One-Pot Synthesis of Novel Highly Functionalized Furan-Based Polyphenolics

Joana L. C. Sousa, a Oualid Talhi, a,c,* Djenisa H. A. Rocha, a Diana C. G. A. Pinto, a Filipe A. Almeida Paz, b Khaldoun Bachari, c Gilbert Kirsch, d Artur M. S. Silva a,*

a QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
b CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
c Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP384, Bou-Ismail, 42004, Tipaza, Algeria
d Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes, UMR 7565, Université de Lorraine, Avenue du Général Delestreint, 57070 Metz, France
Fax: +351 234370084 (Artur M. S. Silva and Oualid Talhi).
E-mail: artur.silva@ua.pt, oualid.talhi@ua.pt.

Contents

Figure S 1 – 1H NMR spectrum of furan 3a (300.13 MHz, CDCl3) .. 2
Figure S 2 – 13C NMR spectrum of furan 3a (75.47 MHz, CDCl3) .. 2
Figure S 3 – 1H NMR spectrum of furan 3b (500.13 MHz, CDCl3) .. 3
Figure S 4 – 13C NMR spectrum of furan 3b (125.77 MHz, CDCl3) .. 3
Figure S 5 – 1H NMR spectrum of furan 3c (300.13 MHz, CDCl3) .. 4
Figure S 6 – 13C NMR spectrum of furan 3c (75.47 MHz, CDCl3) .. 4
Figure S 7 – 1H NMR spectrum of furan 3d (300.13 MHz, CDCl3) .. 5
Figure S 8 – 13C NMR spectrum of furan 3d (75.47 MHz, CDCl3) .. 5
Figure S 9 – 1H NMR spectrum of furan 3e (300.13 MHz, CDCl3) .. 6
Figure S 10 – 13C NMR spectrum of furan 3e (75.47 MHz, CDCl3) .. 6
Figure S 11 – 1H NMR spectrum of furan 3f (300.13 MHz, CDCl3) .. 7
Figure S 12 – 13C NMR spectrum of furan 3f (75.47 MHz, CDCl3) .. 7
Figure S 13 – 1H NMR spectrum of furan 3g (300.13 MHz, CDCl3) .. 8
Figure S 14 – 13C NMR spectrum of furan 3g (75.47 MHz, CDCl3) .. 8
Figure S 15 – 1H NMR spectrum of furan 3h (300.13 MHz, CDCl3) .. 9
Figure S 16 – 13C NMR spectrum of furan 3h (75.47 MHz, CDCl3) .. 9
Figure S 17 – 1H NMR spectrum of furan 3i (500.13 MHz, CDCl3) .. 10
Figure S 18 – 13C NMR spectrum of furan 3i (125.77 MHz, CDCl3) .. 10

Single-Crystal X-ray Diffraction Studies of compound 3a.. 11

References... 13
Figure S1 – 1H NMR spectrum of furan 3a (300.13 MHz, CDCl$_3$).

Figure S2 – 13C NMR spectrum of furan 3a (75.47 MHz, CDCl$_3$).
Figure S3 – 1H NMR spectrum of furan 3b (500.13 MHz, CDCl$_3$).

Figure S4 – 13C NMR spectrum of furan 3b (125.77 MHz, CDCl$_3$).
Figure S5 – 1H NMR spectrum of furan 3c (300.13 MHz, CDCl$_3$).

Figure S6 – 13C NMR spectrum of furan 3c (75.47 MHz, CDCl$_3$).
Figure S7 – 1H NMR spectrum of furan 3d (300.13 MHz, CDCl$_3$).

Figure S8 – 13C NMR spectrum of furan 3d (75.47 MHz, CDCl$_3$).
Figure S9 – 1H NMR spectrum of furan 3e (300.13 MHz, CDCl$_3$).

Figure S10 – 13C NMR spectrum of furan 3e (75.47 MHz, CDCl$_3$).
Figure S11 – 1H NMR spectrum of furan 3f (300.13 MHz, CDCl$_3$).

Figure S12 – 13C NMR spectrum of furan 3f (75.47 MHz, CDCl$_3$).
Figure S13 – 1H NMR spectrum of furan 3g (300.13 MHz, CDCl$_3$).

Figure S14 – 13C NMR spectrum of furan 3g (75.47 MHz, CDCl$_3$).
Figure S15 – 1H NMR spectrum of furan 3h (300.13 MHz, CDCl$_3$).

Figure S16 – 13C NMR spectrum of furan 3h (75.47 MHz, CDCl$_3$).
Figure S17 – 1H NMR spectrum of furan 3i (500.13 MHz, CDCl$_3$).

Figure S18 – 13C NMR spectrum of furan 3i (125.77 MHz, CDCl$_3$).
Single-Crystal X-ray Diffraction Studies of compound 3a

Single crystals of compound 3a were manually harvested from the crystallization vial and immersed in highly viscous FOMBLIN Y perfluoropolyether vacuum oil (LVAC 140/13, Sigma-Aldrich) to avoid degradation caused by the evaporation of the solvent. Crystals were mounted on Hampton Research CryoLoops with the help of a Stemi 2000 stereomicroscope equipped with Carl Zeiss lenses. X-ray diffraction data were collected at 150(2) K on a Bruker D8 QUEST equipped with Mo Kα sealed tube (λ = 0.71073 Å), a multilayer TRIUMPH X-ray mirror, a PHOTON 100 CMOS detector, controlled by the APEX2 software package, and an Oxford Instruments Cryostrem 700+ Series low temperature device.

Diffraction images were processed using the software package SAINT+, and data were corrected for absorption by the multiscan semi-empirical method implemented in SADABS. The structure was solved using the algorithm implemented in SHELXT-2014, which allowed the immediate location of almost all of the heaviest atoms composing the molecular unit of the three compounds. The remaining missing and misplaced non-hydrogen atoms were located from difference Fourier maps calculated from successive full-matrix least-squares refinement cycles on \(F^2 \) using the latest SHELXL from the 2014 release. All structural refinements were performed using the graphical interface ShelXle.

Hydrogen atoms bound to carbon were placed at their idealized positions using appropriate HFIX instructions in SHELXL: 43 (aromatic carbon atoms) or 137 (for the terminal methyl group). These hydrogen atoms were included in subsequent refinement cycles with isotropic thermal displacements parameters (\(U_{iso} \)) fixed at 1.2 (for the former family of hydrogen atoms) or 1.5×\(U_{eq} \) (solely for those associated with the methyl group) of the parent carbon atoms. The hydrogen atom associated with the hydroxyl group was directly found from difference Fourier maps and it was included in the final structural model with the O–H distance restrained to 0.95(1) Å and the isotropic thermal displacement parameter (\(U_{iso} \)) fixed at 1.5×\(U_{eq} \) of the parent oxygen atom.

The last difference Fourier map synthesis showed the highest peak (0.243 eÅ\(^{-3}\)) and the deepest hole (-0.239 eÅ\(^{-3}\)) located at 0.83 and 0.49 Å from H7A and H7B, respectively. Structural drawings have been created using the software package Crystal Impact Diamond.
Crystallographic data (including structure factors) for the crystal structure of compound 3a have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-1409624. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 2EZ, U.K. FAX: (+44) 1223 336033. E-mail: deposit@ccdc.cam.ac.uk.
References

(3) SAINT+ Data Integration Engine v. 8.27b© 1997-2012, Bruker AXS, Madison, Wisconsin, USA.

(4) G. M. Sheldrick SADABS 2012/1, Bruker AXS Area Detector Scaling and Absorption Correction 2012, Bruker AXS, Madison, Wisconsin, USA.

checkCIF (full publication check) running

Checking for embedded fcf data in CIF...
Found embedded fcf data in CIF. Extracting fcf data from uploaded CIF, please wait.

checkCIF/PLATON (full publication check)

Structure factors have been supplied for datablock(s) I

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.

Structure factor report

Datablock: I

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0031 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=7.3330(9), b=10.5928(14), c=15.0866(19)</td>
<td></td>
</tr>
<tr>
<td>alpha=90, beta=90.962(4), gamma=90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature: 150 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Calculated</td>
<td>Reported</td>
</tr>
<tr>
<td>1171.7(3)</td>
<td>1171.7(3)</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/n</td>
<td>P 21/n</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2yn</td>
<td>-P 2yn</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C14 H12 04</td>
<td>C14 H12 04</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C14 H12 04</td>
<td>C14 H12 04</td>
</tr>
<tr>
<td>Mr</td>
<td>244.24</td>
<td>244.24</td>
</tr>
<tr>
<td>Dx, g cm(^{-3})</td>
<td>1.385</td>
<td>1.385</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mu (mm(^{-1}))</td>
<td>0.102</td>
<td>0.102</td>
</tr>
<tr>
<td>F000</td>
<td>512.0</td>
<td>512.0</td>
</tr>
<tr>
<td>F000'</td>
<td>512.30</td>
<td></td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>8,12,18</td>
<td>8,12,18</td>
</tr>
<tr>
<td>Nref</td>
<td>2144</td>
<td>2126</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.988,0.992</td>
<td>0.195,0.259</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.972</td>
<td></td>
</tr>
<tr>
<td>Correction method</td>
<td># Reported T Limits: Tmin=0.195 Tmax=0.259</td>
<td></td>
</tr>
<tr>
<td>AbsCorr = MULTI-SCAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data completeness= 0.992</td>
<td>Theta(max)= 25.346</td>
<td></td>
</tr>
<tr>
<td>R(reflections)= 0.0494(1298)</td>
<td>wR2(reflections)= 0.1286(2126)</td>
<td></td>
</tr>
<tr>
<td>S = 1.017</td>
<td>Npar= 168</td>
<td></td>
</tr>
</tbody>
</table>

The following ALERTS were generated. Each ALERT has the format `test-name_ALERT_alert-type_alert-level`

Click on the hyperlinks for more details of the test.

Alert level C

- **PLAT905_ALERT_3_C** Negative K value in the Analysis of Variance ... -2.495 Report
- **PLAT910_ALERT_3_C** Missing # of FCF Reflection(s) Below Th(Min) ... 6 Report
- **PLAT911_ALERT_3_C** Missing # FCF Refl Between ThMin & STh/L= 0.600 11 Report

Alert level G

- **PLAT912_ALERT_4_G** Missing # of FCF Reflections Above STh/L= 0.600 2 Note

0 **ALERT level A** = Most likely a serious problem - resolve or explain
0 **ALERT level B** = A potentially serious problem, consider carefully
3 **ALERT level C** = Check. Ensure it is not caused by an omission or oversight
1 **ALERT level G** = General information/check it is not something unexpected
checkCIF publication errors

Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. ‘Acta Crystallographica Section C’
PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL012_ALERT_1_A _publ_section_abstract is missing.
Abstract of paper in English.
PUBL024_ALERT_1_A The number of authors is greater than 5.
Please specify the role of each of the co-authors
for your paper.

Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or
empty.

4 ALERT level A = Data missing that is essential or data in wrong format
1 ALERT level G = General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point
to fixed oversight, errors and omissions in your CIF or refinement strategy, so attention to these fine
details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to
carry out additional measurements or structure refinements. However, the nature of your study may justify
the reported deviations from journal submission requirements and the more serious of these should be
commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the
CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its
limitations and alerts that are not important in a particular case may appear. Conversely, the absence of
alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to
critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for
publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply
Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
  _vrf_PUBL006_GLOBAL
  ;
  PROBLEM: _publ_requested_journal is missing
  RESPONSE: ...
  ;
  _vrf_PUBL008_GLOBAL
  ;
  PROBLEM: _publ_section_title is missing. Title of paper.
  RESPONSE: ...
  ;
  _vrf_PUBL012_GLOBAL
  ;
  PROBLEM: _publ_section_abstract is missing.
  RESPONSE: ...
  ;
  _vrf_PUBL024_GLOBAL
  ;
  PROBLEM: The number of authors is greater than 5.
  RESPONSE: ...
  ;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload
your CIF via the web. If your CIF is to from part of a submission to another IUCr journal, you will be asked,
either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web
site.
Datablock I - ellipsoid plot

Download CIF editor (publCIF) from the IUCr
Download CIF editor (enCIFer) from the CCDC
Test a new CIF entry