Supporting Information

Oxidant triggered C₁-benzylation of isoquinoline by iodine-catalyzed cross-dehydrogenative-coupling with methylarenes

Xin Shi, a Feng Zhang, b Wen-Kun Luo a and Luo Yang a[a]

Table of Contents

I. General information ... S1
II. General experimental procedures ... S1
III. Detailed optimization ... S2
IV. Mechanistic experiments .. S3
V. Spectra data of products 3a-3s ... S4
VI. Copies of ¹H and ¹³C NMR spectra of products .. S11
I. General information

Unless stated otherwise, all commercially available compounds were used as provided without further purification. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). The developed chromatography was analyzed by UV lamp (254 nm). High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). IR spectrum was characterized by PE-Spectrum One. Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for 1H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for 13C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl$_3$: δ 77.16 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), coupling constant (Hz), and integration.

II. General experimental procedures

A general experimental procedure is described as following:

An oven-dried reaction vessel was charged with isoquinoline (1a) (0.4 mmol, 1 equiv), iodine (5.2 mg, 5 mol%), DTBP (Di-tert-butyl peroxide) in p-xylene (1 mL). The vessel was sealed and heated at 130°C for 12 h, then cool down to room temperature. The resulting mixture was transferred to silica gel column by eluting with hexanes and ethyl acetate (12:1) to give 1-(4-methylbenzyl)isoquinoline (3a).
III. Detailed optimization

Entry	**Cat. (mol%)**	**[O] (3 equiv)**	**T (°C)**	**Yield (%)\(^a\)**
1 | I\(_2\) (5) | DTBP | 130 | 71 (< 2)
2 | I\(_2\) (5) | TBHP | 130 | 0 (72)
3 | I\(_2\) (5) | H\(_2\)O\(_2\) | 130 | 0
4 | I\(_2\) (5) | K\(_2\)S\(_2\)O\(_8\) | 130 | 0
5 | I\(_2\) (5) | BPO | 130 | 0
6 | Cul (10) | DTBP | 130 | 0
7 | KI (10) | DTBP | 130 | 50
8 | TBAI (10) | DTBP | 130 | 71
9 | NIS (10) | DTBP | 130 | 70
10 | I\(_2\) (0) | DTBP | 130 | trace
11 | I\(_2\) (2.5) | DTBP | 130 | 66
12 | I\(_2\) (10) | DTBP | 130 | 62
13 | I\(_2\) (5) | DTBP | 120 | 50
14 | I\(_2\) (5) | DTBP | 110 | 45
15 | I\(_2\) (5) | DTBP | 100 | < 2
16\(^b\) | I\(_2\) (5) | DTBP | 130 | 71
17\(^c\) | I\(_2\) (5) | DTBP | 130 | 71
16\(^d\) | I\(_2\) (5) | DTBP | 130 | 54

\(^a\) Conditions: **1a** (0.4 mmol, 1 equiv), catalyst (mol %), oxidant (3 equiv), in p-xylene (2a, 1 mL), reacted for 12 h under air atmosphere unless otherwise noted. Isolated yields of **3a**, the yield of **4a** was listed in parenthesis. \(^b\) p-xylene was dried by sodium. \(^c\) p-xylene was dried by sodium; H\(_2\)O (2 equiv) was added. \(^d\) Mixed solvent of p-xylene (10 equiv) and chlorobenzene (1 mL). TBHP = *tert*-Butyl hydroperoxide. BPO = Benzoyl peroxide. TBAI = Tetrabutylammonium iodide. NIS = Succinimidimide.
IV. Mechanistic experiments

To gain more insight into the reaction mechanism, control experiments were carried out as follows.

(a) A mixture of 1a (0.4 mmol, 1 equiv), iodine (5 mol%), DTBP (1.2 mmol, 3 equiv) and 1,1-Diphenylethylene (0.8 mmol, 2 equiv) in toluene (1 mL) was reacted at 130 °C for 12 h. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly, and eluted with petroleum ether.

(b) A mixture of 1a (0.4 mmol, 1 equiv), iodine (5 mol%), DTBP (1.2 mmol, 3 equiv) in toluene (C7H8, 0.5 mL) and deuterated toluene (C7D8, 0.5 mL) was reacted at 130 °C for 6 h. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly, eluted with petroleum ether and ethyl acetate (12:1). Then the ratio of product mixture was determined by 1H NMR.

(c) A mixture of 1a (0.4 mmol, 1 equiv), iodine (5 mol%), oxidant (1.2 mmol, 3 equiv) in toluene (C7H8, 1 mL) was reacted at 130 °C for 12 h. When TBHP was used as oxidant, benzyl iodide could be detected by GC-MS. While the oxidant switched to DTBP, no benzyl iodide can be detected. (See page S32)
V. Spectra data of products 3a-3s

(3a) 1-(4-methylbenzyl)isoquinoline

Yellow oil, (66.2 mg, 71%). 111H NMR (400 MHz, CDCl$_3$) δ 8.49 (d, J = 5.6 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 - 7.50 (m, 2H), 7.17 (d, J = 7.3 Hz, 2H), 7.05 (d, J = 7.4 Hz, 2H), 4.63 (s, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.48, 142.11, 136.67, 136.49, 135.81, 129.88, 129.30, 128.59, 127.41, 127.28, 127.25, 125.94, 119.82, 41.76, 21.07.

(3b) 1-benzylisoquinoline

Yellow oil, (57.8 mg, 66%). 111H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, J = 5.6 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.29 – 7.21 (m, 4H), 7.17 (t, J = 6.3 Hz, 1H), 4.68 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 160.26, 142.15, 139.58, 136.69, 129.93, 128.72, 128.61, 127.45, 127.32, 127.30, 126.36, 125.92, 119.90, 42.18.

(3c) 1-(3,5-dimethylbenzyl)isoquinoline

Yellow oil, (66.2 mg, 67%). 111H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, J = 5.6 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.56 - 7.51 (m, 2H), 6.89 (s, 2H), 6.80 (s, 1H), 4.59 (s, 2H), 2.23 (s, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 160.44, 142.06, 139.37, 138.02, 136.64, 129.86, 128.06, 127.36, 127.33, 127.23, 126.51, 125.98, 119.78, 41.99, 21.33.

1 Reimann E, Höglmüller A. Archiv der Pharmazie 1985, 318, 487-495.
(3d) 1-(2-methylbenzyl)isoquinoline ¹

Yellow oil, (63.4 mg, 68%). 1H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.6 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.57 (d, J = 5.7 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 7.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 4.64 (s, 2H), 2.41 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 160.08, 142.19, 137.90, 136.42, 136.28, 130.18, 129.94, 128.95, 127.54, 127.44, 127.28, 126.40, 126.07, 125.69, 119.74, 39.38, 20.11.

(3e) 1-(3-methylbenzyl)isoquinoline ⁴

Yellow oil, (67 mg, 72%). 1H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 5.6 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.57 - 7.51 (2H), 7.16 - 7.06 (3H), 6.98 (d, J = 6.8 Hz, 1H), 4.63 (s, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 160.31, 142.04, 139.41, 138.15, 136.63, 129.89, 129.42, 128.45, 127.38, 127.28, 127.25, 127.12, 125.92, 125.72, 119.84, 42.04, 21.46.

(3f) 1-(4-methoxybenzyl)isoquinoline ⁵

White solid, (39.8 mg, 40%). 1H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.6 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 7.56 - 7.51 (2H), 7.19 (d, J = 8.2 Hz, 2H), 6.79 (d, J = 8.0 Hz, 2H), 4.61 (s, 2H), 3.74 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ 160.58, 158.16, 142.05, 136.72, 131.65, 129.96, 129.67, 127.46, 127.30, 127.25, 125.95, 119.88, 114.07, 55.30, 41.23.

(3g) 1-(4-fluorobenzyl)isoquinoline ⁶

white solid, (59.7 mg, 63%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.49 (d, \(J = 5.6\) Hz, 1H), 8.12 (d, \(J = 8.4\) Hz, 1H), 7.82 (d, \(J = 8.0\) Hz, 1H), 7.65 (t, \(J = 7.4\) Hz, 1H), 7.58 - 7.52 (m, 2H), 7.27 – 7.18 (m, 2H), 6.97 - 6.91 (m, 2H), 4.64 (s, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.35 (d, \(J = 280.5\) Hz), 160.32, 142.05, 136.66, 135.13 (d, \(J = 3.0\) Hz), 130.07 (d, \(J = 13.1\) Hz), 130.06, 127.50, 127.38, 127.13, 125.64, 120.00, 115.36 (d, \(J = 21.2\) Hz), 41.11.

(3h) 1-(4-chlorobenzyl)isoquinoline 7

Yellow oil, (72.8 mg, 72%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.49 (d, \(J = 5.6\) Hz, 1H), 8.09 (d, \(J = 8.4\) Hz, 1H), 7.83 (d, \(J = 8.2\) Hz, 1H), 7.65 (t, \(J = 7.5\) Hz, 1H), 7.58-7.52 (m, 2H), 7.21 (m, 4H), 4.63 (s, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.62, 142.03, 137.91, 136.64, 132.15, 130.04, 128.69, 127.51, 127.42, 127.10, 125.57, 120.06, 41.26.

(3i) 1-(4-bromobenzyl)isoquinoline 8

Yellow oil, (84.5 mg, 71%). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.49 (d, \(J = 5.6\) Hz, 1H), 8.09 (d, \(J = 8.4\) Hz, 1H), 7.82 (d, \(J = 8.0\) Hz, 1H), 7.65 (t, \(J = 7.4\) Hz, 1H), 7.37 (d, \(J = 8.2\) Hz, 2H), 7.15 (d, \(J = 8.0\) Hz, 2H), 4.62 (s, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 159.49, 141.99, 138.40, 136.61, 131.61, 130.41, 130.03, 127.49, 127.42, 127.06, 125.53, 120.22, 120.06, 41.29.

(3j) 1-(4-iodobenzyl)isoquinoline 8

Yellow oil, (88.5 mg, 62%). 1H NMR (400 MHz, CDCl$_3$) δ 8.49 (d, J = 5.6 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.58 - 7.52 (m, 4H), 7.02 (d, J = 8.0 Hz, 2H), 4.60 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 159.55, 142.16, 139.19, 137.66, 136.69, 130.82, 130.07, 127.57, 127.48, 127.16, 125.61, 120.10, 91.72, 41.56.

(3k) methyl 4-(isoquinolin-1-ylmethyl)benzoate

Yellow oil, (60.9 mg, 55%). 1H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, J = 5.8 Hz, 1H), 8.08 (dd, J = 8.4, 0.8 Hz, 1H), 7.95 – 7.90 (m, 2H), 7.83 (d, J = 8.2 Hz, 1H), 7.67 – 7.65 (m, 1H), 7.59 (d, J = 6.0 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.33 (d, J = 8.2 Hz, 2H), 4.72 (s, 2H), 3.87 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 167.11, 159.40, 144.93, 142.18, 136.73, 130.14, 130.00, 128.80, 128.40, 127.61, 127.54, 127.26, 125.64, 120.22, 52.14, 42.13.

(3l) 4-(isoquinolin-1-ylmethyl)benzonitrile

Yellow oil, (50.8 mg, 52%). 1H NMR (400 MHz, CDCl$_3$) δ 8.50 (d, J = 5.6 Hz, 1H), 8.05 (dd, J = 8.4, 0.8 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.70 - 7.66(m, 1H), 7.62 - 7.53 (m, 4H), 7.39 - 7.37 (m, 2H), 4.72 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 158.67, 145.02, 142.19, 136.72, 132.45, 130.28, 129.60, 127.73, 127.14, 125.27, 120.39, 119.05, 119.05, 110.37, 41.90.

(3m) 1-(2-bromobenzyl)isoquinoline

Yellow oil, (71.3 mg, 60%). 1H NMR (400 MHz, CDCl$_3$) δ 8.51 (d, $J = 6.0$ Hz, 1H), 8.06 (d, $J = 8.4$ Hz, 1H), 7.85 (d, $J = 8.2$ Hz, 1H), 7.63 - 7.59 (m, 2H), 7.61 (t, $J = 6.8$ Hz, 1H), 7.55 (t, $J = 7.6$ Hz, 1H), 7.14 – 7.03 (m, 2H), 6.89 (d, $J = 7.4$ Hz, 1H), 4.78 (s, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 159.34, 142.05, 138.99, 136.48, 132.76, 130.52, 130.13, 128.04, 127.53, 127.51, 127.44, 127.36, 125.68, 124.56, 120.08, 41.72.

(3n) 6-methyl-1-(4-methylbenzyl)isoquinoline

white solid, (59.3 mg, 60%). M.p. 64.5-65.5 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.44 (d, $J = 5.6$ Hz, 1H), 8.04 (d, $J = 8.4$ Hz, 1H), 7.56 (s, 1H), 7.46 (d, $J = 5.4$ Hz, 1H), 7.34 (dd, $J = 8.4$, 1.6 Hz, 1H), 7.16 (d, $J = 8.0$ Hz, 2H), 7.05 (d, $J = 7.8$ Hz, 2H), 4.60 (s, 2H), 2.50 (s, 3H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.17, 142.22, 140.21, 137.03, 136.64, 135.80, 129.53, 129.31, 128.58, 126.36, 125.82, 125.68, 119.43, 41.78, 21.94, 21.12. IR (KBr): v max(cm$^{-1}$): 3448, 3047, 2921, 1630, 1586, 775, 741. HRMS: calcd. for [M+Na]$^+$ C$_{18}$H$_{17}$NNa: 270.1253, found: 270.1240.

(3o) 6-(tert-butyl)-1-(4-methylbenzyl)isoquinoline

Yellow oil, (75.1 mg, 65%). 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (d, $J = 6.0$ Hz, 1H), 8.08 (d, $J = 8.8$ Hz, 1H), 7.71 (d, $J = 2.0$ Hz, 1H), 7.60 (dd, $J = 8.8$, 2.0 Hz, 1H), 7.52 (d, $J = 5.6$ Hz, 1H), 7.18 (d, $J = 8.0$ Hz, 2H), 7.06 (d, $J = 7.9$ Hz, 2H), 4.60 (s, 2H), 2.27 (s, 3H), 1.39 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.95, 153.00, 142.15, 136.90, 136.64, 135.81, 129.32, 128.62, 126.29, 125.67, 122.44, 120.08, 41.75, 35.22, 31.10, 21.14. IR (KBr): v max(cm$^{-1}$): 3448, 2963, 2868, 1648, 1438, 1383, 824, 806. HRMS: calcd. for [M+Na]$^+$ C$_{21}$H$_{23}$NNa: 312.1723, found: 312.1718.
(3p) 1-(4-methylbenzyl)-4-phenylisoquinoline

white solid, (86.5 mg, 70%). M.p. 128.5-129.5 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.45 (s, 1H), 8.24 (d, $J = 8.4$ Hz, 1H), 7.90 (d, $J = 8.4$ Hz, 1H), 7.64 – 7.44 (m, 7H), 7.32 – 7.17 (m, 2H), 7.10 - 7.08 (m,2H), 4.68 (s, 2H), 2.29 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 159.73, 141.72, 137.24, 136.38, 135.76, 134.93, 132.34, 130.18, 129.91, 129.26, 128.53, 127.77, 127.01, 126.74, 126.04, 125.57, 41.72, 21.03. IR (KBr): ν_{max}(cm$^{-1}$): 3421, 3025, 2975, 2921, 2360, 1511, 1384, 703. HRMS: calcd. for [M+H]$^+$ C$_{23}$H$_{20}$N: 310.1590, found: 310.1582.

(3q) 6-bromo-1-(4-methylbenzyl)isoquinoline

Yellow oil, (78.4 mg, 63%). 1H NMR (400 MHz, CDCl$_3$) δ 8.51 (d, $J = 5.8$ Hz, 1H), 8.09 – 7.87 (m, 2H), 7.58 (d, $J = 8.8$ Hz, 1H), 7.47 (d, $J = 5.6$ Hz, 1H), 7.14 - 7.12 (m, 2H), 7.07 - 7.05 (m, 2H), 4.60 (s, 2H), 2.28 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.74, 143.13, 137.84, 136.10, 136.07, 130.82, 129.53, 129.41, 128.50, 127.75, 125.64, 124.71, 118.87, 41.79, 21.12. IR (KBr): ν_{max}(cm$^{-1}$): 3448, 3049, 3020, 2920, 2363, 2344, 1655, 1486, 880. HRMS: calcd. for [M+H]$^+$ C$_{17}$H$_{15}$BrN: 312.0382, found: 310.0374.

(3r) 5-bromo-1-(4-methylbenzyl)isoquinoline

Yellow oil, (62.2 mg, 50%). 1H NMR (400 MHz, CDCl$_3$) δ 8.59 (d, $J = 6.0$ Hz, 1H), 8.13 (d, $J = 8.4$Hz, 1H), 7.95 – 7.86 (m, 2H), 7.38 – 7.34(m, 1H), 7.13 (d, $J = 8.0$ Hz, 2H), 7.06 (d, $J = 8.0$ Hz, 2H), 4.64 (s,
2H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.91, 143.47, 136.16, 136.04, 135.82, 133.72, 129.40, 128.52, 128.38, 127.56, 125.74, 122.48, 118.76, 41.91, 21.12. IR (KBr): $\nu_{max}\text{(cm}^{-1})$: 3449, 2920, 2347, 1577, 1342, 744. HRMS: calcd. for [M+H]$^+$ C$_{17}$H$_{15}$BrN: 312.0382, found: 312.0369.

(3s) 4-bromo-1-(4-methylbenzyl)isoquinoline

\[
\text{\includegraphics{image.png}}
\]

white solid. (49.8 mg, 40%). M.p. 91.5-92.5 °C. 1H NMR (400 MHz, CDCl$_3$) δ 8.68 (s, 1H), 8.16 (m, 2H), 7.75 (ddd, $J = 8.3, 6.9, 1.2$ Hz, 1H), 7.59 (ddd, $J = 8.2, 6.9, 1.2$ Hz, 1H), 7.14 (d, $J = 8.0$ Hz, 2H), 7.06 (d, $J = 7.9$ Hz, 2H), 4.59 (s, 2H), 2.27 (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 160.15, 143.81, 136.11, 135.98, 135.31, 131.20, 129.43, 128.57, 128.52, 128.24, 126.84, 126.40, 118.58, 41.55, 21.13. IR (KBr): $\nu_{max}\text{(cm}^{-1})$: 3448, 1648, 1379, 760. HRMS: calcd. for [M+Na]$^+$ C$_{17}$H$_{14}$BrNNa: 334.0202, found: 334.0212.

prop-1-ene-1,1,3-triyltribenzene 10

\[
\text{\includegraphics{image.png}}
\]

Colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 – 7.15 (m, 15H), 6.27 (t, $J = 7.6$ Hz, 1H), 3.47 (d, $J = 7.6$ Hz, 2H).

\[\text{\cite{ref}}\]

VI. Copies of 1H and 13C NMR spectra of products

(3a) 1-(4-methylbenzyl)isoquinoline
(3c) 1-(3,5-dimethylbenzyl)isoquinoline

\[\text{\chem{N}} \]

\[
\begin{array}{c}
\text{1.05} \\
\text{1.06} \\
\text{1.02} \\
\text{1.04} \\
\text{1.06} \\
\text{1.05} \\
\text{2.05} \\
\text{2.06} \\
\text{3.54} \\
\text{1.95} \\
\end{array}
\]

\[
\begin{array}{c}
\text{3.59} \\
\text{1.92} \\
\text{1.47} \\
\text{2.32} \\
\end{array}
\]

\[
\begin{array}{c}
\text{2.32} \\
\text{3.59} \\
\end{array}
\]

\[
\begin{array}{c}
\text{1.92} \\
\text{1.47} \\
\end{array}
\]

\[
\text{S13}
\]
(3d) 1-(2-methylbenzyl)isoquinoline
(3e) 1-(3-methylbenzyl) isoquinoline
(3f) 1-(4-methoxybenzyl)isoquinoline
(3g) 1-(4-fluorobenzyl)isoquinoline
(3h) 1-(4-chlorobenzyl)isoquinoline

\[
\text{Chemical structure of (3h) 1-(4-chlorobenzyl)isoquinoline}
\]
(3i) 1-(4-bromobenzyl)isoquinoline

\[\text{Chemical structure} \]

\[\text{NMR Spectra} \]

\[\text{Mass Spectra} \]

S19
(3j) 1-(4-iodobenzyl)isoquinoline

\[
\begin{align*}
&\text{H} & 8.49 & 7.91 & 7.72 & 7.37 & 7.05 \\
&\text{C} & 127.9 & 130.1 & 126.5 & 123.2 & 129.0
\end{align*}
\]
(3k) methyl 4-(isoquinolin-1-ylmethyl)benzoate
(3l) 4-(isoquinolin-1-ylmethyl)benzonitrile

\[
\text{[Chemical Structure Image]}
\]
(3m) 1-(2-bromobenzyl)isoquinoline
6-(tert-butyl)-1-(4-methylbenzyl)isoquinoline
(3p) 1-(4-methylbenzyl)-4-phenylisoquinoline
(3q) 6-bromo-1-(4-methylbenzyl)isoquinoline
(3r) 5-bromo-1-(4-methylbenzyl)isoquinoline
(3s) 4-bromo-1-(4-methylbenzyl)isoquinoline
prop-1-ene-1,1,3-triyltribenzene
TBHP as the oxidant

1a (0.4 mmol, 1 equiv), iodine (5 mol%), TBHP (1.2 mmol, 3 equiv) in toluene (C7H8, 1 mL) was reacted at 130 °C for 12 h. Benzyl iodide can be detected by GC-MS.

DTBP as the oxidant

1a (0.4 mmol, 1 equiv), iodine (5 mol%), DTBP (1.2 mmol, 3 equiv) in toluene (C7H8, 1 mL) was reacted at 130 °C for 12 h. Benzyl iodide can’t be detected by GC-MS.