A mild and efficient synthesis of 2-oxazolines via transmidation –cyclodehydrosulfurisation of thioamides / aminoethanol

D.Raghavender Goud and Uma Pathak*

Synthetic Chemistry Division, Defence R & D Establishment, Jhansi Road, Gwalior-474002
(M. P.) India.

Contents

1. General details ... P2

2. Experimental procedure P3-P4

3. Selected copies of 1H, 13C NMR and Mass spectra P5-P12
1. General details

Reagents were obtained from commercial supplier, and used without further purification. Thioamides for Entry No. 2-6 and 8–11 (Table 1) were prepared by thionation of corresponding amide by reported method.¹ Melting point were measured by scientific-MP-DS melting point apparatus. Column chromatographic purification of products was performed on silica gel (60-120 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE II 400 MHz. Chemical shifts were expressed in parts per millions (δ) downfield from the internal standard tetramethylsilane and were reported as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), td (triplet of doublet), br.s (broad singlet) and m (multiplet). Mass spectra was obtained in Agilent 5975C GC-MS and Elemental analysis was performed on Elementar vario MICRO cube CHNS analyser.

References:

2. Experimental procedures

(A) Procedure for the preparation of 2-(n-alkyl)-2-Oxazolines from n-alkyl thioamides (entry 11, 12 Table 1):

A homogenous mixture of thioamide (1 mmol), aminoethanol (0.0672 g, 1.1 mmol), was heated at 70°C. Progress of the reaction was monitored by TLC and GC-MS. Upon complete disappearance of thioamides, 0.5 ml of ethanol and K$_2$CO$_3$ (0.276 g, 2 mmol) were added. Reaction was continued further at the same temperature for 3.5-4 hrs. Reaction mixture was cooled to room temperature, 2.5 ml of water was added and extracted with n-hexane (15 ml). Organic layer is dried over anhydrous Na$_2$SO$_4$ and removal of solvent afforded pure products. For 2-Methyl-2-oxazoline after extraction with hexane it was treated with gaseous HCl until the solution is acidic. 3 ml of water is added to it and the organic layer is decanted off. The water layer was neutralized by NaHCO$_3$ and extracted by diethyl ether, dried over anhydrous Na$_2$SO$_4$. Solvent removal yielded the pure 2-Methyl-2-oxazoline.

(B) Procedure for the preparation of 2-(4-hydroxyphenyl)-2-Oxazoline from 4-hydroxythiobenzamide (entry 4, Table 1): 4-hydroxythiobenzamide (0.153 g, 1 mmol), aminoethanol (0.153 g, 2.5 mmol) and K$_2$CO$_3$ (0.276 g, 2 mmol) were taken in 0.5 ml of water. The reaction mixture was heated at 90°C and monitored by GC-MS for its progress. On completion of the reaction, reaction mixture was cooled to room temperature, neutralized by dil HCl. The pH of the contents was increased to 7.5-8 with NaHCO$_3$, and then extracted by Ethyl
acetate. After solvent removal the compound was purified by column chromatography.

(C) Procedure for the preparation of 2-(cyclohexyl)-2-Oxazoline from cyclohexyl thioamide (entry 9 Table 1): A mixture of cyclohexylthioamide (0.143g, 1 mmol), aminoethanol (0.092g, 1.5mmol) and K$_2$CO$_3$ (0.414g, 3mmol) in water (0.5ml) was heated to 80°C for 16 hrs. After completion of the reaction, the product was isolated and purified as mentioned in the general experimental procedure.
4. Selected copies of 1H, 13C NMR and Mass spectra

(i) 1H NMR spectra of 2-Phenyloxazoline

(ii) 1H NMR spectra of 2-(4-Bromophenyl)oxazoline

(iii) 1H NMR spectra of 2-(4-Methoxyphenyl)oxazoline

(iv) 1H NMR spectra of 2-(4-Hydroxyphenyl)oxazoline

(v) 1H NMR spectra of 2-(2, 4-Dichlorophenyl)-2-oxazoline

(vi) 1H NMR spectra of 2-(2, 5-Dichlorophenyl)oxazoline

(vii) 1H NMR spectra of 2-(3-Pyridyl)-2-oxazoline

(viii) 1H NMR spectra of 2-(2-Thienyl)-2-oxazoline

(ix) 1H NMR spectra of 2-(cyclohexyl)-2-oxazoline

(x) 1H NMR spectra of 2-(4-Methoxybenzyl)-2-oxazoline

(xi) 13C NMR spectra of 2-(4-Methoxybenzyl)-2-oxazoline

(xii) Mass spectra of 2-(4-Methoxybenzyl)-2-oxazoline

(xiii) 1H NMR spectra of 2-(n-Butyl)-2-oxazoline

(xiv) 1H NMR spectra of 2-Methyl-2-oxazoline
(i) 1H NMR spectra of 2-Phenyl oxazoline

(ii) 1H NMR spectra of 2-(4-Bromophenyl) oxazoline
(iii) 1H NMR spectra of 2-(4-Methoxyphenyl)oxazoline

(iv) 1H NMR spectra of 2-(4-Hydroxyphenyl)oxazoline
(v) 1H NMR spectra of 2-(2, 4-Dichlorophenyl)-2-oxazoline

(vi) 1H NMR spectra of 2-(2, 5-Dichlorophenyl)-2-oxazoline
(vii) 1H NMR spectra of 2-(3-Pyridyloxazoline

(viii) 1H NMR spectra of 2-(2-Thienyloxazoline
(ix) 1H NMR spectra of 2-(cyclohexyl)oxazoline

(x) 1H NMR spectra of 2-(4-methoxybenzyl)-2-oxazoline
(xi) 13C NMR spectra of 2-(4-methoxybenzyl)-2-oxazoline

(xii) Mass spectra of 2-(4-methoxybenzyl)-2-oxazoline
(xiii) 1H NMR spectra of 2-(n-Butyl)-2-oxazoline

(xiv) 1H NMR spectra of 2-Methyl-2-oxazoline