Supporting Information

Synthesis of N-arylsulfonamide via a Copper-Catalyzed Reaction of Chloramine T and Aryl Boronic Acid at Room Temperature

Banlai Ouyang, a* Deming Liu, a Kejian Xia, a Yanxia Zheng, a Hongxin Mei, a Guanyinsheng Qiu b*

a Department of Chemistry, Nanchang Normal University, Nanchang 330032, P. R. China.
b College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China.

E-mail: nsouyang@outlook.com and 11110220028@fudan.edu.cn.

Table of Contents

I. General Information .. S1
II. Preparation of substrates .. S1
III. General experimental procedure for the reaction of chloramine T and aryl boronic acid ... S1
IV. References ... S9
V. 1H and 13C NMR spectra ... S10
I. General Information

Solvents and reagents were used as received unless otherwise noted. Reactions were performed in an oven-dried test tube equipped with a magnetic stir bar. Thin layer chromatography was performed using Huanghai GF254 silica gel pre-coated plates (0.25 mm) and visualized by UV irradiation. Flash column chromatography was performed using Qing Dao Sea Chemical Reagent silica gel (200-300 mesh) with AR grade solvents. 1H NMR spectra were recorded on a Bruker Advance III spectrometer (400 MHz). Chemical shifts were reported as parts per million (ppm) in the δ scale downfield from TMS. Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). 13C NMR spectra were recorded on Bruker spectrometer with complete proton decoupling, and chemical shifts were reported in ppm from TMS with the solvent as the internal reference (CDCl3, δ = 77.0 ppm). High resolution mass spectrometry (HRMS) spectra were obtained on an ABSCIEX Q-TOF5600+ Instrument.

II. Preparation of substrates

Anhydrous chloramine T and all the aryl boronic acids are commercially available. Anhydrous chloramine T can also be prepared from chloramine T trihydrate via drying at 80 °C under vacuum, but precautions should be taken. 1

N-Chloro-N-sodio-4-chlorobenzensulfonamide (2b)2

\[
\text{Cl} \quad \text{O} \quad \text{N} \quad \text{Na} \quad \text{Cl}
\]

To a stirred solution of NaOH (2.0 g, 50.0 mmol) in H$_2$O (25.0 ml), 4-chlorobenzensulfonamide (9.58 g, 50.0 mmol) was added at 0 °C. And the reaction mixture was added cold 15.2% aqueous sodium hypochlorite (52.5 mmol, 25.68 g) at the same temperature. After the reaction mixture was stirred for 44 h at room temperature, the resulting white suspension was filtered and the residual solid was washed with H$_2$O. The crude product was purified by recrystallization from H$_2$O to afford the desired product as white crystal, and dried at 80 °C under reduced pressure. 1H NMR (400 MHz, DMSO) δ 7.63 (d, $J = 8.5$ Hz, 2H), 7.44 (d, $J = 8.5$ Hz, 2H); 13C NMR (101 MHz, DMSO) δ 144.54, 134.01, 128.91, 127.95.

III. General experimental procedure for the reaction of chloramine T and aryl boronic acid

A test tube with stir bar was charged with N-Chloro-N-sodiosulfonamide 2 (0.3 mmol), aryl boronic acid 1 (0.36 mmol) and 1BuOK (50.5 mg, 0.45 mmol). A solution of Cu(OAc)$_2$ (2.7 mg, 0.015 mmol) in EtOH (1.5 mL) was then added to the test tube. The reaction mixture was stirred
under air at room temperature for 12 h, then the heterogeneous mixture was diluted with ethyl acetate. The resulting mixture was directly filtered through a pad of silica gel, then the silica gel was eluted with ethyl acetate. The organic solutions was combined, and the solvent was removed under reduced pressure. The crude product was purified by silica-gel column chromatography to afford the desired product.

4-Methyl-\(N\)-phenylbenzenesulfonamide (3a)

![Structure of 4-Methyl-\(N\)-phenylbenzenesulfonamide (3a)](image)

White solid (46.0 mg, 62% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.67 (d, \(J = 8.3\) Hz, 2H), 7.22 (t, \(J = 7.9\) Hz, 4H), 7.09 (dd, \(J = 9.4, 8.3\) Hz, 3H), 6.97 (s, 1H), 2.37 (s, 3H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 143.87, 136.58, 136.14, 129.65, 129.30, 127.29, 125.30, 121.57, 21.52. Data is consistent with that reported in the literature.\(^3\)

\(N\)-(4-Fluorophenyl)-4-methylbenzenesulfonamide (3b)

![Structure of \(N\)-(4-Fluorophenyl)-4-methylbenzenesulfonamide (3b)](image)

Colorless oil (50.1 mg, 63% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.63 (d, \(J = 8.3\) Hz, 2H), 7.22 (d, \(J = 8.2\) Hz, 2H), 7.13 (s, 1H), 7.09 – 7.01 (m, 2H), 6.91 (t, \(J = 8.6\) Hz, 2H), 2.38 (s, 3H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 160.65 (d, \(J = 245.2\) Hz), 144.02, 135.78, 132.40 (d, \(J = 2.9\) Hz), 129.70, 127.31, 124.57 (d, \(J = 8.3\) Hz), 116.08 (d, \(J = 22.8\) Hz). Data is consistent with that reported in the literature.\(^4\)

\(N\)-(3-Fluorophenyl)-4-methylbenzenesulfonamide (3c)

![Structure of \(N\)-(3-Fluorophenyl)-4-methylbenzenesulfonamide (3c)](image)

White solid (43.8 mg, 55% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.72 (d, \(J = 8.3\) Hz, 2H), 7.27 – 7.21 (m, 3H), 7.17 (td, \(J = 8.2, 6.5\) Hz, 1H), 6.90 (dt, \(J = 10.2, 2.2\) Hz, 1H), 6.82 (dd, \(J = 8.1, 1.4\) Hz, 1H), 6.77 (td, \(J = 8.4, 2.3\) Hz, 1H), 2.38 (s, 3H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 163.06 (d, \(J = 246.7\) Hz), 144.28, 138.28 (d, \(J = 10.3\) Hz), 135.83, 130.53 (d, \(J = 9.3\) Hz), 129.83, 127.29, 116.28 (d, \(J = 3.0\) Hz), 111.88 (d, \(J = 21.2\) Hz), 108.14 (d, \(J = 25.3\) Hz), 21.55. Data is consistent with that reported in the literature.\(^5\)

\(N\)-(2-Fluorophenyl)-4-methylbenzenesulfonamide (3d)

![Structure of \(N\)-(2-Fluorophenyl)-4-methylbenzenesulfonamide (3d)](image)
White solid (35.8 mg, 45% yield); mp: 104-106 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, $J = 8.3$ Hz, 2H), 7.59 (td, $J = 7.9$, 2.2 Hz, 1H), 7.22 (d, $J = 8.2$ Hz, 2H), 7.12 - 7.01 (m, 2H), 6.99 - 6.91 (m, 1H), 6.72 (s, 1H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 153.93 (d, $J = 244.4$ Hz), 144.18, 135.96, 129.69, 127.22, 126.08 (d, $J = 7.5$ Hz), 124.76 (d, $J = 3.9$ Hz), 124.68, 123.25, 115.41 (d, $J = 19.5$ Hz), 21.55; 19F NMR (376 MHz, CDCl$_3$) δ -129.96. HRMS (ESI) m/z calcd. for C$_{13}$H$_{13}$FNO$_2$S [M+H]$^+$: 266.0646, found: 266.0646.

4-Methyl-N-(4-(trifluoromethyl)phenyl)benzenesulfonamide (3e)

F_3C
\[\begin{array}{c}
\text{N} \\
\text{T}s
\end{array}\]

White solid (48.2 mg, 51% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.74 (d, $J = 8.3$ Hz, 2H), 7.48 (d, $J = 8.5$ Hz, 2H), 7.38 (s, 1H), 7.26 (d, $J = 8.1$ Hz, 2H), 7.19 (d, $J = 8.5$ Hz, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 144.55, 139.96, 135.80, 129.96, 127.27, 126.73 (q, $J = 33.1$ Hz), 126.66 (q, $J = 3.8$ Hz), 123.92 (q, $J = 271.7$ Hz), 119.73, 21.57. Data is consistent with that reported in the literature.3

N-(4-Chlorophenyl)-4-methylbenzenesulfonamide (3f)

\[\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{T}s
\end{array}\]

Colorless oil (54.9 mg, 65% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 8.3$ Hz, 2H), 7.29 (s, 1H), 7.23 (d, $J = 8.1$ Hz, 2H), 7.20 - 7.15 (m, 2H), 7.06 - 7.00 (m, 2H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 144.19, 135.75, 135.21, 130.86, 129.79, 129.40, 127.28, 122.88, 21.54. Data is consistent with that reported in the literature.3

N-(3-Chlorophenyl)-4-methylbenzenesulfonamide (3g)

\[\begin{array}{c}
\text{Cl} \\
\text{N} \\
\text{T}s
\end{array}\]

White solid (48.2 mg, 57% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (d, $J = 8.3$ Hz, 2H), 7.40 (d, $J = 6.2$ Hz, 1H), 7.25 (d, $J = 9.1$ Hz, 2H), 7.17 - 7.09 (m, 2H), 7.07 - 7.01 (m, 1H), 7.01 - 6.95 (m, 1H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 144.30, 137.94, 135.77, 134.91, 130.31, 129.85, 127.28, 125.16, 120.91, 118.91, 21.55. Data is consistent with that reported in the literature.4

N-(3,5-Dichlorophenyl)-4-methylbenzenesulfonamide (3h)

\[\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{N} \\
\text{T}s
\end{array}\]

White solid (50.3 mg, 53% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (d, $J = 8.2$ Hz, 2H), 7.29 (d,
\(J = 8.5 \, \text{Hz, 3H}, \) 7.05 (d, \(J = 1.6 \, \text{Hz, 1H} \)), 7.01 (d, \(J = 1.6 \, \text{Hz, 2H} \)), 2.41 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 144.73, 138.68, 135.61, 135.44, 130.04, 127.27, 125.00, 118.58, 21.61. Data is consistent with that reported in the literature.\(^6\)

N-(4-Bromophenyl)-4-methylbenzenesulfonamide (3i)

![Image](image1)

White solid (65.6 mg, 67% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.66 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 7.37 – 7.30 (m, 2H), 7.24 (d, \(J = 8.0 \, \text{Hz, 2H} \)), 7.09 (s, 1H), 7.01 – 6.93 (m, 2H), 2.38 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 144.23, 135.76, 135.72, 132.38, 129.81, 127.28, 123.10, 118.55, 21.55. Data is consistent with that reported in the literature.\(^3\)

N-(2-Bromophenyl)-4-methylbenzenesulfonamide (3j)

![Image](image2)

White solid (51.9 mg, 53% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.71 – 7.60 (m, 3H), 7.41 (dd, \(J = 8.0, 1.4 \, \text{Hz, 1H} \)), 7.30 – 7.24 (m, 1H), 7.21 (d, \(J = 8.0 \, \text{Hz, 2H} \)), 7.00 – 6.93 (m, 2H), 2.37 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 143.68, 139.32, 136.49, 136.24, 135.32, 133.86, 129.84, 129.58, 127.31, 122.29, 118.38, 21.52, 21.32. Data is consistent with that reported in the literature.\(^7\)

4-Methyl-N-(p-tolyl)benzenesulfonamide (3k)

![Image](image3)

White solid (47.0 mg, 60% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.64 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 7.21 (d, \(J = 8.1 \, \text{Hz, 2H} \)), 7.02 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 6.95 (d, \(J = 8.4 \, \text{Hz, 2H} \)), 6.83 (s, 1H), 2.37 (s, 3H), 2.26 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 143.68, 136.24, 135.32, 133.86, 129.84, 129.58, 127.31, 122.29, 21.52, 20.83. Data is consistent with that reported in the literature.\(^3\)

4-Methyl-N-(m-tolyl)benzenesulfonamide (3l)

![Image](image4)

White solid (56.4 mg, 72% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.68 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 7.22 (d, \(J = 8.1 \, \text{Hz, 2H} \)), 7.09 (t, \(J = 8.0 \, \text{Hz, 1H} \)), 6.94 – 6.82 (m, 4H), 2.37 (s, 3H), 2.26 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 143.78, 139.32, 136.49, 136.24, 129.61, 129.06, 127.29, 126.06, 122.12, 118.38, 21.52, 21.32. Data is consistent with that reported in the literature.\(^4\)

4-Methyl-N-(o-tolyl)benzenesulfonamide (3m)

![Image](image5)

White solid (51.6 mg, 70% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.66 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 7.21 (d, \(J = 8.1 \, \text{Hz, 2H} \)), 7.02 (d, \(J = 8.3 \, \text{Hz, 2H} \)), 6.95 (d, \(J = 8.4 \, \text{Hz, 2H} \)), 6.83 (s, 1H), 2.37 (s, 3H), 2.26 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 143.68, 136.24, 135.32, 133.86, 129.84, 129.58, 127.31, 122.29, 21.52, 21.32. Data is consistent with that reported in the literature.\(^4\)
White solid (37.6 mg, 48% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.61 (d, $J = 8.3$ Hz, 2H), 7.31 (d, $J = 7.8$ Hz, 1H), 7.21 (d, $J = 8.1$ Hz, 2H), 7.17 – 7.10 (m, 1H), 7.10 – 7.05 (m, 2H), 6.43 (s, 1H), 2.39 (s, 3H), 2.00 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 143.79, 136.82, 134.54, 131.31, 130.78, 129.61, 127.19, 126.96, 126.20, 124.32, 21.54, 17.55. Data is consistent with that reported in the literature.8

N-(4-Methoxyphenyl)-4-methylbenzenesulfonamide (3n)

White solid (39.1 mg, 47% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.58 (d, $J = 8.3$ Hz, 2H), 7.21 (d, $J = 8.1$ Hz, 2H), 7.00 – 6.94 (m, 2H), 6.78 – 6.72 (m, 2H), 6.50 (s, 1H), 3.75 (s, 3H), 2.38 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 158.03, 143.66, 136.15, 129.55, 128.93, 127.36, 125.51, 114.46, 55.43, 21.53. Data is consistent with that reported in the literature.3

N-(2-Methoxyphenyl)-4-methylbenzenesulfonamide (3o)

White solid (60.7 mg, 73% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, $J = 8.3$ Hz, 2H), 7.51 (dd, $J = 7.9$, 1.5 Hz, 1H), 7.18 (d, $J = 8.1$ Hz, 2H), 7.06 – 6.96 (m, 2H), 6.89 (td, $J = 7.8$, 1.0 Hz, 1H), 6.73 (dd, $J = 8.1$, 0.9 Hz, 1H), 3.64 (s, 3H), 2.35 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 149.48, 143.60, 136.40, 129.35, 127.28, 126.11, 125.24, 121.12, 121.03, 110.61, 55.63, 21.49. Data is consistent with that reported in the literature.3

Benzyl (4-(4-methylphenylsulfonamido)phenyl)carbamate (3p)

White solid (71.3 mg, 60% yield); mp: 162-163 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.59 (d, $J = 8.2$ Hz, 2H), 7.42 – 7.30 (m, 5H), 7.25 (d, $J = 6.3$ Hz, 2H), 7.20 (d, $J = 8.1$ Hz, 2H), 6.98 (d, $J = 8.8$ Hz, 2H), 6.67 (s, 1H), 6.53 (s, 1H), 5.17 (s, 2H), 2.37 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 153.25, 143.83, 136.02, 135.91, 135.75, 131.71, 129.62, 128.64, 128.43, 128.32, 127.28, 123.81, 119.46, 67.16, 21.51. HRMS (ESI) m/z calced. for C$_{21}$H$_{21}$N$_2$O$_4$S [M+H]$^+$: 397.1217, found: 397.1219.

N-(Benzo[d][1,3]dioxol-5-yl)-4-methylbenzenesulfonamide (3q)

55
White solid (32.3 mg, 37% yield); mp: 140-142 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.62 (d, $J = 8.3$ Hz, 2H), 7.23 (d, $J = 8.1$ Hz, 2H), 6.68 (d, $J = 2.2$ Hz, 1H), 6.67 (s, 1H), 6.62 (d, $J = 8.2$ Hz, 1H), 6.43 (dd, $J = 8.3$, 2.1 Hz, 1H), 5.93 (s, 2H), 2.39 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 148.07, 145.95, 143.82, 135.96, 130.19, 129.63, 127.37, 116.90, 108.21, 105.55, 101.52, 21.55. HRMS (ESI) m/z calcd. for C$_{14}$H$_{14}$NO$_4$S [M+H]$^+$: 292.0638, found: 292.0639.

4-Methyl-N-(naphthalen-1-yl)benzenesulfonamide (3r)

Red solid (43.7 mg, 49% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.87 – 7.77 (m, 2H), 7.70 (dd, $J = 7.2$, 1.8 Hz, 1H), 7.64 (d, $J = 8.3$ Hz, 2H), 7.48 – 7.32 (m, 4H), 7.14 (d, $J = 8.2$ Hz, 2H), 7.03 (s, 1H), 2.33 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 143.77, 136.43, 134.25, 131.50, 129.55, 128.91, 128.40, 127.37, 127.17, 126.62, 126.27, 125.42, 122.68, 121.50, 21.48. Data is consistent with that reported in the literature.9

4-Methyl-N-(naphthalen-2-yl)benzenesulfonamide (3s)

Yellow solid (61.5 mg, 69% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.74 (d, $J = 8.0$ Hz, 1H), 7.71 (d, $J = 8.3$ Hz, 4H), 7.54 (d, $J = 1.9$ Hz, 1H), 7.42 (dt, $J = 16.2$, 6.8, 1.2 Hz, 2H), 7.23 (dd, $J = 8.8$, 2.2 Hz, 1H), 7.18 (d, $J = 8.1$ Hz, 2H), 7.12 (s, 1H), 2.33 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 143.95, 136.10, 134.10, 133.66, 131.09, 129.70, 129.0, 128.97, 127.64, 127.51, 127.30, 126.68, 125.49, 121.01, 118.37, 21.49. Data is consistent with that reported in the literature.3

N-(6-(Dimethylamino)pyridin-3-yl)-4-methylbenzenesulfonamide (3t)

White solid (37.6 mg, 43% yield); mp: 140-141 °C.1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 2.6$ Hz, 1H), 7.59 (d, $J = 8.3$ Hz, 2H), 7.31 (dd, $J = 9.0$, 2.7 Hz, 1H), 7.22 (d, $J = 8.1$ Hz, 2H), 6.46 (s, 1H), 6.40 (d, $J = 9.1$ Hz, 1H), 3.04 (s, 6H), 2.39 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 158.02, 145.05, 143.69, 136.09, 135.90, 129.63, 127.40, 121.08, 105.69, 38.23, 21.55. HRMS (ESI) m/z calcd. for C$_{14}$H$_{18}$N$_3$O$_2$S [M+H]$^+$: 292.1114, found: 292.1112.

4-Chloro-N-phenylbenzenesulfonamide (4a)
White solid (36.1 mg, 45% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (d, $J = 8.7$ Hz, 2H), 7.39 (d, $J = 8.7$ Hz, 2H), 7.24 (d, $J = 8.1$ Hz, 2H), 7.14 (t, $J = 7.4$ Hz, 1H), 7.07 (d, $J = 7.4$ Hz, 2H), 6.98 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 139.62, 137.54, 136.05, 129.48, 129.36, 128.70, 125.86, 122.02. Data is consistent with that reported in the literature.3

4-Chloro-N-(p-tolyl)benzenesulfonamide (4b)

Colorless oil (52.4 mg, 62% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, $J = 8.6$ Hz, 2H), 7.39 (d, $J = 8.5$ Hz, 2H), 7.05 (d, $J = 8.3$ Hz, 2H), 6.94 (d, $J = 8.3$ Hz, 2H), 6.63 (s, 1H), 2.28 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 139.48, 137.62, 136.06, 133.22, 130.03, 129.29, 128.72, 122.80, 20.86. Data is consistent with that reported in the literature.10

4-Chloro-N-(m-tolyl)benzenesulfonamide (4c)

White solid (58.3 mg, 69% yield); mp: 110-111 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (d, $J = 8.7$ Hz, 2H), 7.40 (d, $J = 8.7$ Hz, 2H), 7.12 (t, $J = 7.8$ Hz, 1H), 6.94 (d, $J = 7.6$ Hz, 1H), 6.90 (s, 1H), 6.88 – 6.81 (m, 2H), 2.28 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 139.48, 137.62, 135.92, 129.32, 129.23, 128.69, 126.64, 122.56, 118.82, 21.31. HRMS (ESI) m/z calcd. for C$_{13}$H$_{13}$ClNO$_2$S [M+H]$^+$: 282.0350, found: 282.0349.

4-Chloro-N-(2-methoxyphenyl)benzenesulfonamide (4d)

White solid (63.4 mg, 71% yield); mp: 97-98 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (d, $J = 8.6$ Hz, 2H), 7.52 (dd, $J = 7.9$, 1.5 Hz, 1H), 7.36 (d, $J = 8.6$ Hz, 2H), 7.07 (td, $J = 7.9$, 1.5 Hz, 1H), 6.98 (s, 1H), 6.91 (td, $J = 7.8$, 1.0 Hz, 1H), 6.74 (dd, $J = 8.2$, 0.8 Hz, 1H), 3.63 (s, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 149.80, 139.33, 137.77, 128.99, 128.70, 125.95, 125.47, 121.81, 121.20, 110.69, 55.60. HRMS (ESI) m/z calcd. for C$_{13}$H$_{13}$ClNO$_3$S [M+H]$^+$: 298.0299, found: 298.0301.

4-Chloro-N-(4-fluorophenyl)benzenesulfonamide (4e)
White solid (42.9 mg, 50% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.66 (d, J = 8.6 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 7.04 (dd, J = 10.2, 5.1, 2.8 Hz, 2H), 6.95 (t, J = 8.5 Hz, 2H), 6.77 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 160.98 (d, J = 246.3 Hz), 139.78, 137.20, 131.74, 129.42, 128.69, 125.11 (d, J = 8.4 Hz), 116.33 (d, J = 22.9 Hz). Data is consistent with that reported in the literature.11

$\text{4-Chloro-N-(3-fluorophenyl)benzenesulfonamide (4f)}$

Colorless oil (48.0 mg, 56% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 7.20 (td, J = 8.2, 6.4 Hz, 1H), 6.91 (dt, J = 10.0, 2.2 Hz, 1H), 6.82 (ddd, J = 7.3, 5.3, 3.3 Hz, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 163.07 (d, J = 247.3 Hz), 140.00, 137.72 (d, J = 10.3 Hz), 137.20, 130.73 (d, J = 9.3 Hz), 129.55, 128.67, 116.60 (d, J = 3.1 Hz), 112.45 (d, J = 21.2 Hz), 108.54 (d, J = 25.3 Hz); 19F NMR (376 MHz, CDCl$_3$) δ -110.41. HRMS (ESI) m/z calcd. for C$_{12}$H$_{10}$ClFNO$_2$S [M+H]$^+$: 286.0099, found: 286.0102.

$\text{4-Chloro-N-(4-chlorophenyl)benzenesulfonamide (4g)}$

White solid (38.1 mg, 42% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 7.13 (s, 1H), 7.02 (d, J = 8.8 Hz, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 139.94, 136.99, 134.59, 131.58, 129.62, 129.52, 128.67, 123.37. Data is consistent with that reported in the literature.10

$\text{N-(4-Bromophenyl)-4-chlorobenzenesulfonamide (4h)}$

White solid (44.7 mg, 43% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.70 (dd, J = 8.9, 2.2 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.40 – 7.34 (m, 2H), 7.05 (s, 1H), 7.01 – 6.93 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 139.95, 137.15, 135.13, 132.57, 129.54, 128.65, 123.51, 119.21. Data is consistent with that reported in the literature.10

$\text{4-Chloro-N-(naphthalen-2-yl)benzenesulfonamide (4i)}$
White solid (54.3 mg, 57% yield); mp: 135-136 °C. 1H NMR (400 MHz, CDCl$_3$) δ 7.79 – 7.69 (m, 5H), 7.55 (d, $J = 1.9$ Hz, 1H), 7.49 – 7.39 (m, 2H), 7.36 (d, $J = 8.7$ Hz, 2H), 7.22 (dd, $J = 8.8$, 2.2 Hz, 1H), 7.19 (s, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 139.69, 137.49, 133.61, 133.52, 131.31, 129.59, 129.41, 128.69, 127.69, 127.56, 126.87, 125.82, 121.15, 119.07. HRMS (ESI) m/z calcd. for C$_{16}$H$_{13}$ClNO$_2$S [M+H]$^+$: 318.0350, found: 318.0347

IV. References

<table>
<thead>
<tr>
<th>ppm</th>
<th>121.56</th>
<th>127.29</th>
<th>129.65</th>
<th>136.13</th>
<th>143.87</th>
</tr>
</thead>
</table>

NAME: bl-320-5
EXPNO: 2
PROCNO: 1
Date: 20160519
Time: 14.20
INSTRUM: spect
PROBHD: 5 mm PABBO BB/
PULPROG: zgpg30
TD: 65536
SOLVENT: CDCl3
NS: 300
DS: 4
SWH: 24038.461 Hz
FIDRES: 0.366798 Hz
AQ: 1.3631988 sec
RG: 195.94
DW: 20.800 usec
DE: 6.50 usec
TE: 298.8 K
D1: 2.00000000 sec
D11: 0.03000000 sec

CHANNEL f1

SFO1: 100.6228293 MHz
NUC1: 13C
P1: 10.00 usec
SI: 32768
WDW: EM
SSB: 0
LB: 1.00 Hz
GB: 0
PC: 1.40

![Chemical Structure](attachment:image.png)
NAME bl-324-4
EXPNO 1
PROCNO 1
Date_ 20160523
Time 22.23
INSTRUM spect
PROBHD 5 mm PABO BB/
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SNR 0012.820 Hz
FIDRES 0.122266 Hz
AQ 4.0894966 sec
RG 87.16
DW 62.400 usec
DE 6.80 usec
TE 298.8 K
D1 1.00000000 sec
TD0 1

---------- CHANNEL f1 ----------
GPO1 400.1324710 MHz
NUCL 1H
P1 10.00 usec
SI 65536
SF 400.1300097 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00
NAME: bl-352-3
EXPNO: 1
PROCNO: 1
Date: 20160930
Time: 2.09
INSTRUM: spect
PROBHD: 5 mm PABBO BB/
PULPROG: zg30
TD: 65536
SOLVENT: CDCl3
NS: 16
DS: 2
SWH: 8012.820 Hz
FIDRES: 0.122266 Hz
AQ: 4.0894966 sec
RG: 63.57
DW: 62.400 usec
DE: 6.50 usec
TE: 299.9 K
D1: 1.00000000 sec
TD0: 1
======== CHANNEL f1 ========
SFO1: 400.1324710 MHz
NUC1: 1H
P1: 10.00 usec
SI: 65536
SF: 400.1300102 MHz
WDW: EM
SSB: 0
LB: 0.30 Hz
PC: 1.00
NHTs: Cl
3g
NAME bl-328-5
EXPNO 1
PROCNO 1
Date_ 20160601
Time 21:59
INSTRUM spect
PROBHD 5 mm PABBO BB/
PULPROG zg30
TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 8012.820 Hz
FIDRES 0.122266 Hz
AQ 4.0894966 sec
RG 87.16
DW 62.400 usec
DE 6.50 usec
TE 300.0 K
D1 1.00000000 sec
TD0 1

======== CHANNEL f1 ========
SFO1 400.1324710 MHz
NUC1 1H
P1 10.00 usec
SI 65536
SF 400.1300103 MHz
WDW EM
SSB 0
LB 0.30 Hz
PC 1.00

NHTs

---END---
NAME bl-340-1
EXPNO 1
PROCNO 1
Date_ 20160613
Time 23.31
INSTRUM spect
PROBHD 5 mm PABBO BB/
PULPROG zg30
TD 65536
SOLVENT CDCl3NS 16
DS 2
SWH 8012.820 Hz
FIDRES 0.122266 Hz
AQ 4.0894966 sec
RG 103.1
DW 62.400 usec
DE 6.50 usec
TE 300.3 K
D1 1.00000000 sec

======== CHANNEL f1 ========
SFO1 400.1324710 MHz
NUC1 1H
P1 10.00 usec
SI 65536
SF 400.1300105 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00

H
N
S
O
O
Cl
4c
NAME bl-340-1
EXPNO 2
PROCNO 1
Date_ 20160614
Time 0.06
INSTRUM spect
PROBHD 5 mm PABBO BB/
PULPROG zgpg30TD 65536
SOLVENT CDCl3
NS 600
DS 4
SWH 24038.461 Hz
FIDRES 0.366798 Hz
AQ 1.3631988 sec
RG 195.94
DW 20.800 usec
DE 6.50 usec
TE 301.0 KD1 2.00000000 sec
D11 0.03000000 sec
TD0 1
======== CHANNEL f1 ========
SFO1 100.6228293 MHz
NUC1 13
CP1 10.00 usec
SI 32768
SF 100.6127669 MHz
WDW EMSSB 0
LB 1.00 Hz
GB 0
PC 1.40
H
N
S
O
Cl
4c
0.00 -0.000
0.98 0.98
1.00 1.00
1.95 1.95
2.00 2.00

NAME bl-340-9
EXPNO 1
PROCNO 1
Date_ 20160614
Time 8.49
INSTRUM spect
PROBHD 5 mm PABBO BB/PUL
PROG zg30TD 65536
SOLVENT CDCl3
NS 16
DS 2
SWH 8012.820 Hz
FIDRES 0.122266 Hz
AQ 4.0894966 sec
RG 103.1
DW 62.400 usec
DE 6.50 usec
TE 300.4 KD
1 1.00000000 sec
TD0 1

======== CHANNEL f1 ========
SFO1 400.1324710 MHz
NUC1 1
HP1 10.00 usec
SI 65536
SF 400.1300092 MHz
WDW EMSSB 0
LB 0.30 Hz
GB 0
PC 1.00
<table>
<thead>
<tr>
<th>Comp</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>139.96</td>
</tr>
<tr>
<td>Br</td>
<td>137.15</td>
</tr>
<tr>
<td>S</td>
<td>135.14</td>
</tr>
<tr>
<td>O</td>
<td>132.58</td>
</tr>
<tr>
<td>O</td>
<td>129.54</td>
</tr>
<tr>
<td>N</td>
<td>128.66</td>
</tr>
<tr>
<td>N</td>
<td>123.51</td>
</tr>
<tr>
<td>C</td>
<td>119.22</td>
</tr>
</tbody>
</table>

![Diagram of molecular structure]