Supporting Information
for DOI: 10.1055/s-0039-1690189
© 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
Supplementary Data

Synthesis of pyranopyrazolo[3,4-c]dihydro quinolones by Domino Aldol / Hetero Diels–Alder Reactions

Table of Contents

(A) Experimental……2
(B) Data of compounds 3a-h ………..3-8
(C) Copies of 1H NMR, 13C NMR and DEPT 135 spectra for compounds 3a-h ………………………………………………………9–32
(A) Experimental

General

N-acrylated anthranilaldehydes 1a-d were synthesized according to the literature.5 Commercially available chemicals were purchased from Sigma, Aldrich and ACROS and used without further purification. Analytical thin layer chromatography was performed on 0.20 mm 60 A silica gel plates. Column chromatography was performed using 60 A silica gel (60–200 mesh). IR spectra: ATR apparatus. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, isobutane) or electrospray ionization (ESI). Melting points are uncorrected. 1H NMR, 13C NMR and DEPT spectra in CDCl\textsubscript{3} at r.t.; \(\delta \) in ppm rel. to Me\textsubscript{4}Si as internal standard, \(J \) in Hz. The computational results were calculated at B3LYP/6-31+G(d) level using Spartan 14 program, Wavefunction, Inc, Irvine, CA.

General procedure to synthesis of products 3a-h via DKIHDA reaction

\(N \)-acrylated anthranilaldehydes 1 (0.5 mmol), \(N \)-phenyl pyrazolones 2 (0.5 mmol) and ZnBr\textsubscript{2} (50 mol\%) was stirred in refluxing EtOH (5 ml). The progress of termination of the reaction was observed by TLC. After completion (5 h) and cooling down, 20 ml ice-cold water was poured to the reaction mixture. The resulted precipitate was filtered after 5 min stirring and washed by cold water. After air drying at room temperature, the pure products 3 were obtained by column chromatography on a silica gel with eluent of n-hexane/ethyl acetate (2:1).
(B) Data of compounds 3a-h

\((5aS^*,11bS^*)\)-1,7-dimethyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3a). Pale yellow solid, mp: 169-171 °C, yield 85% (147 mg). 1H NMR (250 MHz, CDCl$_3$): δ 2.10 (3H, s, CH$_3$), 3.10-3.16 (1H, m, H$_b$), 3.33 (3H, s, NCH$_3$), 4.28 (1H, d, J = 5.5 Hz, H$_c$), 4.37 (1H, dd, J = 10.5, 2.2 Hz, H$_a$), 4.52-4.78 (1H, m, HR$_2$), 7.00 (1H, d, J = 7.9 Hz, Ar-H), 7.19-7.21 (2H, m, Ar-H), 7.29-7.39 (4H, m, Ar-H), 7.66 (2H, d, J = 8.0 Hz, Ar-H); 13C NMR (62.5 MHz, CDCl$_3$): δ 13.6 (CH$_3$), 30.0 (NCH$_3$), 30.6 (CH), 40.5 (CH), 66.8 (OCH$_2$), 115.1 (CH), 120.5 (CH), 121.5 (C), 123.3 (CH), 125.8 (CH), 126.5 (C), 128.4 (CH), 128.9 (CH), 129.8 (CH), 138.2 (C), 138.6 (C), 146.9 (C), 149.6 (C), 167.6 (CON). IR (ATR, cm$^{-1}$): $\tilde{\nu}$ = 3067, 2925, 1651, 1598, 1496, 1126, 758. HRMS (ESI): calcd for C$_{21}$H$_{19}$N$_3$O$_2$ (M$^+$) 345.1472, found 345.1474.

\((5R^*,5aS^*,11bS^*)\)-1,5,7-trimethyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3b). Pale yellow solid, mp: 175-177 °C, yield 83% (149 mg). 1H NMR (250 MHz, CDCl$_3$): δ 1.51 (3H, d, J = 6.5 Hz, CH$_3$), 2.18 (3H, s, CH$_3$), 2.88 (1H, dd, J = 6.6, 5.7 Hz, H$_b$), 3.39 (3H, s, NCH$_3$), 3.39-3.48 (1H, m, H$_a$), 4.28 (1H, d, J = 4.9 Hz, H$_c$), 7.00-7.42 (7H, m, Ar-H), 7.74 (2H, d, J = 7.7 Hz, Ar-H); 13C NMR (62.5 MHz, CDCl$_3$): δ 13.4 (CH$_3$), 18.7 (CH$_3$), 29.6 (NCH$_3$), 30.8 (CH), 31.0 (CH), 77.2 (OCH), 115.1 (CH), 120.4 (CH), 122.7 (CH), 123.4 (C), 125.7 (CH), 127.1 (C), 128.3 (CH), 129.5 (C), 131.2 (CH), 133.1 (CH), 138.5 (C), 142.6 (C), 146.7 (C), 167.7 (CON). IR
(ATR, cm⁻¹): ʋ = 3080, 2928, 1658, 1597, 1498, 1128, 758. HRMS (ESI): calcd for C₂₂H₂₁N₃O₂ (M⁺) 359.1628, found 359.1621.

\((5aS^*,11bS^*)-7\text{-ethyl-1-methyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo}[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one\) (3c). Pale yellow solid, mp: 176-178 °C, yield 80% (144 mg). \(^1\)H NMR (250 MHz, CDCl₃): δ 1.23 (3H, t, \(J = 7.1\) Hz, CH₃), 2.13 (3H, s, CH₃), 3.17 (1H, m, Hₐ), 4.29 (1H, d, \(J = 5.5\) Hz, Hₜ), 4.42 (1H, dd, \(J = 10.5, 2.7\) Hz, Hₐ), 4.69-4.85 (1H, m, Hᵣ), 7.04-7.14 (2H, m, Hₐ, Hᵣ), 7.21-7.44 (5H, m, Ar-H); \(^1\)C NMR (62.5 MHz, CDCl₃): δ 12.5 (CH₃), 13.1 (CH₃), 32.3 (CH), 37.9 (NCH₂), 40.3 (CH), 67.1 (OCH₂), 115.1 (CH), 120.3 (CH), 121.1 (C), 123.2 (CH), 125.1 (C), 126.4 (CH), 128.6 (CH), 129.0 (CH), 130.0 (CH), 137.1 (C), 137.6 (C), 146.6 (C), 149.8 (C), 166.4 (CON). IR (ATR, cm⁻¹): ʋ = 3068, 2929, 1653, 1598, 1495, 1129, 758. HRMS (ESI): calcd for C₂₂H₂₁N₃O₂ (M⁺) 359.1628, found 359.1622.

\((5R^* ,5aS^*,11bS^*)-7\text{-ethyl-1,5-dimethyl-3-phenyl-5,5a,7,11b-tetrahydropyrazolo}[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one\) (3d). Pale yellow solid, mp: 180-182 °C, yield 84% (157 mg). \(^1\)H NMR (300 MHz, CDCl₃): δ 1.24 (3H, t, \(J = 6.4\) Hz, CH₃), 1.49 (3H, d, \(J = 6.5\) Hz, CH₃), 2.17 (3H, s, CH₃), 2.84 (1H, dd, \(J = 7.3, 5.2\) Hz, Hₐ), 3.88-4.03 (3H, m, Hₐ, NCH₂), 4.25 (1H, d, \(J = 5.1\) Hz, Hₜ), 7.02-7.21 (3H, m, Ar-H), 7.27-7.40 (4H, m, Ar-H), 7.73 (2H, d, \(J = 8.51\) Hz, Ar-H); \(^1\)C NMR (75 MHz, CDCl₃): δ 12.7 (CH₃), 13.4 (CH₃), 18.8 (CH₃), 31.0 (CH), 38.0 (NCH₂), 46.3 (CH), 72.4 (OCH), 115.0 (CH),
(5aS*,11bS*)-3-(4-chlorophenyl)-1,7-dimethyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3e). Pale yellow solid, mp: 178-180 °C, yield 92% (174 mg). 1H NMR (250 MHz, CDCl$_3$): δ 2.08 (3H, s, CH$_3$), 3.14-3.20 (1H, m, H$_b$), 3.36 (3H, s, NCH$_3$), 4.31 (1H, d, $J = 5.7$ Hz, H$_c$), 4.41 (1H, dd, $J = 10.4$, 2.6 Hz, H$_a$), 4.74-4.76 (1H, m, HR$_2$), 7.03 (1H, d, $J = 8.1$ Hz, Ar-H), 7.12 (1H, dt, $J = 7.5$, 0.7 Hz, Ar-H), 7.28-7.38 (4H, m, Ar-H), 7.66-7.72 (2H, m, Ar-H); 13C NMR (62.5 MHz, CDCl$_3$): δ 13.5 (CH$_3$), 30.1 (NCH$_3$), 32.3 (CH), 40.3 (CH), 67.2 (OCH$_2$), 115.1 (CH), 121.6 (CH), 123.3 (CH), 124.9 (C), 128.6 (CH), 129.1 (CH), 129.8 (CH), 129.84 (C), 131.3 (C), 136.3 (C), 138.7 (C), 147.1 (C), 149.8 (C), 167.2 (CON). IR (ATR, cm$^{-1}$): $\tilde{\nu} = 3069, 2926, 1664, 1597, 1512, 1490, 1373, 1090, 829, 757$. HRMS (ESI): calcd for C$_{21}$H$_{18}$ClN$_3$O$_2$ (M$^+$) 379.1082, found 379.1080.

(5R*,5aS*,11bS*)-3-(4-chlorophenyl)-1,5,7-trimethyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin-6(3H)-one (3f). Pale yellow solid, mp: 184-186 °C, yield 90% (177 mg). 1H NMR (250 MHz, CDCl$_3$): δ 1.43 (3H, d, $J = 6.5$ Hz, CH$_3$), 2.06 (3H, s, CH$_3$), 2.77-2.82 (1H, m, H$_b$), 3.23-3.30 (4H, m, NCH$_3$, H$_a$), 4.20 (1H, d, $J = 5.0$ Hz, H$_c$), 6.95 (1H, d, $J = 8.0$ Hz, Ar-H), 7.00-7.06 (1H, m, Ar-H), 7.19-7.29 (4H, m, Ar-H), 7.63 (2H, d, $J = 8.9$ Hz, Ar-
H). \(^{13}\text{C} \text{NMR} (62.5 \text{ MHz, CDCl}_3)\): \(\delta\) 13.1 (CH\(_3\)), 18.5 (CH\(_3\)), 30.0 (NCH\(_3\)), 30.6 (CH), 31.0 (CH), 72.8 (OCH), 115.1 (CH), 121.4 (CH), 123.4 (CH), 126.9 (C), 128.4 (CH), 128.9 (CH), 129.4 (CH), 129.5 (C), 131.0 (C), 136.6 (C), 138.3 (C), 147.2 (C), 149.3 (C), 167.7 (CON). IR (ATR, cm\(^{-1}\)):\(\nu = 3067, 2929, 1664, 1596, 1491, 1454, 1386, 1089, 827, 755\). HRMS (ESI): calced for C\(_{22}\)H\(_{20}\)ClN\(_3\)O\(_2\) (M\(^+\)) 393.1239, found 393.1237.

\((5\text{aS}^*,1\text{IbS}^*)-3-(4\text{-chlorophenyl})-7\text{-ethyl-1-methyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin}-6(3H)-\text{one (3g)}\). Pale yellow solid, mp: 183-185 °C, yield 87% (171 mg). \(^1\)H NMR (250 MHz, CDCl\(_3\)\): \(\delta\) 1.23 (3H, t, \(J = 7.1\) Hz, CH\(_3\)), 2.09 (3H, s, CH\(_3\)), 3.14-3.19 (1H, m, H\(_b\)), 3.81-4.13 (2H, m, NCH\(_2\)), 4.24-4.43 (2H, m, H\(_a\), H\(_c\)), 4.42 (1H, dd, \(J = 10.6, 2.7\) Hz, H\(_a\)), 7.07 (1H, d, \(J = 8.3\) Hz, Ar-H), 7.13 (1H, dd, \(J = 7.4, 0.6\) Hz, Ar-H), 7.28-7.40 (6H, m, Ar-H); \(^{13}\text{C} \text{NMR} (62.5 \text{ MHz, CDCl}_3)\): \(\delta\) 12.5 (CH\(_3\)), 13.1 (CH\(_3\)), 21.7 (CH), 37.2 (NCH\(_2\)), 48.3 (CH), 79.3 (OCH\(_2\)), 115.2 (CH), 121.9 (CH), 123.2 (C), 127.4 (CH), 128.7 (CH), 128.8 (CH), 129.1 (CH), 129.8 (C), 131.8 (C), 134.2 (C), 137.6 (C), 147.6 (C), 149.9 (C), 166.3 (CON). IR (ATR, cm\(^{-1}\)):\(\nu = 3072, 2927, 1664, 1597, 1513, 1491, 1376, 1124, 1091, 831, 757\). HRMS (ESI): calced for C\(_{22}\)H\(_{20}\)ClN\(_3\)O\(_2\) (M\(^+\)) 393.1239, found 393.1236.

\((5\text{R}^*,5\text{aS}^*,1\text{IbS}^*)-3-(4\text{-chlorophenyl})-7\text{-ethyl-1,5-dimethyl-5,5a,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinolin}-6(3H)-\text{one (3h)}\). Pale yellow solid, mp: 189-191 °C, yield 80% (163 mg). \(^1\)H NMR (250 MHz, CDCl\(_3\)\): \(\delta\) 1.24 (3H, t, \(J = 7.0\) Hz, CH\(_3\)), 1.51 (3H, d, \(J = 6.5\) Hz, CH\(_3\)), 2.19 (3H, s, CH\(_3\)), 2.87 (1H, dd, \(J = 6.7, 5.3\) Hz, H\(_b\)), 3.94-4.06 (3H, m, H\(_a\), NCH\(_2\)), 4.26 (1H, d, \(J = 5.0\) Hz, H\(_c\)), 7.04-7.40 (6H, m, Ar-H), 7.71 (2H, d, \(J = 9.0\) Hz, Ar-H); \(^{13}\text{C} \text{NMR} (62.5 \text{ MHz, CDCl}_3)\): \(\delta\) 12.5 (CH\(_3\)), 13.1 (CH\(_3\)), 21.7 (CH), 37.2 (NCH\(_2\)), 48.3 (CH), 79.3 (OCH\(_2\)), 115.2 (CH), 121.9 (CH), 123.2 (C), 127.4 (CH), 128.7 (CH), 128.8 (CH), 129.1 (CH), 129.8 (C), 131.8 (C), 134.2 (C), 137.6 (C), 147.6 (C), 149.9 (C), 166.3 (CON). IR (ATR, cm\(^{-1}\)):\(\nu = 3072, 2927, 1664, 1597, 1513, 1491, 1376, 1124, 1091, 831, 757\). HRMS (ESI): calced for C\(_{22}\)H\(_{20}\)ClN\(_3\)O\(_2\) (M\(^+\)) 393.1239, found 393.1236.
CDCl₃: δ 12.6 (CH₃), 12.9 (CH₃), 18.6 (CH₃), 30.7 (CH), 38.0 (NCH₂), 56.4 (CH), 77.2 (OCH), 115.1 (CH), 121.7 (CH), 123.3 (CH), 126.8 (C), 128.6 (CH), 129.1 (CH), 129.7 (CH), 130.6 (C), 131.7 (C), 136.1 (C), 137.4 (C), 146.9 (C), 149.6 (C), 166.6 (CON). IR (ATR, cm⁻¹): ʋ= 3069, 2931, 1664, 1598, 1492, 1454, 1388, 1091, 829, 756. HRMS (ESI): calcd for C₂₃H₂₂ClN₃O₂ (M⁺) 407.1395, found 407.1396.
(C) Copies of 1H NMR, 13C NMR and DEPT 135 spectra for compounds 3a-h
1H NMR spectra for compound 3a
13C NMR for compound 3a
DEPT 135 for compound 3a

1H NMR spectra for compound 3b
13C NMR for compound 3b
DEPT 135 for compound 3b
1H NMR spectra for compound 3c
13C NMR for compound 3c
1H NMR spectra for compound $3d$
DEPT 135 for compound 3d
1H NMR spectra for compound 3e
13C NMR for compound 3e
DEPT 135 for compound 3e
1H NMR spectra for compound 3f
DEPT 135 for compound 3f
1H NMR spectra for compound 3g
13C NMR for compound 3g
DEPT 135 for compound 3g
1H NMR spectra for compound $3h$
13C NMR for compound $3h$
DEPT 135 for compound 3h