Supporting Information

Copper-Catalyzed Regioselective C–H Iodination of Aromatic Carboxamides

Chuanguang Wu, Hui Zhou, Qiaolin Wu,* Mina He, Pei Li, Qing Su,* and Ying Mu

College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin
Street, Changchun 130012, P. R. China
Emails: wuql@jlu.edu.cn (Q. Wu); suqing@jlu.edu.cn (Q. Su)

Table of Contents

1. General information ...2

2. General procedure for the preparation of aromatic carboxamide2

3. General procedure for copper-catalyzed C–H iodination of aromatic carboxamides ...2

4. Copper-catalyzed cyanation of N-(quinolin-8-yl)-benzamide ..3

5. Copper-catalyzed dimerization of N-(quinolin-8-yl)-benzamide ...3

6. Spectral Data ..3

7. 1H NMR and 13C NMR spectra of synthesized compounds15
General information

Reagents and solvents were purchased from commercial suppliers and used as received, unless otherwise indicated. Column chromatography was performed using silica gel (200-300 mesh). 1H and 13C NMR spectra were measured using a Varian Mercury-300 or Bruker AVANCE-400 NMR spectrometer. High resolution mass spectra (HRMS) were obtained using Agilent1290-microTOF Q II.

General procedure for the preparation of aromatic carboxamide

To a 50 mL three-necked flask, isonicotinic acid (2.5 g, 20 mmol), DMF (5 drops) and anhydrous CH$_2$Cl$_2$ (30 mL) were added under a N$_2$ atmosphere. Oxalyl chloride (2.1 mL, 24 mmol, 1.2 equiv) was added dropwise at 0 °C resulting in vigorous bubbling. The mixture was stirred for 5 h at room temperature, and the solvent was then removed in vacuo. The resulting acid chloride was used immediately without further purification. To a 100 mL three-necked flask, 8-aminoquinoline (3.8 g, 26 mmol, 1.3 equiv), Et$_3$N (5.7 mL, 40 mmol, 2 equiv) and anhydrous CH$_2$Cl$_2$ (30 mL) were added. A solution of the acid chloride in anhydrous CH$_2$Cl$_2$ (10 mL) was added dropwise to the solution at 0 °C, and the solution was then warmed to room temperature. After stirring overnight, the reaction system was quenched with NaHCO$_3$ (30 mL of saturated aqueous solution) and the organic layer was separated. The aqueous layer was extracted with CH$_2$Cl$_2$ (2 × 15 mL). The combined organic layers were washed with aqueous HCl (30 mL, 1 M) and brine (30 mL), dried over MgSO$_4$, filtered and evaporated in vacuo. The obtained crude amide was purified by column chromatography on silica gel (eluant: dichloromethane/Petroleum ether = 5/1) to afford the desired amide.

General procedure for copper-catalyzed C–H iodination of aromatic carboxamides

A mixture of 1 (74.5 mg, 0.3 mmol), I$_2$ (76.2 mg, 0.3 mmol), PhI(OAc)$_2$ (193.2 mg, 0.6 mmol) and Cu(OAc)$_2$ (10.9 mg, 0.06 mmol) in NMP (2 mL) was stirred at 100 °C under O$_2$ (1 atm) for 20 h. The reaction mixture was cooled to room temperature and diluted with CH$_2$Cl$_2$ (2 mL). The suspension was filtered through a pad of Celite and the residue was washed three times with CH$_2$Cl$_2$ (3 × 5 mL). The filtrate was concentrated under reduced pressure. The obtained crude
product was purified by silica gel column chromatography to afford the desired product \textbf{1a}.

Copper-catalyzed cyanation of N-(quinolin-8-yl)-benzamide

A mixture of \textbf{1} (124.2 mg, 0.5 mmol), I$_2$ (127.0 mg, 0.5 mmol), K$_3$[Fe(CN)$_6$] (164.6 mg, 0.5 mmol), and Cu(OAc)$_2$ (18.2 mg, 0.1 mmol) in DMSO (3 mL) was stirred at 100 °C under O$_2$ (1 atm) for 20 h. The reaction mixture was cooled to room temperature and diluted with CH$_2$Cl$_2$ (5 mL). The suspension was filtered through a pad of Celite and the residue was washed three times with CH$_2$Cl$_2$ (3 × 10 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the cyanation product.

Copper-catalyzed dimerization of N-(quinolin-8-yl)-benzamide

A mixture of \textbf{1} (124.2 mg, 0.5 mmol), K$_3$[Fe(CN)$_6$] (164.6 mg, 0.5 mmol) and Cu(OAc)$_2$ (18.2 mg, 0.1 mmol) in DMSO (2 mL) was stirred at 170 °C under O$_2$ (1 atm) for 24 h. The reaction mixture was cooled to room temperature and diluted with CH$_2$Cl$_2$ (5 mL). The suspension was filtered through a pad of Celite and the residue was washed three times with CH$_2$Cl$_2$ (3 × 10 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the dimerized product.

Spectral Data

\begin{center}
\includegraphics[width=0.3\textwidth]{n-quinolin-8-ylbenzamide.png}
\end{center}

\textbf{N-(quinolin-8-yl)benzamide}: White solid (yield, 89 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/2). 1H NMR (300MHz, CDCl$_3$) δ 10.74 (s, 1H), 8.97–8.92 (dd, 1H), 8.87–8.83 (dd, 1H), 8.23–8.18 (dd, 1H), 8.12–8.07 (m, 2H), 7.60–7.47 (m, 6H). HRMS (ESI) Calculated for C$_{16}$H$_{12}$N$_2$O ([M+H]$^+$) 249.1022, Found 249.1072.
4-Methyl-N-(quinolin-8-yl)-benzamide: Brown solid (yield, 62 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3). 1H NMR (300 MHz, CDCl₃) δ 10.72 (s, 1H), 8.92 (d, 1H), 8.85 (d, 1H), 8.21 (d, 1H), 8.0 (d, 2H) 7.62–7.47 (m, 3H), 7.34 (d, 3H), 2.45 (s, 3H). 13C NMR (75 MHz, CDCl₃) δ 165.18, 148.48, 142.14, 140.33, 139.10, 138.16, 135.50, 131.95, 131.01, 129.30, 127.12, 122.96, 117.67, 89.01, 21.50. HRMS (ESI) Calculated for C₁₇H₁₄N₂O ([M+H]$^+$) 263.1179, Found 263.1227.

2-Methyl-N-(quinolin-8-yl)-benzamide: White solid (yield, 75 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3). 1H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.97–8.92 (d, 1H), 8.79–8.76 (dd, 1H), 8.2–8.16 (dd, 1H), 7.71–7.67 (d, 1H) 7.63–7.53 (m, 2H), 7.475–7.63 (m, 1H), 7.43–7.38 (m, 1H), 7.35–7.25 (t, 2H), 2.61 (s, 3H). HRMS (ESI) Calculated for C₁₇H₁₄N₂O ([M+H]$^+$) 263.1179, Found 263.1085.

3-Methyl-N-(quinolin-8-yl)-benzamide: White solid (yield, 78%), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3). 1H NMR (400 MHz, CDCl₃) δ
10.71 (s, 1 H), 8.96–8.93 (m, 1 H), 8.87–8.84 (m, 1 H), 8.21–8.16 (m, 1 H), 7.91–7.85 (m, 2 H), 7.63–7.57 (t, 1 H), 7.56–7.52 (m, 1 H), 7.50–7.46 (m, 1 H), 7.45–7.37 (m, 3 H), 2.48 (s, 3 H);

HRMS (ESI) Calculated for C_{17}H_{14}N_{2}O ([M+H]^+) 263.1179, Found 263.1081.

![Chemical structure of 4-Bromo-N-(quinolin-8-yl)benzamide]

4-Bromo-N-(quinolin-8-yl)benzamide: Yellow solid (yield, 51 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3). 1H NMR (300 MHz, CDCl$_3$) δ 10.73 (s, 1H), 8.91–8.83 (m, 2H), 8.25 (d, 1H), 8.00–7.91 (d, 2H), 7.72–7.47 (m, 6H). HRMS (ESI) Calculated for C$_{16}$H$_{11}$BrN$_2$O ([M+H]$^+$) 327.0128, Found 327.0191.

![Chemical structure of 4-Nitro-N-(quinolin-8-yl)benzamide]

4-Nitro-N-(quinolin-8-yl)benzamide: Yellow solid (yield, 58 %), after purification by silica gel column chromatography (hexane/EtOAc : 4/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.83 (s, 1H), 8.93–8.86 (m, 1H), 8.40–8.25 (m, 6H), 7.72 (t, 2H), 7.55–7.5 (q, 1H). HRMS (ESI) Calculated for C$_{16}$H$_{11}$N$_3$O$_3$ ([M+H]$^+$) 294.0873, Found 294.0930.

![Chemical structure of 3-Nitro-N-(quinolin-8-yl)benzamide]

3-Nitro-N-(quinolin-8-yl)benzamide: Light yellow solid (yield, 88 %), after purification by silica gel column chromatography (hexane/EtOAc : 4/1). 1H NMR (400 MHz, CDCl$_3$) δ 10.84 (s,
1H), 8.95–8.87 (m, 3H), 8.47–8.4 (m, 2H), 8.21 (dd, J = 8.3, 1.7 Hz, 1H), 7.75 (t, 1H), 7.65–7.58 (m, 2H), 7.55–7.50 (dd, 1H) HRMS (ESI) Calculated for C_{16}H_{11}N_{3}O_{3} ([M+H]^+) 294.0873, Found 294.0775.

N-(quinolin-8-yl)-1-naphthamide: White solid (yield, 75 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 10/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.43 (s, 1H), 9.10–9.03 (d, 1H), 8.76–8.72 (d, 1H), 8.57–8.50 (t, 1H), 8.21–8.15 (d, 1H), 8.00 (d, 1H), 7.95–7.89 (d, 2H), 7.68–7.55 (m, 5H), 7.48–7.40 (q, 1H). HRMS (ESI) Calculated for C$_{20}$H$_{14}$N$_2$O ([M+H]$^+$) 299.1179, Found 299.1240.

N-(quinolin-8-yl)isonicotinamide: Yellow solid (yield, 66 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 10/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.78 (s, 1H), 8.90–8.82 (m, 4H), 8.18 (d, 1H), 7.88 (d, 2H), 7.57 (t, 2H), 7.48–7.45 (q, 1H). HRMS (ESI) Calculated for C$_{15}$H$_{11}$N$_3$O ([M+H]$^+$) 250.0975, Found 250.1021.

N-(quinolin-8-yl)-thiophene-3-carboxamide: White solid (yield, 66 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 10/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.55 (s, 1H), 8.90–8.82 (m, 2H), 8.20–8.15 (d, 2H), 7.71–7.68 (d, 1H), 7.61–7.42 (m, 5H).
HRMS (ESI) Calculated for C_{12}H_{10}N_{2}OS ([M+H]^+) 255.0587, Found 255.0630.

\[
\text{N-(2-methylquinolin-8-yl)-benzamide: White solid (yield, 86 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3).} \ H NMR (400 MHz, CDCl}_3 \ \delta 10.82 (s, 1H), 8.90 (dd, 1H), 8.11–8.04 (m, 3H), 7.60-7.47 (m, 5H), 7.35 (d, 1H), 2.78(s, 3H).
\]

HRMS (ESI) Calculated for C_{17}H_{14}N_{2}O ([M+H]^+) 263.1190, Found 263.1140.

\[
\text{N-(6-methoxyquinolin-8-yl)benzamide: White solid (yield, 82 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3).} \ H NMR (400 MHz, CDCl}_3 \ \delta 10.72 (s, 1H), 8.70-8.67 (m, 2H), 8.11–8.03 (m, 3H), 7.60-7.52 (m, 3H), 7.41 (q, 1H), 6.85 (d, 1H) ,3.97 (s, 3H). \text{HRMS (ESI) Calculated for C}_{17}H_{14}N_{2}O_{2} ([M+H]^+) 279.1145, Found 279.1089.}
\]

\[
\text{N-(5-iodo-quinolin-8-yl)benzamide: Yellow solid (yield, 92 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/3).} \ H NMR (300 MHz, CDCl}_3 \ \delta 10.75 (s, 1H), 8.82 (s, 1H), 8.80–8.74 (m, 1H), 8.40–8.37 (d, 1H), 8.15–8.09 (t, 3H), 7.63–7.58 (m,}
4H). 13C NMR (75 MHz, CDCl$_3$) δ 165.23, 148.80, 140.63, 139.18, 138.22, 135.40, 134.78, 132.03, 129.53, 128.85, 127.29, 123.19, 117.80, 89.96. HRMS (ESI) Calculated for C$_{16}$H$_{11}$IN$_2$O ([M+H]$^+$) 374.9989, Found 375.0071.

4-methyl-N-(5-iodo-quinolin-8-yl)-benzamide: White solid (yield, 93 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 2/5). 1H NMR (300 MHz, CDCl$_3$) δ 10.73 (s, 1H), 8.86–8.82 (m, 1H), 8.75–8.69 (d, 2H), 8.44–8.37 (m, 1H), 8.16 (d, 1H), 8.00–7.92 (d, 2H), 7.60–7.54 (m, 1H), 7.39–7.32 (d, 2H), 2.45 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 165.16, 148.58, 140.53, 138.16, 131.92, 131.95, 129.30, 129.47, 127.12, 122.95, 117.67, 89.91, 21.35. HRMS (ESI) Calculated for C$_{17}$H$_{13}$IN$_2$O ([M+H]$^+$) 389.0145, Found 389.0160.

2-methyl-N-(5-iodo-quinolin-8-yl)-benzamide: Purple solid (yield, 86%), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 2/5). 1H NMR (400 MHz, CDCl$_3$) δ 10.22 (s, 1H), 8.76–8.70 (m, 2H), 8.42–8.38 (dd, 1H), 8.15 (d, 1H), 7.70–7.66 (d, 1H), 7.56–7.52 (m, 1H), 7.44–7.39 (t, 1H), 7.36–7.30 (t, 2H), 2.60 (s, 3H). 13C NMR (100MHz, CDCl$_3$) δ 168.16, 148.85, 140.78, 139.25, 138.32, 136.82, 136.36, 135.69, 131.48, 130.52, 129.72, 127.26, 126.07, 123.22, 117.89, 89.56, 20.22. HRMS (ESI) Calculated for C$_{17}$H$_{13}$IN$_2$O ([M+H]$^+$) 389.0145, Found 389.0016.
3-methyl-N-(5-iodo-quinolin-8-yl)-benzamide: Yellow solid (yield, 89 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 2/5). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.71 (s, 1H), 8.85–8.82 (m, 1H), 8.74–8.71 (d, 1H), 8.43–8.38 (dd, 1H), 8.15 (d, 1H), 7.89–7.83 (m, 2 H), 7.59–7.55 (m, 1H), 7.45–7.38 (m, 2H), 2.49 (s, 3H). \(^{13}\)C NMR (100MHz, CDCl\(_3\)) \(\delta\) 165.70, 148.87, 140.81, 139.43, 138.77, 138.38, 135.62, 134.93, 132.80, 129.71, 128.71, 128.13, 124.24, 123.22, 117.96, 89.41, 21.49. HRMS (ESI) Calculated for C\(_{17}\)H\(_{13}\)IN\(_2\)O ([M+H]+) 389.0145, Found 389.0011.

4-bromo-N-(5-iodo-quinolin-8-yl)benzamide: Earthy yellow solid (yield, 83 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 2/5). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 10.72 (s, 1H), 8.75 (d, 2H), 8.41 (s, 1H), 7.93 (s, 1H), 7.64 (dd, 4H), 7.26 (s, 1H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 166.47, 148.88, 140.80, 139.19, 138.24, 135.15, 133.62, 132.06, 128.82, 123.26, 117.88, 89.98. HRMS (ESI) Calculated for C\(_{16}\)H\(_{10}\)BrN\(_2\)O ([M+H]+) 453.9094, Found 453.9001.

4-nitro-N-(5-iodo-quinolin-8-yl)benzamide: Brownish solid (yield, 85 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 5/1). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\)
10.82 (s, 1H), 8.93–8.85 (m, 2H), 8.44 (d, 2H), 8.24–8.21 (m, 3H), 7.62–7.56 (m, 3H). 13C NMR (75MHz, CDCl$_3$) δ 163.24, 148.55, 141.01, 136.58, 133.96, 128.49, 127.45, 124.13, 124.09, 122.51, 121.95, 116.90. HRMS (ESI) Calculated for C$_{16}$H$_{10}$IN$_3$O$_3$ ([M+H]$^+$) 419.9840, Found 419.9882.

3-nitro-N-(5-iodo-quinolin-8-yl)benzamide: Yellow solid (yield, 87%), after purification by silica gel column chromatography (petroleum ether/EtOAc : 5/1). 1H NMR (400 MHz, CDCl$_3$) δ 10.83 (s, 1H), 8.93–8.85 (m, 2H), 8.70 (d, 1H), 8.48–8.37 (m, 3H), 8.18 (d, 1H), 7.80–7.74 (t, 1H), 7.63–7.58 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 162.89, 149.18, 148.58, 140.96, 139.19, 138.27, 136.59, 134.81, 133.12, 130.12, 129.76, 126.52, 123.48, 122.38, 118.20, 90.52. HRMS (ESI) Calculated for C$_{16}$H$_{10}$IN$_3$O$_3$ ([M+H]$^+$) 419.9840, Found 419.9682.

N-(5-iodo-quinolin-8-yl)-1-naphthamide: Yellow solid (yield, 82%), after purification by silica gel column chromatography (petroleum ether/EtOAc : 11/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.43 (s, 1H), 8.84 (d, 1H), 8.74–8.69 (dd, 1H), 8.54–8.48 (t, 1H), 8.42–8.37 (dd, 1H), 8.20 (d, 1H), 8.05 (d, 1H), 7.96–7.90 (m, 2H), 7.62–7.53 (m, 4H). 13C NMR (75 MHz, CDCl$_3$) δ 167.66, 148.83, 140.70, 139.15, 138.25, 135.66, 134.29, 133.85, 131.31, 129.65, 128.39, 127.37, 126.54, 125.53, 125.43, 124.80, 123.20, 118.01, 89.77. HRMS (ESI) Calculated for C$_{20}$H$_{13}$IN$_2$O ([M+H]+$^+$) 425.0145, Found 425.0097.
N-[(5-iodo-quinolin-8-yl)]isonicotinamide: White solid (yield, 75 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 12/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.82 (s, 1H), 8.87–8.84 (m, 3H), 8.69 (d, 1H), 8.43 (d, 1H), 8.16 (d, 1H), 7.91 (d, 2H), 7.62–7.59 (m, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 163.18, 150.66, 149.14, 142.06, 140.98, 139.18, 138.27, 134.70, 129.77, 123.49, 121.20, 118.25, 90.64. HRMS (ESI) Calculated for C$_{15}$H$_{10}$N$_3$O ([M+H]$^+$) 375.9941, Found 375.9970.

3-iodo-N-[(5-iodo-quinolin-8-yl)]isonicotinamide: Brown solid (yield, 17 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 12/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.23 (s, 1H), 9.10(d, 1H), 8.76 (s, 1H), 8.70 (d, 1H), 8.66 (d, 1H), 8.40 (d, 1H), 8.16 (d, 1H), 7.57–7.54 (m, 2H). 13C NMR (75 MHz, CDCl$_3$) δ 164.95, 158.74, 149.40, 149.14, 148.31, 140.89, 138.99, 138.18, 134.57, 129.77, 123.47, 122.74, 118.43, 91.50, 90.97. HRMS (ESI) Calculated for C$_{15}$H$_{9}$N$_3$O ([M+H]$^+$) 501.8908, Found 501.8941.

N-[(5-iodo-quinolin-8-yl)]-thiophene-3-carboxamide: White solid (yield, 74 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 12/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.55 (s, 1H), 8.81–8.79 (m, 1H), 8.70–8.67 (d, 1H), 8.42–8.37 (m, 1H), 8.15–8.10 (d, 1H), 7.59–7.53 (m, 3H), 7.40–7.38 (d, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 161.17, 148.90, 140.79,
138.31, 135.29, 132.26, 129.73, 127.98, 123.28, 118.19, 89.96. HRMS (ESI) Calculated for C_{14}H_{9}IN_{2}OS ([M+H]^+) 380.9553, Found 380.9580.

2-iodo-N-(5-ido-quinolin-8-yl)-thiophene-3-carboxamide: White solid (yield, 15 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 12/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.56 (s, 1H), 8.85–8.82 (d, 1H), 8.70–8.65 (d, 1H), 8.45–8.39 (m, 2H), 8.20–8.16 (d, 1H), 8.15 (d, 1H), 7.72 (d, 1H), 7.61–7.56 (q, 1H), 7.50–7.43 (t, 1H). 13C NMR (75 MHz, CDCl$_3$) δ 160.78, 148.69, 140.62, 138.21, 138.03, 135.32, 129.00, 126.68, 126.20, 123.06, 117.74, 89.87. HRMS (ESI) Calculated for C$_{14}$H$_{8}$I$_{2}$N$_{2}$OS ([M+H]^+) 506.8519, Found 506.8537.

N-(2-(diiodomethyl)-5-idoquinolin-8-yl)benzamide: Yellow solid (yield, 31 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/2). 1H NMR (400 MHz, CDCl$_3$) δ 10.64 (s, 1H), 10.29 (s, 1H), 8.79 (d, 1H), 8.56 (d, 1H), 8.25 (d, 1H), 8.14 (d, 1H) 8.07 (d, 2H) 7.65-7.54 (m, 3H). 13C NMR (100MHz, CDCl$_3$) δ 191.92, 156.40, 150.50, 142.55, 141.19, 138.73, 136.21, 134.55, 132.39, 131.59, 129.07, 127.23, 119.31, 118.80, 89.11. HRMS (ESI) Calculated for C$_{17}$H$_{11}$I$_{3}$N$_{2}$O ([M-I+H]^+) 514.9081, Found 514.9073.
N-(5-iodo-6-methoxyquinolin-8-yl)benzamide: Yellow solid (yield, 90 %), after purification by silica gel column chromatography (petroleum ether/dichloromethane : 1/2). 1H NMR (400 MHz, CDCl$_3$) δ 10.85 (s, 1H), 8.96 (s, 1H), 8.675 (dd, 1H), 8.46 (dd, 1H), 8.11-8.08 (m, 2H), 7.64-7.55 (m, 3H), 7.53-7.49 (q, 1H), 4.13 (s, 3H). 13C NMR (100MHz, CDCl$_3$) δ 165.44, 157.33, 146.37, 139.46, 136.24, 135.28, 134.61, 132.16, 131.68, 130.63, 128.91, 128.56, 128.40, 127.26, 123.59, 103.76, 57.21. HRMS (ESI) Calculated for C$_{17}$H$_{13}$IN$_2$O$_2$ ([M+H]$^+$) 405.0091, Found 405.0055.

N-(5-cyano-quinolin-8-yl)benzamide: White solid (yield, 30 %), after purification by silica gel column chromatography (petroleum ether/EtOAc : 3/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.91 (s, 1H), 9.01–8.97 (m, 2H), 8.59–8.54 (d, 1H), 8.13–8.00 (m, 3H), 7.75–7.55 (m, 5H). 13C NMR (125 MHz, CDCl$_3$) δ 165.68, 149.71, 139.50, 137.88, 134.87, 134.27, 134.11, 132.53, 129.01, 130.25, 127.83, 127.42, 123.93, 117.84, 115.32, 103.13. HRMS (ESI) Calculated for C$_{17}$H$_{11}$IN$_3$O ([M+H]$^+$) 274.0975, Found 274.0989.

N,N'-(5,5'-bisquinolin-8-yl)-bisbenzamide: Brown solid (yield, 49 %), after purification by silica
gel column chromatography (petroleum ether/EtOAc : 3/1). 1H NMR (300 MHz, CDCl$_3$) δ 10.36 (s, 2H), 8.70–8.65 (m, 2H), 8.47–8.44 (m, 2H), 7.96–7.92 (m, 3H), 7.87–7.84 (d, 3H), 7.47–7.39 (m, 11H). 13C NMR (125MHz, CDCl$_3$) δ 167.44, 147.08, 139.70, 138.32, 136.40, 135.71, 134.65, 130.86, 130.42, 127.96, 127.86, 127.45, 127.01, 121.33, 121.23, 116.58. HRMS (ESI) Calculated for C$_{32}$H$_{22}$N$_4$O$_2$ ([M+H]$^+$) 495.1816, Found 495.1802.