Supporting Information
for DOI: 10.1055/a-2158-8752
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

Supporting Information

Intramolecular Asymmetric Cyclopropanation Using Air Stable Alkylboronic Esters

Luca Vedani, \#a Manuel Gnägi-Lux, \#a Fabrice Dénès*a and Philippe Renaud*a

[a] Department of Chemistry, Biochemistry and Pharmaceutical Sciences (DCBP), University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

E-mail: fabrice.denes@unibe.ch, philippe.renaud@unibe.ch
GENERAL INFORMATION 4
Techniques 4
Material 4
Instrumentation 4
REAGENTS AND ADDITIVES 5
PREPARATION OF 2,4,6-TRIISOPROPYLBENZOYL CHLORIDE (TIB-CL) 5
2,4,6-Triisopropylbenzoic acid (TIB-OH) 5
2,4,6-Triisopropylbenzoyl chloride (TIB-CI) 5
ADDITIVES FOR TRANSESTERIFICATION 6
2-Methoxybenzo[d][1,3,2]dioxaborole (MeOBact) 6
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (MeBnap) 6
3-Methoxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (MeOBnap) 6
3-Hydroxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (HOBnap) 7
2-Methyl-1,3,2-benzodioxaborole (MeBcat) 7
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole ($\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OBcat}$) 7
2-(1,3,2-Benzodioxaborol-2-yloxy)-1,3,2-benzodioxaborole (O(Bcat)2) 8
SYNTHESIS OF ACYCLIC PRECURSORS 4 AND 5 8
3,3-Dibenzyldihydrofuran-2(3H)-one (1) 8
3,3-Dibenzyl-5-methyl-hex-4-en-1-ol (2) 9
(3,3-Dibenzyl-5-methyl-hex-4-enyl) 2,4,6-triisopropylbenzoate (3) 9
2-(3,3-Dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4) 10
2-(4,4-Dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5) ${ }^{9,10}$ 10
INTRAMOLECULAR CYCLOPROPANATION 11
THERMAL INTRAMOLECULAR CYCLOPROPANATION 11
Preparative cyclopropanation 11
(\pm)-(1SR,5SR)-2,2-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-6) and 2-((1SR,5SR)-4,4-dibenzyl- 6,6-dimethylbicyclo[3.1.0]hexan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((\pm)-7) 11
TRANSESTERIFICATION MEDIATED INTRAMOLECULAR CYCLOPROPANATION 12
Effect of Additives 12
Procedure to test additives 12
Reaction of 6 with HCI: ((2-(propan-2-ylidene)cyclopentane-1,1-diyl)bis(methylene))dibenzene (8). 12 Preparative cyclopropanation 12
(\pm)-(1SR,5SR)-2,2-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-6) and 4,4-dibenzyl-7-hydroxy-2- methylheptan-3-one (9) 12
ASYMMETRIC INTRAMOLECULAR CYCLOPROPANATION: CHIRAL AUXILIARY APPROACH 14
Reactions starting from (+)-10 14
(+)-(4R,5R)-4,5-Dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane ((+)-10) ${ }^{11-13} 14$ (4R,5R)-4,5-Dicyclohexyl-2-((S)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((S)-11) ${ }^{13-15}$ 14
(4R,5R)-4,5-Dicyclohexyl-2-((RS)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((RS)-11) 15
(+)-(1S,5S)-2,2-dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((+)-6): 16
Experiment with (RS)-11 leading to racemic 6 18
REACTION STARTING FROM (+)-12 19
3,3-Bis(4-bromobenzyl)dihydrofuran-2(3H)-one 19
3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-ol 19
4,4'-(2-(2-Methylprop-1-en-1-yl)-2-vinylpropane-1,3-diyl)bis(bromobenzene) 20
2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 21
(+)-(4R,5R)-2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane ((+)-12) 21
(4R,5R)-2-((S)-4,4-bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,5-dicyclohexyl-1,3,2- dioxaborolane 22
(\pm)-(1SR 5SR)-2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-14) 22
(+)-(1S,5S)-2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (+)-(14): 23
ASYMMETRIC INTRAMOLECULAR CYCLOPROPANATION: SUBSTRATE CONTROL 24
Preparation of (S)-15 24
(\pm)-2-(4,4-Dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((\pm)-15) 24
(S)-2-(4,4-dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((S)-15) 25
(\pm)-4,4-Dibenzyl-6-methylhept-5-en-2-ol ((\pm)-16) 25
(-)-(S)-4,4-Dibenzyl-6-methylhept-5-en-2-ol ((-)-16) 26
InTRAMOLECULAR CYCLOPROPANATION 27
(\pm)-2-(4,4-Dibenzyl-1-chloro-2,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17) 27
(\pm)-2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane ((\pm)-18) 27
Enantioenriched (1S,4S,5S)- and (1R,4S,5R)-2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18) 29
REFERENCES 30

General information

Techniques

Unless otherwise stated, all reactions were performed under positive nitrogen pressure in oven- or flame dried glassware. To reach $-78^{\circ} \mathrm{C}$, a bath of dry ice in acetone was used. To reach $-100^{\circ} \mathrm{C}$, a slush bath of ethanol cooled with liquid nitrogen was used. Thin layer chromatography (TLC) was performed on Macherey-Nagel glass backed 0.25 mm silica gel 60 with fluorescent indicator UV 60. Visualization under UV light (254 nm) or by staining with a solution of potassium permanganate $\left[\mathrm{KMnO} \mathrm{O}_{4}(3 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}\right.$ $(20 \mathrm{~g})$ and $\mathrm{NaOH} 5 \%(3 \mathrm{~mL})$ in $\left.\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})\right]$ or Ceric Ammonium Molybdate $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{4}(15.0 \mathrm{~g})\right.$, $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}(0.5 \mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(90 \mathrm{~mL})$, conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ and subsequent heating. Flash column chromatography (FC) was performed using Macherey-Nagel Silica 60, 0.04- 0.063 mm .

Material

$\mathrm{Et}_{2} \mathrm{O}$, toluene, benzene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and THF were filtered over aluminum oxide under positive argon pressure. α, α, α-Trifluorotoluene (TFT) was filtered over a column of aluminum oxide and stored over ЗÅ molecular sieves. Solvents for extractions and flash column chromatography were of technical grade and distilled prior to use. All reagents and chemicals were commercial and used without further purification, unless otherwise stated.

Instrumentation

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ spectra were recorded on a Bruker Avance IIIHD-300 spectrometer. Some spectra were recorded on either a Bruker Avance IIIHD-400 or a Bruker Avance II-400 spectrometer. Chemical shifts (δ) are reported in ppm using the residual solvent signal or $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ as a standard. Coupling constants (J) are reported in Hz . Following abbreviations were used for the multiplicities: singlet (s), doublet (d), triplet (t), quartet (q), pentuplet (p , multiplet (m). The carbon α to the boron atom is sometimes not visible due to quadrupolar coupling. Infrared spectra were recorded on a Jasco FT-IR-460 plus spectrometer equipped with a Specac MKII Golden Gate Single Reflection Diamond ATR system. Only prominent peaks are reported (in cm^{-1}). GC analyses were performed using a Thermo Electron trace GC ULTRA fitted with a Macherey-Nagel Optima delta-3-0.25 $\mu \mathrm{m}$ capillary column ($20 \mathrm{~m}, 0.25 \mathrm{~mm}$). Gas carrier: He $1.4 \mathrm{~mL} / \mathrm{min}$; injector: $220^{\circ} \mathrm{C}$ split mode; detector: FID $280^{\circ} \mathrm{C}, \mathrm{H}_{2} 35 \mathrm{~mL} / \mathrm{min}$, air 350 $\mathrm{mL} / \mathrm{min}$. GC yields were determined using dodecane as an internal standard. HPLC was performed using an Agilent Technologies 1260 Infinity. HRMS analysis were performed on a Thermo Scientific LTQ Orbitrap XL mass spectrometer using ESI and NSI mode. Melting points were measured on a Büchi B-545 melting point apparatus. Specific rotation $[\alpha]_{D}^{20}$ was measured on a Schmidt + Haensch Polartronic H 532 at 589 nm and corrected to $\mathrm{c}=1$.

Reagents and additives

Preparation of 2,4,6-triisopropylbenzoyl chloride (TIB-CI)

2,4,6-Triisopropylbenzoic acid (TIB-OH)

$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ MW: 248.3660

Magnesium turnings ($3.16 \mathrm{~g}, 130 \mathrm{mmol}, 1.30$ equiv) and a small crystal of I_{2} were added to a flask fitted with a pressure equalizing addition funnel. Dry THF (5 mL) was added to cover the turnings. To start the reaction, a few drops of ethylene dibromide were added, and the reaction mixture was gently heated. Once bubbles were observed indicating the reaction had started, a solution of 2-bromo-1,3,5-triisopropyl-benzene ($28.3 \mathrm{~g}, 100 \mathrm{mmol}, 1.00$ equiv) in dry THF (100 mL) was added via the addition funnel at such a rate that the reaction was sustaining a gentle reflux due to its exothermicity. Once the reaction was complete, it was cooled down to $-78{ }^{\circ} \mathrm{C}$. Carbon dioxide was bubbled through the reaction mixture (exothermic reaction). After 40 min at $-78^{\circ} \mathrm{C}$ the reaction was complete. The reaction mixture was allowed to reach rt and it was carefully quenched with 4 M HCl $(100 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The Organic phases were washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give crude TIB-OH as a white solid. The crude product was recrystallized from heptane to give 2,4,6-triisopropylbenzoic acid TIB-OH (21 g, 85\%) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{~s}, 2 \mathrm{H}), 3.05$ (hept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.90 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.27(\mathrm{~m}$, 18 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 176.9,150.5,145.2,130.0,121.0,34.5,31.8,24.0,23.7 . \mathrm{Mp}:$ $187.8-189^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{1}$

2,4,6-Triisopropylbenzoyl chloride (TIB-CI)

To 2,4,6-triisopropylbenzoic acid ($12.4 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.00$ equiv) was added thionyl chloride ($5.00 \mathrm{~mL}, 68.5 \mathrm{mmol}, 1.37$ equiv) and the reaction was heated to $80^{\circ} \mathrm{C}$ (reflux) overnight. After cooling down, the resulting solid was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, washed successively with $0.1 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Residual water was co-evaporated with benzene to give

2,4,6-triisopropylbenzoyl chloride TIB-Cl (13.1 g, 98\%) as a yellowish solid.

To distinguish the chloride from the acid, ${ }^{13} \mathrm{C}$ NMR is best suited.
${ }^{1} H$ NMR is possible but should be performed in benzene d_{6} as this results in a bigger difference in chemical shift. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.08(\mathrm{~s}, 2 \mathrm{H}$), 3.30 (hept, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.73 (hept, J = 7.0 Hz ,
$1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3,151.7,143.2$, $135.4,121.5,34.6,31.6,24.1,24.0 . \mathrm{Mp}: 78-79.7^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{2}$

Additives for transesterification

2-Methoxybenzo[d][1,3,2]dioxaborole (MeOBact)

2-methoxybenzo[d][1,3,2]dioxaborole was synthesized according to the
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BO}_{3}$
MW: 149.9400 literature procedure. ${ }^{3}$

3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (MeBnap)

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BO}_{2}$
MW: 184.0010

To a solution of 2,4,6-trimethyl-1,3,5,2,4,6-trioxatriborinane ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.0$ equiv) in pentane (5 mL), was added naphthalene-1,8-diol ($481 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.00$ equiv). The resulting reaction mixture was stirred at rt for 2 h . The reaction mixture was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give MeBnap (431 mg, 78\%) as a pink crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{dd}, \mathrm{J}=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.61(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.7\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 135.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 127.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 121.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 109.2$ $\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), \mathrm{CH}_{3}$ signal not observed. ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.65 . \mathrm{Mp}: 78.5-79.0^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2364$, 2329, 1637, 1607, 1585, 1407, 1379, 1362, 1343, 1261, 1222, 1044, 887, 814, 753, 666, 628.

3-Methoxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (MeOBnap)

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BO}_{3}$
MW: 200.0000

The titled product was prepared following a reported procedure. ${ }^{4}$ Trimethyl borate ($2.10 \mathrm{~mL}, 18.7 \mathrm{mmol}, 3.00$ equiv) was added to a solution of naphthalene-1,8-diol ($1.00 \mathrm{~g}, 6.24 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the resulting reaction mixture was stirred at $r t$ for 18 h . The reaction mixture was then concentrated under reduced pressure and the crude product was purified by kugelrohr distillation $\left(120^{\circ} \mathrm{C}, 5 \times 10^{-}\right.$ ${ }^{2} \mathrm{mbar}$) to give MeOBnap ($686 \mathrm{mg}, 55 \%$) as a crystalline yellow solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{dd}, \mathrm{J}=8.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=8.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=7.2$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.7,135.1,127.7,120.8,116.1,109.5,51.9$ $\left(\mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 19.0. Mp: 82.1-83.5 ${ }^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{4}$

3-Hydroxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene (HOBnap)

The titled product was prepared following a reported procedure. ${ }^{4}$ Boric acid (386 mg , $6.24 \mathrm{mmol}, 1.00$ equiv) was added to a solution of naphthalene-1,8-diol ($1.00 \mathrm{~g}, 6.24$ $\mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeCN}(50 \mathrm{~mL})$ and the resulting reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then allowed to reach rt and concentrated under reduced pressure. The residue was then re-dissolved in toluene (20 mL) and the solution was filtered through a plug of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Toluene was removed under reduced pressure to give the crude solid. Recrystallisation from heptanes/toluene ($7: 3$) gave HOBnap ($928 \mathrm{mg}, 80 \%$) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.3$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.6,135.2,127.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 121.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 116.2$, $109.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 19.40. $\mathrm{Mp}: 221.9-223.3^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{4}$

2-Methyl-1,3,2-benzodioxaborole (MeBcat)

The titled product was prepared following a reported procedure. ${ }^{5}$ Catechol (3.30 g , $3.00 \mathrm{mmol}, 3.00$ equiv.) was added to a solution of 2,4,6-trimethyl-1,3,5,2,4,6trioxatriborinane ($1.40 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00$ equiv.) in pentane (40 mL) and the resulting reaction mixture was stirred until all solid was dissolved. The formed water was removed using a syringe and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give MeBcat ($3.6 \mathrm{~g}, 90 \%$) as a colorless liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 148.4\left(2 \times \mathrm{Cq}_{\mathrm{Ar}}\right), 122.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 112.3\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 35.39$. Analytical data are in accordance with the literature. ${ }^{5}$

2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole ($\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OB}$ cat $)$

Catecholborane ($1.06 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00$ equiv) was added dropwise to a solution of 2,2,2-trifluoroethanol ($0.73 \mathrm{~mL}, 10.0 \mathrm{mmol}, 1.00$ equiv) in dry, degassed benzene (10 mL), leading to hydrogen evolution. The reaction was stirred for 2 h at rt and the solvent was removed under reduced pressure to give $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OB}$ cat as a clear liquid. This compound proved to be very sensitive, and it could not be exposed to ambient air. IR and HRMS data could not be measured. ${ }^{1} \mathrm{H}$ and ${ }^{19}$ F NMR spectra showed signals in a $5.5: 1$ ratio and the ${ }^{11}$ B spectra shows two peaks (with one major one). It is suspected that the product may form dimers.
Major product: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.67(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{q}, \mathrm{J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 147.9\left(\mathrm{bs}, \mathrm{Cq}_{\mathrm{Ar}}\right), 128.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 123.7\left(\mathrm{q}, \mathrm{J}=278 \mathrm{~Hz}, \underline{C} F_{3}\right), 122.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, 112.6 (bs), $63.04\left(\mathrm{q}, \mathrm{J}=36.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CF}_{3}\right) .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(96 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 23.18 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $-76.23(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz})$.
Minor product (characteristic signals): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 3.60(\mathrm{q}, J=8.4 \mathrm{~Hz})$.
${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 17.33 .{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-76.47(\mathrm{t}, J=8.7 \mathrm{~Hz}$).

2-(1,3,2-Benzodioxaborol-2-yloxy)-1,3,2-benzodioxaborole (O(Bcat)2)

Catechol was recrystallized from toluene ca. (100 g/600 mL) prior to use. The titled product was prepared following a reported procedure. ${ }^{6}$ Catechol ($22.0 \mathrm{~g}, 200 \mathrm{mmol}, 1.00$ equiv), boric acid (12.4g, $200 \mathrm{mmol}, 1.00$ equiv) and benzene (100 mL) were added to a flask fitted with a Dean-Stark apparatus. The reaction was refluxed until no more water was liberated (ca. 9 mL). Benzene was removed under reduced pressure to give a crude white solid. The crude product was purified by kugelrohr distillation ($200{ }^{\circ} \mathrm{C}, 2 \times 10^{-1}$ mBar) to give $\mathrm{O}(\text { Bcat })_{2}(14.5 \mathrm{~g}, 57 \%)$ as a white, crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.7$, 123.1, 112.7. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{2 2 . 4 5 . ~ M p : ~ 1 4 7 - 1 4 7 . 9 ~}{ }^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{6}$

Synthesis of acyclic precursors 4 and 5

3,3-Dibenzyldihydrofuran-2(3H)-one (1)

The titled product was prepared following a procedure adapted from the literature. ${ }^{7}$ To a solution of LiHMDS ($100 \mathrm{~mL}, 100 \mathrm{mmol}, 2.20$ equiv, 1 M in THF) was added at $-78{ }^{\circ} \mathrm{C}$ a solution of tetrahydrofuran-2-one ($3.40 \mathrm{~mL}, 45.0 \mathrm{mmol}$, 1.00 equiv) in THF (10 mL). The resulting reaction mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ then benzyl bromide ($11.2 \mathrm{~mL}, 94.5 \mathrm{mmol}, 2.10$ equiv) was added dropwise (slowly). The reaction mixture was allowed to reach rt and was stirred for 2 h at rt . The reaction was quenched with water and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic phases were washed with brine ($1 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a crude yellow solid. The crude product was recrystallized from heptanes (500 mL) to give 1 as off-white crystals ($10.91 \mathrm{~g}, 91 \%$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.23(\mathrm{~m}, 10 \mathrm{H}), 3.39(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.81$ $(\mathrm{d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.2(\mathrm{C}=\mathrm{O}), 136.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 130.3$ $\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 65.4,49.9,44.0,29.2 . \mathrm{Mp}: 135.6-136.3^{\circ} \mathrm{C}$. Analytical data are in accordance with the literature. ${ }^{7}$

3,3-Dibenzyl-5-methyl-hex-4-en-1-ol (2)

DIBAL-H ($40.4 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $40.4 \mathrm{mmol}, 1.01$ equiv) was added slowly to a suspension of 3,3-dibenzyltetrahydrofuran-2-one 1 ($10.6 \mathrm{~g}, 40.0 \mathrm{mmol}$, 1.00 equiv) in dry toluene (200 mL) at $-78^{\circ} \mathrm{C}$ (the internal temperature should not exceed $-70^{\circ} \mathrm{C}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ until no starting material was observed (TLC monitoring). The reaction mixture clears up once it is close to being complete (approximately after 1.5 h). Dry THF (80 mL) was added at $-78^{\circ} \mathrm{C}$ and the dry ice bath was removed (It is important not to let the reaction mixture warm up without additional THF as this leads to reduction of the lactol).

Simultaneously, in a second reaction flask, n-BuLi ($31.2 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 78.0 mmol 1.95 equiv) was slowly added at $0^{\circ} \mathrm{C}$ to a suspension of isopropyl(triphenyl)phosphonium iodide ($34.6 \mathrm{~g}, 80.0$ $\mathrm{mmol}, 2.00$ equiv) in THF (150 mL). Upon addition, the reaction mixture turned deep red. The reaction mixture was allowed to reach rt and stirred for 1 h . The previously prepared solution of aluminium lactolate was added to the ylide via cannula. The reaction vessel, in which the aluminium lactolate was prepared, was washed with additional dry THF (50 mL). The resulting reaction mixture was stirred overnight at $55^{\circ} \mathrm{C}$. The reaction mixture was quenched with $0.5 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$, and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product. The crude product was purified by FC on silica gel (pentane/ $\mathrm{Et}_{2} \mathrm{O} 7: 3$) to give $2(10.0 \mathrm{~g}, 85 \%$) as a clear oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.06-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{dt}, \mathrm{J}=7.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (d, J = 13.5 Hz, 2H), 2.72 (d, J=13.5 Hz, 2H), 1.78-1.73 (m, 3H), $1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7,133.3,131.0,129.5,127.9,126.2$, $77.6,77.2,76.7,60.1,46.0,43.2,39.1,28.7,19.4 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3303,3024,2922,1599,1495,1452,1181$, 1075, 1031, 998, 911, 832. HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 317.1876; found: 317.1877
(3,3-Dibenzyl-5-methyl-hex-4-enyl) 2,4,6-triisopropylbenzoate (3)

$\mathrm{NaH}(1.45 \mathrm{~g}, 34.7 \mathrm{mmol}, 55 \%$ in mineral oil, 1.20 equiv) was added to a solution of 3,3-dibenzyl-5-methyl-hex-4-en-1-ol 2 ($8.60 \mathrm{~g}, 28.9 \mathrm{mmol}, 1.00$ equiv) in THF (30 mL). The resulting reaction mixture was stirred for 1 h at rt , then TIB-Cl (8.49 g , 8.68 mmol, 1.20 equiv) was added and the reaction mixture was heated at $55{ }^{\circ} \mathrm{C}$ and stirred at this temperature overnight. The reaction mixture was quenched with water $(30 \mathrm{~mL})$ and stirred for 2 h to hydrolyze unreacted TIB-CI. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined
organic phases were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give a yellow oil. The crude product was purified by FC on silica gel (heptanes/toluene 7:3 to 6:4) to give $\mathbf{3}(12.4 \mathrm{~g}, 82 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.09(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 5.09-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.34(\mathrm{~m}, 2 \mathrm{H})$, $2.92-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}) $\delta 171.0,150.2,144.8,138.4,133.8,131.4,130.8,128.6,127.9,126.3,121.0,62.6,46.1,43.1$, $34.6,34.3,31.6,28.7,24.3,24.1,19.2 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2959,2926,2869,1800,1723,1605,1456,1384,1362$, 1249, 1137, 1101, 1072, 966, 876, 749, 700. HRMS (ESI): Calculated for $\mathrm{C}_{3} 7 \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 547.3547$; found: 547.3528.

2-(3,3-Dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

The titled product was prepared following a procedure adapted from the literature. ${ }^{8}$ TMEDA ($2.34 \mathrm{~mL}, 15.6 \mathrm{mmol}, 1.30$ equiv) was added to a solution of (3,3-dibenzyl-5-methyl-hex-4-enyl) 4-ethyl-2,6-diisopropyl-benzoate $\mathbf{3}\left(6.36 \mathrm{mg}, 12.0 \mathrm{mmol}, 1.00\right.$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}$ (100 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and s-BuLi $(11.1 \mathrm{~mL}, 15.6$ mmol, 1.4 M in cyclohexane, 1.30 equiv) was added slowly. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and a solution of pinacolborane ($3.48 \mathrm{~mL}, 24.0 \mathrm{mmol}, 2.00$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$ was then added. The resulting reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then allowed to reach rt and stirred overnight. The reaction mixture was carefully quenched with saturated aq. $\mathrm{NaHCO}_{3}(50$ mL) and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (heptane/toluene 6:4 to 3:7) to give 4 ($3.4 \mathrm{~g}, 71 \%$) as a clear oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.12(\mathrm{~m}, 10 \mathrm{H}), 4.94-4.93(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}$ $=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 0.91-$ $0.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,132.4,131.1,130.0,127.7,125.8,83.0,44.8,44.2$, $29.9,28.7,24.9,19.5 .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.31 . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3027,2975,2925,2868,1453,1369$, 1315, 1144, 1077, 1031, 967, 884, 848, 750, 726, 697. HRMS (ESI): Calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$: 405.2959; found: 405.2948.

2-(4,4-Dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5) ${ }^{9,10}$

To a solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.38 \mathrm{~mL}, 6.0 \mathrm{mmol}, 3.0$ equiv.) in THF (12 mL) was added slowly n-BuLi ($0.96 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 2.40 mmol, 1.20 equiv) at a temperature that should not exceed -100 ${ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at below $-100^{\circ} \mathrm{C}$ for 30 min and a solution of 2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 ($816 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.00 equiv) in dry THF (4 mL) was then added. The resulting
reaction mixture was allowed to reach rt and stirred for 20 h . Dry toluene (10 mL) was added, and the solvent were removed under reduced pressure. The residue was re-dissolved in toluene and filtered through a syringe filter. The filtrate was concentrated under reduced pressure to give 5 ($860 \mathrm{mg}, 95 \%$, crude) that was used in the next step without further purification. Purification by FC was not possible due to the unstable nature of this molecule.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.29-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.00-4.99(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.83(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.73(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.71(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dt, $J=$ $9.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.90,138.86,133.0,131.06,131.04,129.8,127.83,127.78,126.06$, $126.02,84.5,45.1,43.9,33.9,29.6,28.7,24.74,24.68,19.5 .{ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 32.72$.

Intramolecular cyclopropanation

Thermal intramolecular cyclopropanation

Preparative cyclopropanation

(\pm)-(1SR,5SR)-2,2-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-6) and 2-((1SR,5SR)-4,4-dibenzyl-6,6-dimethylbicyclo[3.1.0]hexan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((\pm)-7)

To a solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.35 \mathrm{~mL}, 5.4 \mathrm{mmol})$ in THF (10 mL) was added slowly n-BuLi ($0.87 \mathrm{~mL}, 2.5$ M in hexane, 2.2 mmol) at such a rate that the internal temperature did not exceed $-100{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred below $-100^{\circ} \mathrm{C}$ for 30 min and a solution of 2 -(3,3-dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 ($730 \mathrm{mg}, 1.81 \mathrm{mmol}$) in dry THF (4 mL) was then added. The resulting reaction mixture was allowed to reach rt and stirred for 5 h . The solvents were removed under reduced pressure and toluene (20 mL), resulting in the precipitation of LiCl . The supernatant was transferred via cannula to a reaction flask containing potassium benzoate ($265 \mathrm{mg}, 1.8 \mathrm{mmol}$) and the reaction mixture was heated at $140^{\circ} \mathrm{C}$ overnight (closed vessel). After cooling down, the solid residue was filtered off and the remaining solution was concentrated under reduced pressure. The residue was purified by FC (heptane/EtOAc $100: 1$ to $30: 1$)to give (\pm)-6 (368 mg , $1.27 \mathrm{mmol}, 70 \%$ yield) as alear liquid that solidified in the fridge. A second fraction containing (\pm)-7 (9 $\mathrm{mg}, 0.18 \mathrm{mmol}, 10 \%$ yield) was also isolated. Recrystallization from hexane/ $\mathrm{Et}_{2} \mathrm{O}$ gave single crystals of (\pm)-7 suitable for X-ray diffraction analysis.
$(\pm)-6:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.13(\mathrm{~m}, 10 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H})$,

$2.71(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.80-1.69 (m, 1H), 1.44-1.24 (m, 2H), $1.21(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.73(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.7\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 140.0\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 130.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $130.5\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $49.7,48.0,45.7,39.7,36.9,31.5,29.5,25.1,20.5,17.3$. Mp: $46.8-47.7^{\circ} \mathrm{C}$. IR (cm^{-1}): 3021, 2999, 2943, 2913, 2859, 1602, 1494, 1452, 1373, 1186, 1126, 1076, 1031, 778, 754, 738, 702, 639. HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{27}$ $[\mathrm{M}+\mathrm{H}]^{+}: 291.2107$, found: 291.2108.

$(\pm)-7:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.35-7.14(\mathrm{~m}, 10 \mathrm{H}), 2.93-2.69(\mathrm{~m}, 2 \mathrm{H})$, $2.63-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.17$ ($\mathrm{s}, 3 \mathrm{H}$), $1.13(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 34.15 ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 141.11, 140.18, 131.41, 131.03, 128.35, 128.31, 126.34, 126.21, 83.26, 50.70, 48.09, 46.25, 45.25, 36.75, 27.77, 27.48, 26.92, 25.99, 24.76, 18.83; HRMS (ESI-Orbitrap) m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$: 417.2959, found: 417.2951.

Transesterification mediated intramolecular cyclopropanation

Effect of additives

Procedure to test additives

To a solution of 2-(4,4-dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane 5 ($226 \mathrm{mg}, 0.5 \mathrm{mmol}$) in the respective solvent (5 mL), the addititives were added. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 20 h , cooled down to rt and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane).

Reaction of 6 with HCl : ((2-(propan-2-ylidene)cyclopentane-1,1-diyl)bis(methylene))dibenzene (8)

A suspension of $(\pm)-(1 S R, 5 S R)-2,2-$ dibenzyl-6,6dimethylbicyclo[3.1.0]hexane ((\pm)-6) ($73 \mathrm{mg}, 0.25$ mmol) in $\mathrm{HCl}(2.5 \mathrm{~mL}, 3 \mathrm{M}$ in methanol) was heated to reflux for 6 h . The reaction mixture was treated with saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane) to give a mixture of olefinic products 8 that could not be separated.

Characteristic NMR signals of major isomer
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.07(\mathrm{~m}), 3.16(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.9$, 122.9, 50.8, 44.8, 36.6, 34.4, 23.7, 22.3, 21.3.

Preparative cyclopropanation
(\pm)-(1SR,5SR)-2,2-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-6) and 4,4-dibenzyl-7-hydroxy-2-methylheptan-3-one (9)

To a solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.39 \mathrm{~mL}, 6.0 \mathrm{mmol})$ in THF (15 mL) was added slowly n-BuLi $(0.96 \mathrm{~mL}, 2.5$ M in hexane, 2.40 mmol) at such a rate that the internal temperature did not exceed $-100{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred below $-100^{\circ} \mathrm{C}$ for 30 min and a solution of 2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 ($810 \mathrm{mg}, 2.00 \mathrm{mmol}$) in dry THF (5 mL)

was then added. The resulting reaction mixture was allowed to reach rt and stirred for 5 h . The solvents were removed under reduced pressure and the residue was re-dissolved in TFT (20 mL), resulting in the precipitation of the LiCl . The solution was then transferred via cannula to a reaction flask containing O (Bcat) $2_{2}(1.02 \mathrm{~g}, 4.00 \mathrm{mmol})$, removing LiCl from the reaction mixture, and the resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then cooled down to $r t$ and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane) to give the desired (\pm)6 containing some olefinic impurities that could be removed by ozonolysis.

Ozonolysis: Product (\pm)-6, contaminated with olefinic impurities, was dissolved $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL}$, 1:5) and the reaction mixture cooled to $-78^{\circ} \mathrm{C}$. Ozone was bubbled through the solution until the colour of the reaction mixture turned light blue. Nitrogen was then bubbled through for 15 min to remove the excess of ozone and $\mathrm{NaBH}_{4}(76 \mathrm{mg}, 2.0 \mathrm{mmol})$ was carefully added at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach $r t$ and stirred at this temperature for 3 h . The reaction mixture was then quenched with water (2 mL), followed by saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organic phases were washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O}$ 100:0 to 70:30) to give 6 (314 mg, 54%) as a clear oil, which crystallized in the fridge. A second fraction provided hydroxyketone 9 (71 $\mathrm{mg}, 11 \%)$ as a clear oil.
$(\pm)-6$: Identical to the product describe above under thermal conditions. The enantiomeric ratio $((1 S, 5 S) /(1 R, 5 R) 50: 50)$ was determined by chiral HPLC: CHIRALPAK IB-3; 100\% hexane; $0.7 \mathrm{~mL} / \mathrm{min}$; $\lambda=210 \mathrm{~nm}$

Signal 1: DAD1 A, Sig=250, 4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	9.025	BV	0.1397	299.26758	31.53886	49.6019
2	9.484	VB	0.1563	304.07098	28.53767	50.3981
Totals				603.33856	60.07653	

9: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.14(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 4 \mathrm{H})$, $3.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.68 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.87-1.79 (m, 2H), 1.74-1.68 (m, 2H), 1.59 (bs, 1H), 0.72 (d, J = 6.7 Hz, 6H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 219.2$ $(\mathrm{C}=\mathrm{O}), 137.7\left(2 \times \mathrm{Cq}_{\mathrm{Ar}}\right), 130.5\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $63.2\left(\mathrm{CH}_{2}\right), 57.4(\mathrm{Cq}), 41.2\left(2 \times \mathrm{CH}_{2}\right), 35.7(\mathrm{CH}), 27.9\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right)$, $19.3\left(2 \times \mathrm{CH}_{3}\right)$. HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 325.2164, found 325.2173 .

Asymmetric intramolecular cyclopropanation: chiral auxiliary approach

Reactions starting from (+)-10

$(+)-(4 R, 5 R)-4,5-$ Dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane ((+)-10) ${ }^{11-13}$

(1R,2R)-1,2-Dicyclohexylethane-1,2-diol ($835 \mathrm{mg}, 3.70 \mathrm{mmol}, 1.20$ equiv) and saturated aq. $\mathrm{NaHCO}_{3}(0.9 \mathrm{~mL})$ were added to a solution of 2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane 5 ($1.26 \mathrm{~g}, 3.07 \mathrm{mmol}, 1.00$ equiv) in THF (6 mL). The resulting reaction mixture was stirred overnight at $r t$. The reaction mixture was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give crude 10 as a clear oil. The crude product was purified by FC on silica gel (heptanes/toluene $8: 2$ to $7: 3$) to give (+)-10 (1.1g, 72\%) as a clear oil. The product contained some residual heptanes.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.12(\mathrm{~m}, 10 \mathrm{H}), 4.96-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 9 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.58-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-0.85(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3,132.4$, 131.1, 129.9, 129.2, 127.7, 125.8, 125.4, 83.4, 44.8, 44.3, 43.1, 30.2, 28.7, 28.5, 27.5, 26.6, 26.2, 26.1, 21.6, 19.5. ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.61 .[\alpha]_{D}^{20}=+26\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2922,2851,1495$, 1450, 1390, 1361, 1309, 1232, 1171, 1076, 1030, 1017, 981, 890, 831, 749. HRMS (ESI): Calculated for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}: 513.3898$, found: 513.3886.
(4R,5R)-4,5-Dicyclohexyl-2-((S)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane $((S)-11)^{13-15}$

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.17 \mathrm{~mL}, 2.70 \mathrm{mmol}, 1.50$ equiv.) in dry THF (15 mL) at $-100^{\circ} \mathrm{C}$ was added slowly n-BuLi ($0.79 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $2.00 \mathrm{mmol}, 1.10$ equiv) at such a rate that the internal temperature never exceeded $-100{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was then stirred below $-100^{\circ} \mathrm{C}$ for 30 min and a solution of $\quad(4 R, 5 R)-4,5$-dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane 10 ($940 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.00$ equiv) in dry THF (5 mL) was the added. The resulting reaction mixture was stirred below $-100^{\circ} \mathrm{C}$ for 15 min
then anhydrous ZnCl_{2} ($417 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.70$ equiv) was added in one portion. The resulting reaction mixture was stirred for 14 h at rt . Pentane (5 mL) was added, and the reaction mixture was carefully quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, followed by water (5 mL). The phases were separated, and the aqueous phase was extracted with pentane ($2 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Toluene (5 mL) was added (to remove residual THF) and the mixture was concentrated under reduced pressure. The resulting residue was re-dissolved in pentane (10 mL), which resulted in a slightly turbid solution. This solution was filtered through a syringe filter and concentrated to give 11. The compound could not be purified by FC due to its instability on silica. Since this compound is not stable for HPLC, the dr was determined via quantitative ${ }^{13}$ C-NMR. Only peaks for one diastereoisomer were observed (vide infra).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.00-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 12 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-0.88(\mathrm{~m}, 12 \mathrm{H}), 1.40(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.87\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 138.83\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 132.9(\mathrm{Cq}), 131.1\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.8$ $(=\mathrm{CH}), 127.79\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.75\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 84.2(2 \times \mathrm{CH}), 45.3\left(\mathrm{CH}_{2}\right), 45.1$ $\left(\mathrm{CH}_{2}\right), 44.0\left(\mathrm{C}_{\mathrm{q}}\right), 42.9(2 \times \mathrm{CH}), 34.2\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 28.3\left(2 \times \mathrm{CH}_{2}\right), 27.4\left(2 \times \mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{2}\right), 25.98\left(2 \times \mathrm{CH}_{2}\right), 25.96\left(2 \times \mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.25$.
(4R,5R)-4,5-Dicyclohexyl-2-((RS)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((RS)-11)

To a solution of racemic $5(41.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CDCl}_{3}(1.5 \mathrm{~mL})$ was added ($1 R, 2 R$)-1,2-dicyclohexylethane-1,2diol ($23.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.00$ equiv). The resulting reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was cooled to rt, concentrated under reduced pressure to a volume of 0.5 mL and filtered through a syringe filter into an NMR tube. The crude mixture ($R S$)- $\mathbf{- 1 1}$ is as anticipated a 1:1 mixture of diastereomer. It was used without further purification for the intramolecular cyclopropanation step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, characteristic signals) $\delta 3.37(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (d, J=1.2 Hz, 3H), $1.42(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.94$, $138.88,138.84,132.90,132.88,131.05,131.02,130.99,129.77,127.84,127.80,127.76,126.08$, $126.05,126.01,84.26,84.19,45.29,45.26,45.19,45.12,43.97,43.94,42.93,34.25,34.18,29.82$, $29.74,29.65,28.67,28.65,28.37,28.34,27.43,27.40,26.58,26.53,26.33,26.20,26.07,25.95,25.00$, 19.53, 19.45. ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.8$.

Selected ${ }^{13} \mathrm{C}$ signals of (S)-11 (top) and a (RS)-11 (bottom):

(+)-(1S,5S)-2,2-dibenzyl-6,6-dimethylbicyclo[3.1.0]hexane ((+)-6):

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.17 \mathrm{~mL}, 2.70 \mathrm{mmol}, 1.50$ equiv.) in dry THF (15 mL) at $-100{ }^{\circ} \mathrm{C}$ was added slowly n-BuLi $(0.79 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 2.00 mmol , 1.10 equiv) at such a rate that the internal temperature never exceeded -100 ${ }^{\circ} \mathrm{C}$. The resulting reaction mixture was then stirred below $-100{ }^{\circ} \mathrm{C}$ for 30 min and a solution of (4R,5R)-4,5-dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane 10 ($940 \mathrm{mg}, 1.80 \mathrm{mmol}$) in dry THF (5 mL) was the added. The resulting reaction mixture was stirred below $-100^{\circ} \mathrm{C}$ for 15 min then anhydrous ZnCl_{2} ($417 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.70$ equiv) was added in one portion. The resulting reaction mixture was stirred for 14 h at rt . Pentane (5 mL) was added, and the reaction mixture was carefully quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, followed by water (5 mL). The phases were separated, and the aqueous phase was extracted with pentane ($2 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Toluene (5 mL) was added (to remove residual THF) and the mixture was concentrated under reduced pressure. The resulting residue was re-dissolved in pentane (10 mL), which resulted in a slightly turbid solution. This solution was filtered through a syringe filter and concentrated to give the α-chloroboronic ester intermediate (S)-11. The resulting residue was re-dissolved in dry TFT (20 mL) and $\mathrm{O}(\mathrm{Bcat})_{2}(914 \mathrm{mg}, 3.60 \mathrm{mmol})$ was added. The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled down to rt and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane) to give (+)-6 as a clear oil, contaminated with olefinic impurities. Removal of the impurities was achieved
by ozonolysis, in analogy to the procedure for racemic (\pm)- 6 . The crude product was purified by FC on silica gel (pentane) to give (+)-6 (209 mg, 40\%, 77:23 er) as a clear oil, which crystallized in the fridge. $(+)-6:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.13(\mathrm{~m}, 10 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.73(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{Mp}: 41.0-42.1^{\circ} \mathrm{C} .[\alpha]_{D}^{20}=+36.76\left(\mathrm{c}=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The other physical data are in accordance with those of racemic compound (\pm)-6.

The absolute configuration of the major enantiomer was assigned by analogy to the configuration of enantioenriched (+)-(14). The enantiomeric ratio ((1S,5S)/(1R,5R) 75:25) was determined by chiral HPLC: CHIRALPAK IB-3; 100\% hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}$

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	9.057	BV	0.1465	358.13477	36.48118	75.3935
2	9.536	VB	0.1517	116.88588	11.39551	24.6065
Totals				475.02065	47.87670	

Enantioenriched (+)-(6) was suspended in methanol. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added until all solid dissolved. Slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$ gave crystals suitable for X -ray analysis. Due to low anomalous scattering the absolute configuration of the single crystal could not be determined.

Monitoring of the enantiomeric ratio during the reaction:

During the first 6 h of the cyclopropanation, an aliquot was taken from the reaction mixture every hour, then after 8 h and finally after 24 h . The aliquot was diluted with hexane. The enantiomeric ratio was determined by chiral HPLC and the yield was determined by GC using dodecane as an internal standard. HPLC Conditions: CHIRALPAK IB-3; 100\% hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}$

Experiment with (RS)-11 leading to racemic 6

To a solution of (4R,5R)-4,5-dicyclohexyl-2-(($R S$)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2dioxaborolane ((RS)-11) (561mg, 1 mmol$)$ in dry TFT (10 mL), O(Bcat) $)_{2}(508 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added. The resulting reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled down to rt and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane) to give (+)-6 as a clear oil, contaminated with olefinic impurities. Removal of the impurities was achieved by ozonolysis, in analogy to the procedure for racemic (\pm) - 6 . The crude product was purified by FC on silica gel (pentane) to give 6 ($91 \mathrm{mg}, 31 \%$, er $50: 50$) as a clear oil, which crystallized in the fridge.

The enantiomeric ratio $((1 S, 5 S) /(1 R, 5 R) 1: 1)$ was determined by chiral HPLC: CHIRALPAK IB-3; 100% hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}$

Signal 1: DAD1 A, Sig=250,4 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.089	BV	0.1385	18	19,48752	48.4507
2	9.515		0.1576	192.90077	17.92152	51.5493
Total				374.20627	37.40904	

Reaction starting from (+)-12

3,3-Bis(4-bromobenzyl)dihydrofuran-2(3H)-one

To a solution of LiHMDS ($100 \mathrm{~mL}, 100 \mathrm{mmol}, 2.20$ equiv, 1 M in THF) at -78 ${ }^{\circ} \mathrm{C}$ was added dropwise a solution of tetrahydrofuran-2-one ($3.40 \mathrm{~mL}, 45.0$ mmol, 1.00 equiv) in THF (5 mL). The resulting mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ and a solution of 1-bromo-4-(bromomethyl)benzene (10.5 g, 25.9 mmol, 2.10 equiv) in THF (10 mL) was added slowly. The reaction mixture was allowed to reach rt and was stirred at rt for 2 h . The reaction mixture was quenched with water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 50 mL). The combined organic phases were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was recrystallized from heptane/toluene ($200 / 50 \mathrm{~mL}$) to give the titled product as white crystals ($7.00 \mathrm{~g}, 83 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.03(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.13(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.3,131.9,121.6,65.3,49.7,43.2,29.0 . \mathrm{Mp}: 160.7-161.6^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right): 3037,2985,2916,1752$, $1486,1449,1408,1381,1226,1163,1124,1101,1070,1027,1011,960,882,815,730,711,678,652$, 615. HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 422.9590$, found 422.9584 .

3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-ol

DIBAL-H ($16.7 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, 16.7 mmol , 1.01 equiv) was added slowly to a suspension of 3,3-bis[(4-bromophenyl) methyl]tetrahydrofuran-2-one ($7.00 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.00$ equiv) in dry toluene (80 mL) at $-78^{\circ} \mathrm{C}$. The internal temperature should never exceed $-70{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ until no starting material was observed (TLC monitoring). The reaction mixture clears up once it is close to being complete, (ca. 1.5 h$)$. Dry THF (30 mL) was added at $-78^{\circ} \mathrm{C}$ and the dry ice bath was removed. It is important that the reaction mixture does not warm up without the additional THF as this leads to reduction of the aluminium lactolate. In a separate reaction vessel, n-BuLi ($9.2 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 23.1 mmol 1.4
equiv) was slowly added at $0^{\circ} \mathrm{C}$ to a suspension of isopropyl(triphenyl)phosphonium iodide (10.7 g, $24.8 \mathrm{mmol}, 1.50$ equiv) in THF (60 mL). Upon he addition the reaction mixture turned deep red. The reaction was allowed to reach rt and was stirred for 1 h at this temperature. The previously prepared solution of aluminium lactolate was added to the ylide via cannula. The reaction vessel of the lactol was washed with dry THF (20 mL). The resulting reaction mixture was stirred overnight at $55^{\circ} \mathrm{C}$. The reaction mixture was quenched with $0.5 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O} 7: 3$) to give 3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-ol (5.9 g , 79%) as a clear oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$) $\delta 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.96(\mathrm{~m}, 4 \mathrm{H}), 5.01-4.97(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dt}, J=7.6$, $4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.722(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.720(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4\left(2 \mathrm{Cq}_{\mathrm{Ar}}\right), 133.9$ $(\mathrm{Cq}), 132.6\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.9(\mathrm{CH}), 120.3(\mathrm{CH}), 59.9\left(\mathrm{CH}_{2}\right), 45.1\left(2 \times \mathrm{CH}_{2}\right), 43.0(\mathrm{Cq}), 38.9$ $\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3333,2968,1486,1444,1403,1108,1071,1036,1010,839$, 800, 720, 656.

4,4'-(2-(2-Methylprop-1-en-1-yl)-2-vinylpropane-1,3-diyl)bis(bromobenzene)

To a solution of 3,3-bis[(4-bromophenyl)methyl]-5-methyl-hex-4-en-1-ol ($2.4 \mathrm{~g}, 5.20 \mathrm{mmol}, 1.00$ equiv) and (2-nitrophenyl) selenocyanate (1.44 g , $6.36 \mathrm{mmol}, 1.20$ equiv) in THF (25 mL) was added tri- n-butylphosphine (1.57 $\mathrm{mL}, 6.36 \mathrm{mmol}, 1.20$ equiv) at rt . The reaction mixture was stirred at rt for 2 h , then solid NaHCO_{3} ($534 \mathrm{mg}, 6.36 \mathrm{mmol}, 1.20$ equiv) was added and the reaction mixture was cooled to $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}(3 \mathrm{~mL}, 30 \%)$ was added carefully and the reaction was stirred overnight at r. Water was added and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10$ mL). The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane) to give 4,4'-(2-(2-methylprop-1-en-1-yl)-2-vinylpropane-1,3diyl)bis(bromobenzene) ($2.10 \mathrm{~g}, 91 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 4 \mathrm{H}), 5.77(\mathrm{dd}, \mathrm{J}=17.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, J= 10.9, 1.0 Hz, 1H), 5.06-5.03 (m, 1H), $4.98(d d, J=17.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,137.4,135.3,132.9,130.8$, $120.2,113.5,46.3,45.8,27.6,19.9 . \mathrm{Mp}: 112.0-112.7^{\circ} \mathrm{C}$. IR (cm^{-1}): 2975, 2941, 2921, 2360, 1895, 1626, 1483, 1440, 1401, 1213, 1069, 1010, 914, 848, 796, 747, 725, 685, 644. HRMS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Br}_{2}[\mathrm{M}]^{+}: 432.0083$, found 432.0081 .

2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

The titled product was prepared following a procedure adapted from the literature. ${ }^{16}$ Oxidized Wilkinson's catalyst ($45.2 \mathrm{mg}, 2$ mol\%) was added to a solution of 1-bromo-4-[2-[(4-
bromophenyl)methyl]-4-methyl-2-vinyl-pent-3-enyl]benzene ($1.06 \mathrm{~g}, 2.44 \mathrm{mmol}, 1.00$ equiv) in dry THF (10 ml). 4,4,5,5-Tetramethyl-1,3,2-dioxaborolane ($0.43 \mathrm{ml}, 2.93 \mathrm{mmol}, 1.20$ equiv) was added dropwise and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to rt , then carefully quenched with saturated aq. $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O} 100: 2$) to give the product ($2.00 \mathrm{~g}, 86 \%$) as a clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 4 \mathrm{H}), 4.87-4.84(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, \mathrm{~J}=13.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.22(\mathrm{~s}, 12 \mathrm{H}), 0.84-0.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.0\left(2 \times \mathrm{Cq}_{\mathrm{Ar}}\right), 133.1(\mathrm{Cq}), 132.6\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $130.8\left(4 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.5(=\mathrm{CH}), 120.0\left(2 \times \mathrm{Cq}_{\mathrm{Ar}}\right), 83.1(2 \times \mathrm{Cq}), 44.6(\mathrm{Cq}), 43.4\left(\mathrm{CH}_{2}, 2 \mathrm{C}\right), 29.8\left(\mathrm{CH}_{2}\right), 28.6$ $\left(\mathrm{CH}_{3}\right), 24.9\left(4 \times \mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2975,2926,2863,1487,1446,1368,1317,1143,1072,1010$, 966, 883, 847, 742. HRMS: Not found.
(+)-(4R,5R)-2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane ($(+)-12)$

To a solution of 2-[3,3-bis[(4-bromophenyl)methyl]-5-methyl-hex-4-enyl]-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($1.00 \mathrm{~g}, 1.78 \mathrm{mmol}, 1.00$ equiv) in THF (5 mL), were added ($1 R, 2 R$)-1,2-dicyclohexylethane-1,2-diol ($483 \mathrm{mg}, 2.13 \mathrm{mmol}, 1.20$ equiv) and saturated aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. The resulting reaction mixture was stirred overnight at rt. The reaction mixture was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O}$ 100:1) to give (+)-12 (1.06 g, 89\%) as a
clear oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.87(\mathrm{bs}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}$, $2 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-0.80(\mathrm{~m}, 26 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.0,133.1,132.6,130.8,129.4,120.0,83.4$, $44.6,43.5,43.1,30.1,28.7,28.5,27.5,26.6,26.2,26.0,19.6 .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 34.6 .[\alpha]_{D}^{20}=$ +12.8 ($c=1.00, \mathrm{CHCl}_{3}$). IR (cm^{-1}): 2923, 2850, 1487, 1447, 1361, 1233, 1072, 1011, 492, 409. HRMS (ESI): Calculated for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{BBr}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 669.2109, found 669.2124.
(4R,5R)-2-((S)-4,4-bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,5-dicyclohexyl-1,3,2dioxaborolane (13)

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.29 \mathrm{~mL}, 4.50 \mathrm{mmol}, 3.00$ equiv.) in dry THF (10 mL) at $-100^{\circ} \mathrm{C}$ was added slowly n-BuLi ($0.72 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, $1.80 \mathrm{mmol}, 1.20$ equiv) at such a rate that the internal temperature never exceeded $-100{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was then stirred below- $100^{\circ} \mathrm{C}$ for 30 min and a solution of
(+)-(4R,5R)-2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane ((+)-12 ($1.01 \mathrm{~g}, 1.50 \mathrm{mmol}, 1.00$ equiv) in dry THF (5 mL) was the added. The resulting reaction mixture was stirred below $-100^{\circ} \mathrm{C}$ for 15 min then anhydrous ZnCl_{2} ($307 \mathrm{mg}, 4.50 \mathrm{mmol}, 1.50$ equiv) was added in one portion. The resulting reaction mixture was stirred for 14 h at rt . Pentane (5 mL) was added, and the reaction mixture was carefully quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$, followed by water (5 mL). The phases were separated, and the aqueous phase was extracted with pentane $(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Toluene (5 mL) was added (to remove residual THF) and the mixture was concentrated under reduced pressure. The resulting residue was re-dissolved in pentane (10 mL), which resulted in a slightly turbid solution. This solution was filtered through a syringe filter and concentrated to give 13. The compound could not be purified by FC due to its instability on silica.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl3) $\delta 7.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.88(\mathrm{~m}, 2 \mathrm{H})$, $3.31(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.51,2.05-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 19 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 4 \mathrm{H})$, $1.49-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.11(\mathrm{~m}, 14 \mathrm{H}), 1.09-0.85(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{11} \mathrm{~B}$ NMR ($\left.96 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 28.2 ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 137.6,133.5,132.6,131.0,130.9,129.4,120.2,84.2,77.6,77.2,76.7,44.4$, $44.2,43.8,42.9,34.0,29.7,28.7,28.3,27.4,26.5,26.1,26.0,19.6$
(\pm)-(1SR 5SR)-2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane ((\pm)-14)

Racemic (\pm)-14 was prepared according to the transesterification procedure used for (\pm)-6 starting from 2-[3,3-bis[(4-bromophenyl)methyl]-5-methyl-hex-4-enyl]-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($281 \mathrm{mg}, 0.50 \mathrm{mmol}$). The crude product was purified by FC on silica gel (pentane) to give (\pm)-14 (115 mg, 51\%) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.13 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.63(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.75-1.64 (m, 1H), 1.47-1.28(m,2H), $1.20(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.80-0.70(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 139.4$ (CqAr), 138.7 (CqAr), 132.3 ($2 \times \mathrm{CHAr}$), 132.1 ($2 \times \mathrm{CHAr}$), 131.1 ($2 \times \mathrm{CHAr}$), 130.8 ($2 \times \mathrm{CHAr}$), 120.04 (CHAr), 120.0 (CHAr), $49.6(\mathrm{Cq}), 47.4\left(\mathrm{CH}_{2}\right), 45.2\left(\mathrm{CH}_{2}\right), 39.4,36.9\left(\mathrm{CH}_{2}\right), 31.6,29.4,25.2\left(\mathrm{CH}_{2}\right)$, 20.5 (Cq), 17.3. M.p.: $76.0-78.5^{\circ} \mathrm{C}$. IR (cm^{-1}): 3001, 2916, 2860, 1895, 1590, 1484, 1402, 1373, 1071,

1011, 840, 818, 795, 766, 725, 653, 633. HRMS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{2} 4 \mathrm{Br}_{2}[\mathrm{M}]^{++}: 446.0239$, found 446.0236.

The enantiomeric ratio $((1 S, 5 S) /(1 R, 5 R) 50: 50)$ was determined by chiral HPLC: CHIRALPAK IB-3; 100% hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=250 \mathrm{~nm}$

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

(+)-(1S,5S)-2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (+)-(14):

Enantioenriched (+)-(14) was prepared according to the procedure used for (+)-6, from (+)-12 (900 $\mathrm{mg}, 1.25 \mathrm{mmol}$). The crude product was purified by FC on silica gel (pentane) to give (+)-14 (340 mg, 60%) as a white crystalline solid.
$[\alpha]_{D}^{20}=+43.51\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) . \mathrm{Mp}: 99.9-101.0^{\circ} \mathrm{C}$. The other physical data are in accordance with the racemic compound (\pm)-14. The enantiomeric ratio $((1 S, 5 S) /(1 R, 5 R) 78: 22)$ was determined by chiral HPLC: CHIRALPAK IB-3; 100% hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=250 \mathrm{~nm}$.

Signal 1: DAD1 A, Sig=250, 4 Ref $=360,100$

Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
19.601 BV	0.1641	236.49538	21.53980	21.5973
2 10.401 VV R	0.2055	858.52649	59.56324	78.4027
Totals :		1095.02187	81.10304	

Single crystal X-ray crystallography:
Enantioenriched (+)-(14) was suspended in methanol. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added until all solid dissolved. Slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4{ }^{\circ} \mathrm{C}$ gave crystals suitable for X-ray analysis. A single crystal of sufficient size was selected and cut in two pieces using a razor blade. One piece was used for the diffraction experiment and the enantiomeric purity (er 95:5) of the second piece was determined by HPLC.

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	Area $[\mathrm{mAU} * \mathrm{~s}]$	Height [mAU]	Area \%
1	9.664	BB	0.1486	37.64204	3.70429	4.6350
2	10.417	BB	0.2020	774.48767	54.74879	95.3650
Total	s :			812.12971	58.45308	

Asymmetric intramolecular cyclopropanation: substrate control

Preparation of (S)-15
(\pm)-2-(4,4-Dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((\pm)-15)

The titled compound was prepared according to reported procedure. ${ }^{17}$ To a solution of (3,3-dibenzyl-5-methyl-hex-4-enyl) 4-ethyl-2,6-diisopropyl-benzoate ($1.33 \mathrm{~g}, 2.50 \mathrm{mmol}, 1.00$ equiv.) and TMEDA ($0.49 \mathrm{~mL}, 2.25 \mathrm{mmol}, 1.30$ equiv.) in dry $\mathrm{Et}_{2} \mathrm{O}$ (10 mL) was added slowly s-BuLi $(2.12 \mathrm{~mL}, 2.75 \mathrm{mmol}, 1.3 \mathrm{M}$ in cyclohexane/hexane $92: 8,1.30$ equiv.) at $-78^{\circ} \mathrm{C}$. The color of the reaction mixture turned to deep red. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h then 2,4,4,5,5-pentamethyl-1,3,2-dioxaborolane ($0.83 \mathrm{~mL}, 5.00 \mathrm{mmol}, 2.00$ equiv.) was added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then refluxed overnight. The reaction was carefully quenched with saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O} 100: 0.5$ to $100: 1$) to give (\pm)-15 ($710 \mathrm{mg}, 68 \%$) as a clear oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, J=14.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (dd, J = 14.0, 2.6 Hz, 1H), 1.39 (d, J = $1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.30-1.16 (m, 1H), $1.22(\mathrm{~s}, 12 \mathrm{H}), 0.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{Cq}), 132.2(\mathrm{Cq}), 131.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.8\left(2 \times \mathrm{CH}_{\text {Ar }}\right), 127.6\left(2 \times \mathrm{CH}_{\text {Ar }}\right), 125.9(=\mathrm{CH}), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 83.1(\mathrm{Cq}), 45.1\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{Cq})$, $41.8\left(\mathrm{CH}_{2}\right)$, $28.9\left(\mathrm{CH}_{3}\right), 24.90\left(2 \times \mathrm{CH}_{3}\right), 24.86\left(2 \times \mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.9. IR (cm^{-1}): 2976, 2925, 2867, 1495, 1454, 1381, 1312, 1142, 1032, 967, 909, 862, 732, 687, 579, 473. HRMS (ESI): Calculated for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}: 419.3127$, found 419.3127
(S)-2-(4,4-dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((S)-15)

To a solution of (3,3-dibenzyl-5-methyl-hex-4-enyl) 4-ethyl-2,6-diisopropyl-benzoate ($1.33 \mathrm{~g}, 2.50 \mathrm{mmol}, 1.00$ equiv) and (-)-sparteine ($0.69 \mathrm{~mL}, 3.00 \mathrm{mmol}, 1.20$ equiv.) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added slowly s-BuLi ($2.12 \mathrm{~mL}, 1.3 \mathrm{M}$ in cyclohexane/hexane 92:8, $2.75 \mathrm{mmol}, 1.30$ equiv.). The color of the reaction mixture turned to deep red. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h then $2,4,4,5,5$-pentamethyl-1,3,2dioxaborolane ($0.83 \mathrm{~mL}, 5.00 \mathrm{mmol}, 2.00$ equiv.) was added. The resulting mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h and then refluxed overnight. The reaction was carefully quenched with sat. aq. $\mathrm{NaHCO}_{3}(10$ $\mathrm{mL})$ and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O}$ 100:0.5 to 100:1) to give (S)-15 (409 $\mathrm{mg}, 39 \%$, er $=76: 24$) as a clear oil. The absolute configuration of the major enantiomer was assigned by analogy to literature precedents. ${ }^{17}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, \mathrm{~J}$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dd}, J=14.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.43$ (dd, J = 14.0, 2.6 Hz, 1H), 1.39 (d, J = $1.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.30-1.16 (m, 1H), $1.22(\mathrm{~s}, 12 \mathrm{H}), 0.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4(\mathrm{Cq}), 132.2(\mathrm{Cq}), 131.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 125.9(=\mathrm{CH}), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 83.1(\mathrm{Cq}), 45.1\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 44.7(\mathrm{Cq})$, $41.8\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{3}\right), 24.90\left(2 \times \mathrm{CH}_{3}\right), 24.86\left(2 \times \mathrm{CH}_{3}\right), 19.6\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 33.9. IR (cm^{-1}): 2976, 2925, 2867, 1495, 1454, 1381, 1312, 1142, 1032, 967, 909, 862, 732, 687, 579, 473.
(\pm)-4,4-Dibenzyl-6-methylhept-5-en-2-ol ((\pm)-16)

To a solution of $(\pm)-15(20 \mathrm{mg}, 48 \mu \mathrm{~mol})$ in THF $(2 \mathrm{~mL})$ were added $\mathrm{NaOH}(2$ $\mathrm{mL}, 2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL}, 30 \%)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 3 h , then quenched with saturated aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The phases were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product was purified by FC on silica gel (pentane/Et ${ }_{2} \mathrm{O} 8: 2$) to give (\pm)-16 (13 mg, 90\%) as a clear oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.29-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{ddq}, J=9.0,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 2 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, \mathrm{~J}=14.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.9$ $\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 138.8\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 134.2(\mathrm{Cq}), 131.17\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.15\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 130.5(=\mathrm{CH}), 127.93\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.88$ $\left(2 \times \mathrm{CH}_{\text {Ar }}\right), 126.2\left(\mathrm{CH}_{\text {Ar }}\right), 126.1\left(\mathrm{CH}_{\text {Ar }}\right), 65.8(\mathrm{CH}), 45.7\left(\mathrm{CH}_{2}\right), 45.4\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 43.5(\mathrm{Cq}), 28.8\left(\mathrm{CH}_{3}\right)$, $24.9\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3443,3026,2965,2925,1601,1495,1452,1370,1116,1075,1030$, 948, 845, 746, 724;

The enantiomeric ratio was determined by chiral HPLC: CHIRALPAK IB-3; 3\% i-PrOH in hexane; 0.7 $\mathrm{mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}$

(-)-(S)-4,4-Dibenzyl-6-methylhept-5-en-2-ol ((-)-16)

The reaction was repeated with enantioenriched $(S)-15(10 \mathrm{mg}, 24 \mu \mathrm{~mol})$ under the same conditions used to prepare $(\pm)-16$. The crude product was purified by FC on silica gel (pentane/ $E t_{2} \mathrm{O} 8: 2$) to give (-)-16 (7 mg, 96\%) as a clear oil.

The enantiomeric ratio ($S / R 76: 24$) was determined by chiral HPLC: CHIRALPAK IB-3; $3 \% i$-PrOH in hexane; $0.7 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}$

Signal 3: DAD1 C, Sig=210,4 Ref=off

Peak R $\#$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	12.242	BB	0.1742	9730.05762	845.92578	24.3283
2	13.298	$B \vee R$	0.2274	3.02647 e 4	2049.94312	75.6717
Totals				3.99948 e 4	2895.86890	

Intramolecular cyclopropanation

(\pm)-2-(4,4-Dibenzyl-1-chloro-2,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17)

To a solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.19 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.0$ equiv.) in THF (6 mL) was added slowly n-BuLi ($0.48 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 1.20 mmol , 1.20 equiv) at a temperature that should not exceed $-100^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at below $-100{ }^{\circ} \mathrm{C}$ for 30 min and a solution of $(\pm)-15(418 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv, er $=76: 24)$ in dry THF (2 mL) was then added. The resulting reaction mixture was allowed to reach rt and stirred for 20 h . Dry toluene (10 mL) was added, and the solvent were removed under reduced pressure. The residue was re-dissolved in toluene and filtered through a syringe filter. The filtrate was concentrated under reduced pressure to give 17 ($420 \mathrm{mg}, 90 \%$, crude, $\mathrm{dr}=\mathrm{ca} .80: 20$).

Major isomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=14.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-$ $1.47(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 139.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 132.1(\mathrm{Cq}), 131.1\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 130.6(=\mathrm{CH}), 127.9\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.8\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 126.0\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 84.3(2 \times \mathrm{Cq}), 45.2\left(\mathrm{CH}_{2}\right), 44.9\left(\mathrm{CH}_{2}\right), 44.0(\mathrm{Cq}), 43.0\left(\mathrm{CH}_{2}\right), 34.8(\mathrm{CH}), 28.9$ $\left(\mathrm{CH}_{3}\right), 24.80\left(2 \times \mathrm{CH}_{3}\right), 24.76\left(2 \times \mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.1$.
Minor isomer (characteristic signals): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.43(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz, CDCl 3) $\delta 22.4$.
(\pm)-2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane ((\pm)-18)

Compound (\pm)-18 was prepared according to according to the transesterification procedure used for (\pm)-6 starting from (\pm)-15 (476 mg, 1.00 $\mathrm{mmol})$. The cyclopropanation step was slightly modified by running the reaction at $90^{\circ} \mathrm{C}$ instead of $70^{\circ} \mathrm{C}$. The crude product was purified by FC on silica gel (pentane) to give (\pm)-18 (107 mg, 35\%, endo/exo 86:14, determined by GC using achiral stationary phase) was obtained as a clear oil.

Endo-18: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.27-7.06(\mathrm{~m}, 10 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{dd}, \mathrm{J}=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{dd}, \mathrm{J}=13.8,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~s}$, $3 \mathrm{H}), 0.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{dd}, J=6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.69(\mathrm{dd}, J=6.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 140.4\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 139.9\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 130.4\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right)$, $125.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 49.5(\mathrm{Cq}), 47.3\left(\mathrm{CH}_{2}\right), 44.7\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right), 39.5(\mathrm{CH}), 36.1(\mathrm{CH}), 34.1(\mathrm{CH})$, $29.9\left(\mathrm{CH}_{3}\right), 21.4(\mathrm{Cq}), 19.4\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right) . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 3025,2951,2869,2359,2342,1941,1873,1802$, 1692, 1493, 1453, 1373, 742, 696. HRMS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{28}[\mathrm{M}]^{+}: 304.2186$, found 304.2184. Exo-18 (characteristic signals): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.29-7.03(\mathrm{~m}, 10 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.57$
(dd, $J=14.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=14.7,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 140.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 139.8\left(\mathrm{Cq}_{\text {Ar }}\right), 131.2,127.7,127.6,125.6,49.7(\mathrm{Cq}), 47.0\left(\mathrm{CH}_{2}\right), 45.0\left(\mathrm{CH}_{2}\right), 43.5$ $\left(\mathrm{CH}_{2}\right), 41.7(\mathrm{CH}), 37.7(\mathrm{CH}), 32.9(\mathrm{CH}), 28.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 20.2(\mathrm{Cq}), 17.1\left(\mathrm{CH}_{3}\right)$.

NMR assignment for the major endo diastereoisomer of 18: Correlation NOESY between H 8 and H 9 , and between H 8 and H 10 .

The enantiomeric ratio (1:1) was confirmed by chiral HPLC: CHIRALPAK IB-3; 100\% hexane; 0.55 $\mathrm{mL} / \mathrm{min} ; \lambda=250 \mathrm{~nm}$.

Enantioenriched (1S,4S,5S)- and (1R,4S,5R)-2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)

The reaction was repeated with enantioenriched $(S)-15(300 \mathrm{mg}, 0.71 \mathrm{mmol})$ under the conditions reported for (\pm)-18. It afforded $\mathbf{1 8}$ ($86 \mathrm{mg}, 40 \%$ yield) as an unseparable endo/exo 86:14 mixture. The enantiomeric purity of endo-18 (76:24) and exo-18 (75:25) was determined by HPLC: CHIRALPAK IB-3; 100% hexane; $0.55 \mathrm{~mL} / \mathrm{min} ; \lambda=250 \mathrm{~nm}$.

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.943	BV E	0.1623	8.91718	8.23776e-1	3.5538
2	10.652	VV R	0.1912	191.10242	14.74224	76.1599
3	11.397	VB	0.1856	50.90293	4.07757	20.2863
Totals :				250.92253	19.64358	

The diastereomeric ratio ($\mathrm{dr}=86: 14$) was determined by GC analysis on achiral stationary phase. Unfortunately, no baseline separation of all four species could be achieved using chiral HPLC. Two peaks (\mathbf{b} and \mathbf{c}, see chromatogram above) were overlapping. Based on the change in the relative area\% with respect to that measured for the racemic mixture, the integration of peak \mathbf{d} (significantly higher than the expected sum for the two enantiomers of the minor diastereomer, ie 14.26 based on GC analysis) peaks \mathbf{c} and \mathbf{d} could be assigned to the two enantiomers of the major diastereomers. Peaks \mathbf{a} and \mathbf{b} correspond to the two enantiomers of the minor diastereomer. With that information in hand, together with the diastereomeric ratio determined separately by achiral GC analysis, one can
determine the integration for peaks \mathbf{b} and \mathbf{c}, respectively (see below). The enantiomeric ratio of the product is ca. 75:25, in agreement with the er measured for alcohol 16.

GC : $a+b=14.26 ; c+d=85.47$. HPLC: $a=3.55 ; b+c=76.16 ; d=20.29$
Calculated values: $b=14.26-3.55=10.71 ; c=85.47-20.29=65.16$; er (minor) $=75: 25$; er (major) $=$ 76:24.

References

(1) Beak, P.; Carter, L. G. J. Org. Chem. 1981, 46, 2363.
(2) Leibfritz, D. Chem. Ber. 1975, 108, 3014.
(3) André-Joyaux, E.; Kuzovlev, A.; Tappin, N. D. C.; Renaud, P. Angew. Chem. Int. Ed. 2020, 59, 13859.
(4) Manankandayalage, C. P.; Unruh, D. K.; Krempner, C. Dalton Trans. 2020, 49, 4834.
(5) Ishida, K.; Yamazaki, H.; Hagiwara, C.; Abe, M.; Kusama, H. Chem. - Eur. J. 2020, 26, 1249.
(6) Lang, A.; Knizek, J.; Nöth, H.; Schur, S.; Thomann, M. Z. Für Anorg. Allg. Chem. 1997, 623, 901.
(7) Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739.
(8) Roesner, S.; Brown, C. A.; Mohiti, M.; Pulis, A. P.; Rasappan, R.; Blair, D. J.; Essafi, S.; Leonori, D.; Aggarwal, V. K. Chem. Commun. 2014, 50, 4053.
(9) Matteson, D. S.; Majumdar, D. J. Am. Chem. Soc. 1980, 102, 7588.
(10) Matteson, D. S.; Majumdar, D. Organometallics 1983, 2, 1529.
(11) Hoffmann, R. W.; Ditrich, K.; Köster, G.; Stürmer, R. Chem. Ber. 1989, 122, 1783.
(12) Matteson, D. S.; Man, H. W. J. Org. Chem. 1993, 58, 6545.
(13) Matteson, D. S.; Man, H.-W.; Ho, O. C. J. Am. Chem. Soc. 1996, 118, 4560.
(14) Matteson, D. S.; Sadhu, K. M. J. Am. Chem. Soc. 1983, 105, 2077.
(15) Matteson, D. S. Tetrahedron 1998, 54, 10555.
(16) Xu, G.; Renaud, P. Angew. Chem. Int. Ed. 2016, 55, 3657.
(17) Larouche-Gauthier, R.; Fletcher, C. J.; Couto, I.; Aggarwal, V. K. Chem. Commun. 2011, 47, 12592.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)
2,4,6-Triisopropylbenzoic acid

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$
2,4,6-Triisopropylbenzoic acid

$\stackrel{\infty}{\stackrel{\infty}{\circ}} \stackrel{-}{\stackrel{\circ}{\circ}}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)
2,4,6-Triisopropylbenzoyl chloride

ơ
0
1

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)
2,4,6-Triisopropylbenzoyl chloride

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BO}_{2}$ $184.00 \mathrm{~g} / \mathrm{mol}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BO}_{2}$ $184.00 \mathrm{~g} / \mathrm{mol}$

${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3-Methoxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)
3-Methoxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

 $200.00 \mathrm{~g} / \mathrm{mo}$
$\begin{array}{ll}\text { m } & m \\ 0 & m \\ 0 \\ 0 & 0 \\ 0 \\ 0 & 0\end{array}$

${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3-Methoxy-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BO}_{3}$ $185.97 \mathrm{~g} / \mathrm{mo}$

${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3-Methyl-2,4-dioxa-3-boratricyclo[7.3.1.05,13]trideca-1(13),5,7,9,11-pentaene

8

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2-Methyl-1,3,2-benzodioxaborole
$\xrightarrow{\mathrm{C}_{7} \mathrm{~B}_{7} \mathrm{BO}_{2}}$
$133.94 \mathrm{~g} / \mathrm{mol}$

8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-Methyl-1,3,2-benzodioxaborole

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BO}_{2}$
$133.94 \mathrm{~g} / \mathrm{mol}$

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-Methyl-1,3,2-benzodioxaborole
$\xrightarrow{\mathrm{C}_{7} \mathrm{~B}_{7} \mathrm{BO}_{2}}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BF}_{3} \mathrm{O}_{3}$ $217.94 \mathrm{~g} / \mathrm{mol}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole

2.0.0 give
\square

wink wim mmandmph

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole

$\begin{gathered} \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BF}_{3} \mathrm{O}_{3} \\ 217.94 \mathrm{~g} / \mathrm{mol} \end{gathered}$

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(2,2,2-Trifluoroethoxy)-1,3,2-benzodioxaborole

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(1,3,2-Benzodioxaborol-2-yloxy)-1,3,2-benzodioxaborole

\qquad

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(1,3,2-Benzodioxaborol-2-yloxy)-1,3,2-benzodioxaborole

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(1,3,2-Benzodioxaborol-2-yloxy)-1,3,2-benzodioxaborole

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-Dibenzyldihydrofuran-2(3H)-one (1)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-Dibenzyldihydrofuran-2(3H)-one (1)

$\stackrel{\stackrel{\rightharpoonup}{ \pm}}{\stackrel{\rightharpoonup}{0}}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-Dibenzyl-5-methyl-hex-4-en-1-ol (2)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
3,3-Dibenzyl-5-methyl-hex-4-en-1-ol (2)
$294.44 \mathrm{~g} / \mathrm{mol}$
2

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(3,3-Dibenzyl-5-methyl-hex-4-enyl) 2,4,6-triisopropylbenzoate (3)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(3,3-Dibenzyl-5-methyl-hex-4-enyl) 2,4,6-triisopropylbenzoate (3)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-Dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

\qquad

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-Dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-Dibenzyl-5-methyl-hex-4-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4)

$\stackrel{\rightharpoonup}{v}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5)

$\stackrel{\stackrel{0}{0}}{\stackrel{0}{0}}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2-(4,4-Dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5)

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-1-chloro-6-methyl-hept-5-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5)

$\underset{\substack{N \\ \underset{N}{N}}}{\substack{N}}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Dibenzyl-6,6-dimethyl-bicyclo[3.1.0]hexane (6)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Dibenzyl-6,6-dimethyl-bicyclo[3.1.0]hexane (6)

${ }^{1} \mathrm{H}$ NMR（ $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
2－（4，4－Dibenzyl－6，6－dimethylbicyclo［3．1．0］hexan－1－yl）－4，4，5，5－tetramethyl－1，3，2－dioxaborolane（7）

－NヘNへへべヘベN

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (7)

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-6,6-dimethylbicyclo[3.1.0]hexan-1-yl)-4,4,5,5-tetrẫnethyl-1,3,2-dioxaborolane (7)

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 |
| :--- |

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (8)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (8)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
4,4-Dibenzyl-6-hydroxy-2-methylhexan-3-one (9)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
4,4-Dibenzyl-6-hydroxy-2-methylhexan-3-one (9)

${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\operatorname{COSY}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4,4-Dibenzyl-6-hydroxy-2-methylhexan-3-one (9)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4,4-Dibenzyl-6-hydroxy-2-methylhexan-3-one (9)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4,4-Dibenzyl-6-hydroxy-2-methylhexan-3-one (9)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(1R,2R)-1,2-Dicyclohexylethane-1,2-diol

n
O
0
0
$\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$
$226.36 \mathrm{~g} / \mathrm{mol}$

\qquad

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(1R,2R)-1,2-Dicyclohexylethane-1,2-diol

No
$\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$
$226.36 \mathrm{~g} / \mathrm{mol}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-4,5-Dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane (10)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(4R,5R)-4,5-Dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane (10)

${ }^{11} \mathrm{~B}$ NMR (96 MHz, CDCl_{3})
(4R,5R)-4,5-Dicyclohexyl-2-(3,3-dibenzyl-5-methyl-hex-4-enyl)-1,3,2-dioxaborolane (10)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-4,5-Dicyclohexyl-2-((S)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((S)-11)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-4,5-Dicyclohexyl-2-((S)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((S)-11)

 ハー

$\stackrel{\infty}{\infty} \stackrel{\infty}{\dot{\infty}} \stackrel{+}{\circ} \stackrel{+}{\infty}$ Ni̊

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(4R,5R)-4,5-Dicyclohexyl-2-(4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane
 (

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-4,5-Dicyclohexyl-2-((S)-4,4-dibenzyl-1-chloro-6-methylhept-5-en-1-yl)-1,3,2-dioxaborolane ((S)-11)

ㅁㅜㅔ

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-bis(4-bromobenzyl)dihydrofuran-2(3H)-one

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-bis(4-bromobenzyl)dihydrofuran-2(3H)-one

$\stackrel{\circ}{\sim}$

$\stackrel{\text { M }}{\text { M }}$ 20.62-

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-ol

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-ol

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
4,4'-(2-(2-methylprop-1-en-1-yl)-2-vinylpropane-1,3-diyl)bis(bromobenzene)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
4,4'-(2-(2-methylprop-1-en-1-yl)-2-vinylpropane-1,3-diyl)bis(bromobenzene)

势

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

		-
¢ ¢ ¢ ¢ ¢ N	$\stackrel{\square}{0}$	
ल్ల్ల	$\stackrel{\square}{7}$	
$\square 1$		

*	¢ ¢ ¢
ま'	ヘั่
\/	1/1

${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(3,3-bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

$28 \mathrm{H}_{36} \mathrm{BBr}_{2} \mathrm{ClO}_{2}$
$610.66 \mathrm{~g} / \mathrm{mol}$

${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2-(4,4-bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 |
| :--- |

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (12)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
（4R，5R）－2－（3，3－Bis（4－bromobenzyl）－5－methylhex－4－en－1－yl）－4，5－dicyclohexyl－1，3，2－dioxaborolane（12）

$\underbrace{\text { No mor }}$

${ }^{11} \mathrm{~B} \mathrm{NMR} \mathrm{(96} \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-2-(3,3-Bis(4-bromobenzyl)-5-methylhex-4-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (12)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(4R,5R)-2-(4,4-Bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (13)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(4R,5R)-2-(4,4-Bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (13)

${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(4R,5R)-2-(4,4-Bis(4-bromobenzyl)-1-chloro-6-methylhept-5-en-1-yl)-4,5-dicyclohexyl-1,3,2-dioxaborolane (13)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (14)

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2,2-Bis(4-bromobenzyl)-6,6-dimethylbicyclo[3.1.0]hexane (14)

 $448.242 \mathrm{~g} / \mathrm{Br}_{\mathrm{rl}}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15)

${ }^{13} \mathrm{C}$ NMR（ $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）
2－（4，4－Dibenzyl－6－methylhept－5－en－2－yl）－4，4，5，5－tetramethyl－1，3，2－dioxaborolane（15）

人⿵冂⿱丷丅犬

 M㞧字ま゙ます ～N゙ア
${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2-(4,4-Dibenzyl-6-methylhept-5-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15)

$\stackrel{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
4,4-Dibenzyl-6-methylhept-5-en-2-ol (16)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
4,4-Dibenzyl-6-methylhept-5-en-2-ol (16)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-1-chloro-2,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17)

$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{BClO}_{2}$ $466.90 \mathrm{~g} / \mathrm{mol}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-1-chloro-2,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17)

${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
2-(4,4-Dibenzyl-1-chloro-2,6-dimethylhept-5-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (17)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)
2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)
2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)


```
Y*
```


${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HSQC}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$
2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$
2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)

${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ NOESY ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)
2,2-Dibenzyl-4,6,6-trimethylbicyclo[3.1.0]hexane (18)

