1H), 7.85 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.64 – 7.56 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 159.84, 146.48, 141.08, 135.62, 135.48, 131.45, 130.15, 129.59, 129.14, 128.94(2C), 128.77(2C). ESI-MS m/z 208.1 (M+H)+; ESI-HRMS m/z calc'd for C13H10N3O+ (M+H)+ 208.0869, found 208.0868.

3-(Thiophen-2-yl)benzo[e][1,2,4]triazine (10h). yellow solid, 39 mg, 91 % yield. 1H NMR (500 MHz, CDCl3) δ 8.46 (dd, J = 8.4, 0.7 Hz, 1H), 8.35 (dd, J = 3.7, 1.1 Hz, 1H), 8.02 – 7.97 (m, 1H), 7.92 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.76 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.61 (dd, J = 5.0, 1.1 Hz, 1H), 7.24 (dd, J = 4.9, 3.7 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 157.36, 146.00, 140.87, 140.72, 135.72, 131.31, 130.61, 129.75, 129.70, 128.65, 128.61. ESI-MS m/z
214.1 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{11}$H$_{8}$N$_3$S$^+$ (M+H)$^+$ 214.0433, found 214.0432.

![10i]

7-Methyl-3-propylbenzo[e][1,2,4]triazine (10i). yellow solid, 35 mg, 93 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 8.24 (s, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.77 (dd, J = 8.7, 1.6 Hz, 1H), 3.34 (t, J = 7.5 Hz, 2H), 2.63 (s, 3H), 2.07 – 1.98 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 165.95, 146.22, 140.57, 139.60, 137.87, 127.95, 127.71, 39.61, 22.31, 21.87, 13.92. ESI-MS m/z 188.2 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{11}$H$_{14}$N$_3$ (M+H)$^+$ 188.1182, found 188.1181.

![10j]

Methyl 3-propylbenzo[e][1,2,4]triazine-7-carboxylate (10j). yellow solid, 40 mg, 86 % yield. 1H NMR (500 MHz, CDCl$_3$) δ 9.21 (d, J = 1.8 Hz, 1H), 8.52 (dd, J = 8.9, 1.9 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 4.05 (s, 3H), 3.40 (t, J = 7.6 Hz, 2H), 2.05 (dd, J = 15.1, 7.5 Hz, 2H), 1.08 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 167.59, 165.36, 145.44, 142.55, 134.45, 132.32, 131.33, 129.02, 52.89, 39.76, 22.07, 13.91. ESI-MS m/z 232.1 (M+H)$^+$; ESI-HRMS m/z calcd for C$_{12}$H$_{14}$N$_3$O$_2$ (M+H)$^+$ 232.1081, found 232.1079.

Reference

(500 MHz, CDCl₃)
(500 MHz, CDCl3)