I$_2$-Mediated Oxidative Dehydrogenation of β-Acylamino ketones for the Highly Stereoselective Synthesis of Z-β-Ketoenamides

Hong-Hong Chang, a Fei Hu, a Wen-Chao Gao, a Tao Liu, a Xing Li, a Wen-Long Wei a and Yan Qiao b

a College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China

E-mail: gaowenchao@tyut.edu.cn; qiaoy@sxicc.ac.cn

Table of Contents

General Information...S2
Table S1. Base Screening for Dehydrogenation Reaction..................................S2
Table S2. Catalytic Reaction for the Synthesis of 2a.................................S3
Characterization of Products..S3
References..S10
NMR Spectra of Products...S11
General Information

1H NMR spectra were recorded at 400 MHz and 13C NMR spectra were measured at 100 MHz using Bruker AVANCE III NMR spectrometers with CDCl$_3$ as the solvent. Chemical shifts (δ) were measured in ppm and referenced to the deuterated chloroform (1H: δ = 7.26 ppm, 13C: δ = 77.00 ppm). The multiplicities of signals were described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, tt = triplet of triplets. High-resolution mass spectra (HRMS) were performed on a microOTOF-Q II instrument with an ESI source. Melting points were measured with a RD-II type melting point apparatus. Substrates 1a-1r were prepared following our previous report, and carbamates 1s and 1t were prepared according to the known procedure.

Table S1. Base Screening for Dehydrogenation Reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2a</td>
</tr>
<tr>
<td>1</td>
<td>K$_2$CO$_3$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>DABCO</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>DBU</td>
<td>< 5</td>
</tr>
<tr>
<td>4</td>
<td>TMG</td>
<td>0</td>
</tr>
</tbody>
</table>

a Reaction conditions: 0.2 mmol of 1a, 0.24 mmol of I$_2$, 0.6 mmol of base, in 2 mL of p-xylene, at 60 °C for 4-6 h. b Isolated yield.
Table S2. Catalyst and Oxidant Screening for the Synthesis of 2aa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TBHP</td>
<td>KI</td>
<td>p-xylene</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>TBHP</td>
<td>TBAI</td>
<td>p-xylene</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>TBHP</td>
<td>I$_2$</td>
<td>p-xylene</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>TBHP</td>
<td>I$_2$</td>
<td>1.4-dioxane</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>TBHP</td>
<td>I$_2$</td>
<td>THF</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>H$_2$O$_2$</td>
<td>I$_2$</td>
<td>p-xylene</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>TBPB</td>
<td>I$_2$</td>
<td>p-xylene</td>
<td>42</td>
</tr>
</tbody>
</table>

a Reaction conditions: 0.2 mmol of 1a, 0.02 mmol of catalyst, 0.4 mmol of DABCO, 0.4 mmol of oxidant, in 2 mL of solvent, at 60 °C for 4-6 h.b Isolated yield.

Characterization of Products

Dehydrogenation; General Procedure

A 10 mL oven-dried reaction vessel was charged with 1a (53 mg, 0.2 mmol), DABCO (67 mg, 0.6 mmol), and iodine (61 mg, 0.24 mmol) in paraxylene (2.0 mL). The resulting solution was stirred at 60 °C for 5 h. After the reaction was complete, sat. Na$_2$S$_2$O$_3$ aqueous solution (10 mL) was added to quench the reaction, and the mixture was extracted by ethyl acetate (3 × 10 mL). The organic layer was separated and dried over anhydrous Na$_2$SO$_4$. After the removal of the solvent under vacuo, the residue was purified by flash column chromatography with PE/EtOAc (9 : 1) to give 2a.

(Z)-N-(3-oxo-1,3-diphenylprop-1-en-1-yl)acetamide (2a)

Yield: 27 mg (60%); time: 5 h; white solid; m.p. 60-62 °C; TLC, $R_t = 0.35$ (PE:EtOAc = 4:1); 1H NMR (CDCl$_3$, 400 MHz): δ 12.27 (s,
1H), 7.98-7.95 (m, 2H), 7.57 (tt, 1H, J = 4.8, 0.8 Hz), 7.50-7.46 (m, 4H), 7.45-7.40 (m, 3H), 6.33 (s, 1H), 2.25 (s, 3H); 13C NMR (CDCl₃, 100 MHz): δ 191.7, 168.9, 156.3, 138.6, 136.2, 132.7, 129.8, 128.7, 128.1, 127.8, 127.4, 104.8, 25.1; HRMS (ESI) m/z calcd. for C₁₇H₁₆NO₂ [M+H]+: 266.1176, found: 266.1179.

(Z)-N-(3-(4-chlorophenyl)-3-oxo-1-phenylprop-1-en-1-yl) acetamide (2b)

Yield: 37 mg (60%); time: 5 h; white solid; m.p. 106-109 °C; TLC, Rf = 0.35 (PE:EtOAc = 4:1); 1H NMR (CDCl₃, 400 MHz): δ 12.23 (s, 1H), 7.90 (d, 2H, J = 6.8 Hz), 7.49-7.40 (m, 7H), 6.25 (s, 1H), 2.24 (s, 3H); 13C NMR (CDCl₃, 100 MHz): δ 190.2, 168.8, 156.9, 139.2, 136.9, 136.1, 129.9, 129.2, 129.0, 128.1, 127.4, 104.2, 25.1. HRMS (ESI) m/z calcd. for C₁₇H₁₅ClNO₂ [M+H]+: 300.0786, found: 300.0791.

(Z)-N-(3-(4-bromophenyl)-3-oxo-1-phenylprop-1-en-1-yl) acetamide (2c)

Yield: 50 mg (69%); time: 6 h; white solid; m.p. 99-102 °C; TLC, Rf = 0.36 (PE:EtOAc = 4:1); 1H NMR (CDCl₃, 400 MHz): δ 12.32 (s, 1H), 7.82 (d, 2H, J = 8.4 Hz), 7.61 (d, 2H, J = 8.4 Hz), 7.48-7.40 (m, 5H), 6.25 (s, 1H), 2.24 (s, 3H); 13C NMR (CDCl₃, 100 MHz): δ 190.4, 168.8, 157.0, 137.4, 136.1, 132.0, 130.0, 129.3, 128.1, 127.4, 104.2, 25.1. HRMS (ESI) m/z calcd. for C₁₇H₁₅BrNO₂ [M+H]+: 344.0281, found: 344.0282.

(Z)-N-(3-oxo-1-phenyl-3-(p-tolyl)prop-1-en-1-yl) acetamide (2d)

Yield: 32 mg (56%); time: 8 h; white solid; m.p. 117-120 °C; TLC, Rf = 0.34 (PE:EtOAc = 4:1); 1H NMR (CDCl₃, 400 MHz): δ 12.29 (s, 1H), 7.87 (d, 2H, J = 8.4 Hz), 7.48-7.38 (m, 5H), 7.28 (d, 2H, J = 8.0 Hz), 6.31 (s, 1H), 2.43 (s, 3H), 2.24 (s, 3H); 13C NMR (CDCl₃, 100 MHz): δ 191.4, 168.9, 155.9, 143.7, 136.4, 136.0, 129.8, 129.4, 128.1, 128.0, 127.4,

(Z)-N-(3-(4-methoxyphenyl)-3-oxo-1-phenylprop-1-en-1-yl) acetamide (2e)

Yield: 31 mg (51%); time: 7 h; white solid; m.p. 125-128 °C; TLC, Rf = 0.36 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.29 (s, 1H), 7.96 (d, 2H, J = 9.2 Hz), 7.47-7.38 (m, 5H), 6.96 (d, 2H, J = 9.2 Hz), 6.29 (s, 1H), 3.88 (s, 3H), 2.23 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 190.3, 168.9, 163.4, 155.5, 136.4, 131.4, 130.1, 129.6, 128.1, 127.3, 113.9, 104.7, 55.5, 25.1. HRMS (ESI) m/z calcd. for C₁₈H₁₈NO₃[M+H]⁺: 296.1281, found: 296.1280.

(Z)-N-(3-(naphthalen-2-yl)-3-oxo-1-phenylprop-1-en-1-yl) acetamide (2f)

Yield: 37 mg (58%); time: 6 h; white solid; m.p. 112-115 °C; TLC, Rf = 0.35 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.36 (s, 1H), 8.48 (s, 1H), 8.05 (dd, 1H, J =8.8, 2.0 Hz), 7.98-7.88 (m, 3H), 7.62-7.42 (m, 7H), 6.49 (s, 1H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.5, 168.9, 156.2, 136.3, 135.9, 135.4, 132.6, 129.8, 129.5, 129.2, 128.6, 128.4, 128.1, 127.7, 127.4, 126.8, 123.8, 104.8, 25.1. HRMS (ESI) m/z calcd. for C₂₁H₁₈NO₂[M+H]⁺: 316.1332, found: 316.1326.

(Z)-N-(3-(furan-2-yl)-3-oxo-1-phenylprop-1-en-1-yl) acetamide (2g)

Yield: 27 mg (53%); time: 5 h; yellow oil; TLC, Rf = 0.32 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.06 (s, 1H), 7.60 (d, 1H, J = 1.2 Hz), 7.47-7.36 (m, 5H), 7.23 (d, 1H, J = 3.6 Hz), 6.56 (dd, 1H, J = 4.4, 1.6 Hz), 6.23 (s, 1H), 2.21(s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 179.8, 168.7, 156.2, 153.4, 146.4, 135.9, 129.8, 128.0, 127.3, 116.7, 112.6,
104.3, 25.0. HRMS (ESI) m/z calcd. for C\textsubscript{15}H\textsubscript{14}NO\textsubscript{3} [M+H]\(^+\): 256.0968, found: 256.0967.

(Z)-N-(3-oxo-1-phenyl-3-(thiophen-2-yl)prop-1-en-1-yl) acetamide (2h)

Yield: 33 mg (61%); time 5 h; yellow oil; TLC, R\textsubscript{f} = 0.31 (PE:EtOAc = 4:1); \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 12.06 (s, 1H), 7.73 (dd, 1H, \(J = 4.0, 0.8\) Hz), 7.66 (dd, 1H, \(J = 4.8, 1.2\) Hz), 7.47-7.38 (m, 5H), 7.14 (dd, 1H, \(J = 5.2, 4.0\) Hz), 6.19 (s, 1H), 2.21 (s, 3H); \(^{13}\)C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 183.9, 168.7, 155.9, 145.7, 135.9, 133.8, 130.9, 129.8, 128.3, 128.0, 127.3, 104.7, 25.0. HRMS (ESI) m/z calcd. for C\textsubscript{15}H\textsubscript{14}NO\textsubscript{2}S [M+H]\(^+\): 272.0740, found: 272.0746.

(Z)-N-(1-(naphthalen-2-yl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2i)

Yield: 39 mg (64%); time: 7 h; yellow oil; TLC, R\textsubscript{f} = 0.35 (PE:EtOAc = 4:1); \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 12.37 (s, 1H), 8.02-7.97 (m, 3H), 7.92-7.83 (m, 3H), 7.59-7.47 (m, 6H), 6.45 (s, 1H), 2.27 (s, 3H); \(^{13}\)C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 191.7, 168.9, 156.2, 138.6, 133.96, 133.91, 132.83, 132.77, 128.7, 128.5, 127.8, 127.7, 127.4, 127.0, 126.6, 126.5, 125.1, 105.0, 25.1. HRMS (ESI) m/z calcd. for C\textsubscript{21}H\textsubscript{18}NO\textsubscript{2} [M+H]\(^+\): 316.1332, found: 316.1331.

(Z)-N-(3-oxo-3-phenyl-1-(p-tolyl)prop-1-en-1-yl) acetamide (2j)

Yield: 34 mg (59%); time: 8 h; colorless oil; TLC, R\textsubscript{f} = 0.35 (PE:EtOAc = 4:1); \(^1\)H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) 12.26 (s, 1H), 7.97 (d, 2H, \(J = 7.2\) Hz), 7.56 (t, 1H, \(J = 7.2\) Hz), 7.48 (t, 2H, \(J = 7.2\) Hz), 7.38 (d, 2H, \(J = 8.4\) Hz), 7.22 (d, 2H, \(J = 8.4\) Hz), 6.33 (s, 1H), 2.41 (s, 3H), 2.25 (s, 3H); \(^{13}\)C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 191.6, 168.9, 156.4, 140.2, 138.7, 133.2, 132.6, 128.8, 128.6, 127.7, 127.3, 104.4, 25.1, 21.4. HRMS (ESI) m/z calcd. for C\textsubscript{18}H\textsubscript{18}NO\textsubscript{2} [M+H]\(^+\): 280.1332, found: 280.1330.
(Z)-N-(1-(2-methoxyphenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2k)
Yield: 29 mg (50%); time: 12 h; white solid; m.p. 97-99 °C; TLC, Rf = 0.42 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.57 (s, 1H), 7.94 (dd, 2H, J = 8.0, 1.2 Hz), 7.54 (t, 1H, J = 7.6 Hz), 7.46 (t, 2H, J = 7.6 Hz), 7.42-7.38 (m, 1H), 7.27 (dd, 1H, J = 7.6, 2.0 Hz), 7.01 (td, 1H, J = 7.2, 0.8 Hz), 6.89 (d, 1H, J = 8.4 Hz), 6.17 (s, 1H), 3.82 (s, 3H), 2.20 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.9, 168.2, 156.9, 154.1, 138.7, 132.5, 130.7, 128.60, 128.56, 127.7, 125.9, 120.4, 110.3, 103.4, 55.6, 24.9. HRMS (ESI) m/z calcd. for C₁₉H₁₇NO₃Na [M+Na]⁺: 318.1101, found: 318.1100.

(Z)-N-(1-(4-bromophenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2l)
Yield: 41 mg (60%); time: 6 h; yellow solid; m.p. 94-96 °C; TLC, Rf = 0.45 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.24 (s, 1H), 7.95 (d, 2H, J = 7.2 Hz), 7.60-7.45 (m, 5H), 7.33 (d, 2H, J = 8.4 Hz), 6.29 (s, 1H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.7, 168.9, 154.9, 138.4, 135.1, 132.9, 131.3, 128.9, 128.7, 127.8, 124.2, 104.8, 25.1. HRMS (ESI) m/z calcd. for C₁₇H₁₄BrNO₂Na [M+Na]⁺: 366.0100, found: 366.0091.

(Z)-N-(1-(4-chlorophenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2m)
Yield: 35 mg (58%); time 6 h; yellow oil; TLC, Rf = 0.40 (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 12.25(s, 1H), 7.95 (d, 2H, J = 7.6 Hz), 7.58 (t, 1H, J = 7.6 Hz), 7.49 (t, 2H, J = 7.6 Hz), 7.41-7.34 (m, 4H), 6.29 (s, 1H), 2.25 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.7, 168.9, 154.9, 138.4, 135.9, 134.6, 132.9, 128.71, 128.70, 128.4, 127.8, 104.8,
25.1. HRMS (ESI) m/z calcd. for C_{17}H_{15}ClNO_2 [M+H]^+: 300.0786, found: 300.0781.

(Z)-N-(1-(2-chlorophenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2n)

Yield: 30 mg (50%); time: 6 h; colorless oil; TLC, R_f = 0.34 (PE:EtOAc = 4:1); ^1H NMR (CDCl_3, 400 MHz): δ 12.55 (s, 1H), 7.95 (d, 2H, J = 7.2 Hz), 7.56 (t, 1H, J = 7.2 Hz), 7.47 (t, 1H, J = 7.2 Hz), 7.42-7.39 (m, 1H), 7.37-7.31 (m, 3H), 6.15 (s, 1H), 2.18 (s, 3H); ^13C NMR (CDCl_3, 100 MHz): δ 191.9, 168.1, 153.1, 138.3, 135.8, 132.8, 132.1, 130.0, 129.2, 128.9, 128.7, 127.8, 126.6, 103.7, 24.7. HRMS (ESI) m/z calcd. for C_{17}H_{15}ClNO_2 [M+H]^+: 300.0786, found: 300.0776.

(Z)-N-(1-(4-nitrophenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2o)

Yield: 44 mg (70%); time: 6 h; white solid; m.p. 158-161 °C; TLC, R_f = 0.34 (PE:EtOAc = 4:1); ^1H NMR (CDCl_3, 400 MHz): δ 12.26 (s, 1H), 8.26 (d, 2H, J = 8.8 Hz), 7.98-7.94 (m, 2H), 7.63-7.57 (m, 3H), 7.50 (t, 2H, J = 7.6 Hz), 6.32 (s, 1H), 2.26 (s, 3H); ^13C NMR (CDCl_3, 100 MHz): δ 191.7, 168.9, 153.3, 148.2, 142.8, 138.1, 133.3, 128.8, 128.2, 128.0, 123.4, 105.7, 24.9. HRMS (ESI) m/z calcd. for C_{17}H_{15}N_2O_4 [M+H]^+: 311.1026, found: 311.1024.

(Z)-N-(1-(3-nitrophenyl)-3-oxo-3-phenylprop-1-en-1-yl) acetamide (2p)

Yield: 48 mg (78%); time: 6 h; white solid; m.p. 134-136 °C; TLC, R_f = 0.35 (PE:EtOAc = 4:1); ^1H NMR (CDCl_3, 400 MHz): δ 12.28 (s, 1H), 8.32-8.36 (m, 2H), 7.97 (d, 2H, J = 7.2 Hz), 7.76 (d, 1H, J = 6.4 Hz), 7.62-7.55 (m, 2H), 7.53-7.47 (m, 2H), 6.33 (s, 1H), 2.27 (s, 3H); ^13C NMR (CDCl_3, 100 MHz): δ 191.7, 169.0, 153.1, 147.9, 138.1, 138.0,
133.3, 133.2, 129.0, 128.8, 127.9, 124.2, 122.3, 105.5, 24.9. HRMS (ESI) m/z calcd. for C_{17}H_{15}N_{2}O_{4} [M+H]^{+}: 311.1026, found: 311.1018.

(Z)-N-(3-oxo-1,3-diphenylprop-1-en-1-yl)benzamide (2r)3b

Yield: 23 mg (35%); time: 2 h; white solid; m.p. 99-101 °C; TLC, \(R_{f} = 0.29 \) (PE:EtOAc = 9:1); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 12.37 (s, 1H), 8.14-8.10 (m, 2H), 8.03-7.99 (m, 2H), 7.63-7.52 (m, 6H), 7.51-7.43 (m, 5H), 6.46 (s, 1H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 192.1, 165.3, 157.1, 138.6, 136.4, 133.4, 132.79, 132.76, 129.8, 128.9, 128.7, 128.1, 127.9, 127.4, 105.4. HRMS (ESI) m/z calcd. for C\(_{22}\)H\(_{18}\)NO\(_2\) [M+H]^{+}: 380.1257, found: 380.1255.

(Z)-ethyl (3-oxo-1,3-diphenylprop-1-en-1-yl)carbamate (2s)

Yield: 44 mg (75%); time: 2 h; yellow oil; TLC, \(R_{f} = 0.51 \) (PE:EtOAc = 9:1); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 11.95 (s, 1H), 7.97 (d, 2H, \(J = 7.2 \) Hz), 7.57-7.41 (m, 8H), 6.28 (s, 1H), 4.13 (q, 2H, \(J = 7.2 \) Hz), 1.26 (t, 3H, \(J = 7.2 \) Hz); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 191.2, 157.0, 152.9, 138.7, 136.0, 132.5, 129.8, 128.6, 128.0, 127.8, 127.5, 103.5, 61.9, 14.2. HRMS (ESI) m/z calcd. for C\(_{18}\)H\(_{17}\)NO\(_3\)Na [M+Na]^{+}: 318.1101, found: 318.1104.

(Z)-benzyl (3-oxo-1,3-diphenylprop-1-en-1-yl)carbamate (2t)

Yield: 53 mg (78%); time: 2 h; yellow oil; TLC, \(R_{t} = 0.52 \) (PE:EtOAc = 9:1); \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta \) 12.03 (s, 1H), 7.96 (d, 2H, \(J = 7.2 \) Hz), 7.58-7.32 (m, 13H), 6.30 (s, 1H), 5.12 (s, 2H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta \) 191.3, 156.7, 152.7, 138.6, 135.9, 135.4, 132.6, 129.9, 128.6, 128.5, 128.31, 128.29, 128.0, 127.8, 127.6, 103.8, 67.5. HRMS (ESI) m/z calcd. for C\(_{23}\)H\(_{19}\)NO\(_3\)Na[M+Na]^{+}: 380.1257, found: 380.1255.
References:

NMR Spectra of Products

1H NMR, 400 MHz, CDCl$_3$

1H NMR of compound 2a shows signals at various ppm values.

13C NMR, 100 MHz, CDCl$_3$

13C NMR of compound 2a shows signals at various ppm values.
^{1}H NMR 400MHz CDCl$_3$

2b

^{13}C NMR 100 MHz CDCl$_3$

2b
1H NMR 400MHz CDCl$_3$

1C NMR 100MHz CDCl$_3$
$2t$

1H NMR 400MHz CDCl$_3$

13C NMR 100MHz CDCl$_3$