Supporting Information

for

5-Alkyl-8-hydroxyquinolines: Synthesis and application in dye-sensitized solar
cells

by

Victoria S. Manthou,a Dorothea Perganti,b Georgios Rotas,a Polycarpos Falaras,ab and
Georgios C. Vougioukalakis*a

a Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian
University of Athens, Panepistimiopolis, 15771 Athens, Greece vougiouk@chem.uoa.gr

b Institute of Nanoscience and Nanotechnology NCSR “Demokritos” 15310 Agia Paraskevi
Attikis, Greece p.falaras@inn.demokritos.gr

Table of Contents

Solar Cell fabrication Page 1
Photovoltaic characterization Page 2

Figure S1: J-V curves of the cobalt based cells Page 3
Table S1: Electrical parameters of the cobalt based cells Page 3

Figure S2: J-V curves of the reference compounds based cells Page 4
Table S2: Electrical parameters of the reference compounds based cells Page 4

Figures S3-S7: NMR spectra Pages 5-9

Solar cell fabrication

FTO glass (TEC-7, 2.2 mm thickness, Dyesol) was used for transparent conducting electrodes. The substrates were thoroughly cleaned in an ultrasonic bath with a detergent solution, acetone and ethanol, respectively. In the case of iodine based DSCs, a layer of the 18NR-AO Active
Opaque Titania Paste (Dyesol) was spread onto the FTO substrates by doctor-blade followed by annealing at 125 °C (for 5 min), 325 °C (for 15 min) and 525 °C for 30 min. The films were post-treated with an aqueous solution of 40 mM TiCl$_4$ for 60 min at 70°C. Then, they were cleaned with deionized water and absolute ethanol and left to dry in air and finally, they were annealed at 450°C for 60 min. For the cobalt based DSCs, where an active titania film of highly porosity is needed, the following multilayer electrodes were fabricated: First, a compact layer of 40 mM TiCl$_4$ (30 min at 70 °C – this procedure was repeated twice) was deposited in order to prevent the recombination of electrons that have reached the FTO substrate to reduce the redox couple. Afterwards, a thin transparent film of the commercial DSL18-NRT titania paste modified suitably with ethyl cellulose and terpineol was deposited by doctor-blade. The films were left to dry at 125 °C (for 6 min) and then, a layer of the commercial WER2-O reflector titania paste (Dyesol) was also deposited. The films were annealed at 125 °C (for 5 min), 325 °C (for 15 min) and 525 °C for 30 min and then were post-treated with an aqueous solution of 40 mM TiCl$_4$ for 60 min at 70°C and were re-annealed at 450°C for 60 min. In both cases, the films were sensitized by overnight immersion in 0.2 mM MK-2 (Sigma Aldrich) solution in a mixture of acetonitrile, tert-butyl alcohol and toluene (volume ratio 1:1:1). The 5-n-butyl-8-hydroxyquinoline, 5-n-octyl-8-hydroxyquinoline, 5-n-dodecyl-8-hydroxyquinoline (denoted as 4, 8 and 12, respectively) and the commercially available butanoic, octanoic and dodecanoic acids (denoted as BA, OA and DA, respectively) were added as co-adsorbents to dye solutions at the same concentration as the MK-2 dye (0.2 mM). Iodine based electrolyte consists of (1M) 1,3-dimethylimidazolium iodide, (50mM) lithium iodide, (15mM) iodine, (0.5M) 4-tert-butylpyridine and (0.1M) guanidinium thiocyanate in a mixture of acetonitrile and butyronitrile (volume ratio 85:15). Cobalt based electrolyte consists of (0.2M) Co$^{2+}$, (0.05M) Co$^{3+}$, (0.1M) lithium perchlorate, (0.2M) 4-tert-butylpyridine in acetonitrile. Platinum counter electrodes were fabricated by the sputtering technique onto clean FTO substrates. A drop of electrolyte is enclosed between the sensitized films (photoanodes) and the Pt counter electrode. The active area of the DSCs was set to 0.25 cm2.

Photovoltaic characterization

Current density–voltage (J–V) measurements were recorded by illuminating the DSCs under simulated solar light (1 sun, 1000 W m$^{-2}$) from a 300 W Xe source in combination with AM 1.5G optical filters (Oriel). The illuminated area of the DSCs was set at 0.152 cm2, using a large
black mask in front of the cells. The $J-V$ characteristics (under dark and light conditions) were recorded using linear sweep voltammetry on the Autolab PGSTAT-30 potentiostat working in a 2-electrode mode at a scan rate of 20 mV s$^{-1}$.

Figure S1: (a) Characteristic $J-V$ curves under 1 sun illumination of the cobalt based cells sensitized with MK-2 (black), MK-2/1a (red), MK-2/1b (green) and MK-2/1c (blue) dye solutions, respectively.

Table S1: Electrical parameters (J_{sc}, V_{oc}, FF and η) of the DSCs incorporating 8-hydroxyquinoline co-adsorbents in MK-2 dye solutions (cobalt based cells).

<table>
<thead>
<tr>
<th>Dye</th>
<th>J_{sc} / mA cm$^{-2}$</th>
<th>V_{oc} / mV</th>
<th>FF</th>
<th>η / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference_MK-2</td>
<td>8.19</td>
<td>740</td>
<td>0.56</td>
<td>3.40</td>
</tr>
<tr>
<td>MK-2/4</td>
<td>7.69</td>
<td>693</td>
<td>0.55</td>
<td>3.04</td>
</tr>
<tr>
<td>MK-2/8</td>
<td>7.24</td>
<td>728</td>
<td>0.57</td>
<td>2.99</td>
</tr>
<tr>
<td>MK-2/12</td>
<td>9.27</td>
<td>752</td>
<td>0.54</td>
<td>3.73</td>
</tr>
</tbody>
</table>
Figure S2: (a) Characteristic J-V curves under 1 sun illumination and in the dark (dashed lines) of the iodine based cells and (b) of the cobalt based cells sensitized with MK-2, MK-2/BA, MK-2/OA and MK-2/DA dye solutions, respectively.

Table S2: Electrical parameters (J_{sc}, V_{oc}, FF and η) of DSCs incorporating different electrolytes and the commercially available co-adsorbents (Butanoic (BA), Octanoic (OA) and dodecanoic (DA) acids) in MK-2 dye solutions.

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Dye</th>
<th>J_{sc}/ mA cm$^{-2}$</th>
<th>V_{oc}/ mV</th>
<th>FF</th>
<th>η/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>Reference_MK-2</td>
<td>12.30</td>
<td>750</td>
<td>0.65</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>MK-2/BA</td>
<td>8.49</td>
<td>686</td>
<td>0.67</td>
<td>3.92</td>
</tr>
<tr>
<td></td>
<td>MK-2/OA</td>
<td>8.35</td>
<td>667</td>
<td>0.66</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td>MK-2/DA</td>
<td>11.13</td>
<td>757</td>
<td>0.63</td>
<td>5.28</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Reference_MK-2</td>
<td>8.19</td>
<td>740</td>
<td>0.56</td>
<td>3.40</td>
</tr>
<tr>
<td></td>
<td>MK-2/BA</td>
<td>4.78</td>
<td>615</td>
<td>0.40</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>MK-2/OA</td>
<td>3.43</td>
<td>647</td>
<td>0.53</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>MK-2/DA</td>
<td>7.99</td>
<td>713</td>
<td>0.46</td>
<td>2.63</td>
</tr>
</tbody>
</table>
Figure S3: 1H-NMR (500 MHz, CDCl$_3$) of 4.

Figure S4: 1H-NMR (500 MHz, CDCl$_3$) of 5.
Figure S5: 1H-NMR (500 MHz, DMSO-d$_6$) of 7c in DMSO-d$_6$.

Figure S6: 1H-NMR (200 MHz, CDCl$_3$) of 3c.
Figure S7: 1H-NMR (200 MHz, CDCl$_3$) of 1c.

Figure S8: 13C-NMR (126 MHz, CDCl$_3$) of 4.
Figure S9: 13C-NMR (126 MHz, DMSO-d$_6$) of 7c.

Figure S10: 13C-NMR (50 MHz, CDCl$_3$) of 3c.
Figure S11: 13C-NMR (50 MHz, CDCl$_3$) of 1c.