Secondary Amine-catalyzed Asymmetric Michael Addition of N-Boc-Protected Oxindoles to Maleimides

Xuena Yang, Chuan Wang, Qijian Ni, and Dieter Enders*

RWTH Aachen University
Landoltweg 1, 52074 Aachen, Germany
Fax: (+49)-241-809-2127 E-mail: enders@rwth-aachen.de

Content

1H, 13C spectra and HPLC data for compounds 3a-h and 8. ... S 2-28

Determination of the relative and absolute configuration of the compound 8. .. S 29
Figure S1. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3a.
Figure S2. 13C NMR spectrum (75 MHz, CDCl$_3$) of 3a.
Figure S3. HPLC of 3a: racemic (left), non-racemic (right)
Figure S4. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3b.
Figure S5. ^{13}C NMR spectrum (75 MHz, CDCl$_3$) of 3b.
Figure S6. HPLC of 3b; racemic (left), non-racemic (right)
Figure S7. 1H NMR spectrum (400 MHz, CDCl$_3$) of 3c.
Figure S8. 13C NMR spectrum (101 MHz, CDCl$_3$) of 3c.
Figure S9. HPLC of 3c; racemic (left), non-racemic (right)
Figure S10. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3d.
Figure S11. 13C NMR spectrum (75 MHz, CDCl$_3$) of 3d.
Figure S12. HPLC of 3d; racemic (left), non-racemic (right)
Figure S13. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3e.
Figure S14. 13C NMR spectrum (75 MHz, CDCl$_3$) of 3e.
Figure S15. HPLC of 3e; racemic (left), non-racemic (right)
Figure S16. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3f.
Figure S17. 13C NMR spectrum (75 MHz, CDCl$_3$) of 3f.
Figure S18. HPLC of 3f; racemic (left), non-racemic (right)
Figure S19. 1H NMR spectrum (400 MHz, CDCl$_3$) of 3g.
Figure S20. 13C NMR spectrum (101 MHz, CDCl$_3$) of 3g
Figure S21. HPLC of 3g; racemic (left), non-racemic (right)
Figure S22. 1H NMR spectrum (300 MHz, CDCl$_3$) of 3h.
Figure S23. 13C NMR spectrum (151 MHz, CDCl$_3$) of 3h.
Figure S24. HPLC of 3h; racemic (left), non-racemic (right)
Figure S25. 1H NMR spectrum (400 MHz, CDCl$_3$) of 8.
Figure S26. 13C NMR spectrum (151 MHz, CDCl$_3$) of 8.
Figure S27. HPLC of 8; racemic (left), non-racemic (right)
Determination of the configuration:1

NMR-Spectra and optical rotation reported in the literature:

(S, S)-8

1H NMR (400 MHz, CDCl$_3$): δ = 7.81 (s, 1 H), 7.51-7.44 (m, 3 H), 7.33 (d, J = 7.6 Hz, 1 H), 7.26-7.18 (m, 3 H), 7.13-6.98 (m, 4 H), 6.86 (dd, J = 8.0, 1.4 Hz, 2 H), 6.69 (d, J = 7.7 Hz, 1 H), 4.03 (d, J = 13.3 Hz, 1 H), 3.67 (dd, J = 9.3, 5.1 Hz, 1 H), 3.42 (d, J = 13.3 Hz, 1 H), 2.92 (dd, J = 18.4, 9.3 Hz, 1 H), 2.11 (dd, J = 18.4, 5.1 Hz, 1 H) ppm.

13C NMR (101 MHz, CDCl$_3$): δ = 178.3, 176.3, 174.3, 141.1, 135.0, 130.0, 129.5, 129.3, 128.9, 127.7, 126.7, 126.6, 124.6, 123.1, 110.2, 56.2, 44.4, 41.1, 31.6 ppm.

$[\alpha]_D^{20} = +147.4$ (c = 0.88, CHCl$_3$) (dr > 99:1, 93 % ee)

NMR-Spectra and optical rotation acquired in this protocol:

(S, S)-8

1H NMR (400 MHz, CDCl$_3$): δ = 7.66 (brs, 1 H), 7.51-7.47 (m, 2 H), 7.42 (dt, J = 7.2, 1.2 Hz, 1 H), 7.31 (d, J = 7.6 Hz, 1 H), 7.24-7.22 (m, 2 H), 7.18 (dd, J = 8.0, 1.2 Hz, 1 H), 7.09-6.98 (m, 4 H), 6.85 (dd, J = 8.4, 1.2 Hz, 2 H), 6.67 (d, J = 8.0 Hz, 1 H), 4.03 (d, J = 13.2 Hz, 1 H), 3.67 (dd, J = 9.2, 5.2 Hz, 1 H), 3.42 (d, J = 13.2 Hz, 1 H), 2.92 (dd, J = 18.4, 9.2 Hz, 1 H), 2.11 (dd, J = 18.4, 5.2 Hz, 1 H) ppm.

13C NMR (101 MHz, CDCl$_3$): δ = 178.2, 176.3, 174.3, 141.1, 135.1, 131.6, 130.0 (2 C), 129.5, 129.3 (2 C), 128.9, 127.7 (2 C), 127.0, 126.7, 126.6 (2 C), 124.6, 123.0, 110.1, 56.1, 44.4, 41.2, 31.7 ppm;

$[\alpha]_D^{20} = +261$ (c = 0.9, CHCl$_3$) (dr > 99:1, 86 % ee)

The NMR-spectra of compound 8 are almost identical to these very recently reported in the literature.1 In both cases 8 shows a strong positive optical rotation. Therefore, we assume that the compound 8 has the same relative and absolute configuration as reported in the literature.