Supporting Information

Palladium-Catalyzed Reactions of Allenes with 2-Iodobenzenesulfonamides: Simple Synthesis of Benzosultams under Green Condition

M. Nagarjuna Reddy and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad, Hyderabad 500 046, A. P., India
E-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com, kckssc@uohyd.ernet.in

1. General experimental details S1
2. Synthesis and details of precursors (1b-c, 2b-c, 2e-f and 3a-b) S2
3. References S7
4. 1H and 13C spectra of compounds 1b-c, 2b-c, 2e-f, 3a-b and 4-26 [Figures S1-S64] S8-S38

General experimental details

Chemicals were purified when required according to standard procedures.1 All reactions, unless stated otherwise, were performed in a dry nitrogen atmosphere. 1H, 13C and 31P NMR spectra were recorded using a 400 MHz spectrometer in CDCl$_3$ (unless stated otherwise) with shifts referenced to SiMe$_4$ ($\delta = 0$) or 85 % H$_3$PO$_4$ ($\delta = 0$). Infrared spectra were recorded neat or by using KBr pellets on an FT/IR spectrometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. Microanalyses were performed using a CHNS analyzer. LC-MS and HRMS equipment was used to record mass spectra for isolated compounds where appropriate. LC-MS data were obtained using electrospray ionization on a C-18 column.
Synthesis of O-/N-substituted allenes (1a-h)

The allenes were prepared by following a known method. Among these, 1a and 1d-h are known, but 1b-c are new.

Compound 1b

Yield: 1.62 g [72%; using propargyl 4-bromobenzyl ether (10.0 mmol)].

IR (neat): 2926, 1901, 1721, 1595, 1485, 1403, 1074, 1008, 811 cm$^{-1}$.

1H NMR: δ 4.58 (s, 2H, CH_2), 5.48 (d, $J \approx 5.6$ Hz, 2H, $=\text{CH}_2$), 6.83 (~t, $J \approx 5.6$ Hz, 1H, $=\text{CH}$), 7.23 (d, $J = 8.0$ Hz, 2H, Ar-H), 7.48 (d, $J \approx 8.0$ Hz, 2H, Ar-H).

13C NMR: δ 69.8, 91.5, 121.6, 121.8, 129.4, 131.6, 136.6, 201.3.

LC-MS: m/z 225, 227 [M]$^+$.

Anal. Calcd. for C$_{10}$H$_9$BrO: C, 53.36; H, 4.03. Found: C, 53.68; H, 4.06.

Compound 1c

Yield: 1.81 g [79%; using propargyl 2-bromobenzyl ether (10.0 mmol)].

IR (neat): 1956, 1567, 1441, 1348, 1222, 1189, 1052, 888 cm$^{-1}$.

1H NMR: δ 4.71 (s, 2H, CH_2), 5.50 (d, $J = 5.6$ Hz, 2H, $=\text{CH}_2$), 6.88 (t, $J \approx 5.6$ Hz, 1H, $=\text{CH}$), 7.17 (t, $J = 7.6$ Hz, 1H, Ar-H), 7.33 (t, $J \approx 7.6$ Hz, 1H, Ar-H), 7.48 (d, $J \approx 8.0$ Hz, 1H, Ar-H), 7.55 (d, $J = 8.0$ Hz, 1H, Ar-H).

13C NMR: δ 69.9, 91.5, 121.5, 122.6, 127.4, 129.1, 132.5, 136.6, 201.0.

LC-MS: m/z 225, 227 [M]$^+$.

Anal. Calcd. for C$_{10}$H$_9$BrO: C, 53.36; H, 4.03. Found: C, 53.46; H, 4.08.

Preparation of 2-iodo-N-substituted-benzenesulfonamides 2a-f

2-iodo-N-substituted-benzenesulfonamides 2a-f were prepared by following a known procedure. These compounds were purified by column chromatography (silica gel) using
EtOAc–hexane (15:85) mixture as the eluent. Among these, 2a and 2d are known, but 2b-c and 2e-f are new.

Compound 2b

![Chemical Structure of Compound 2b]

Yield: 2.27 g [67%; using N-isopropyl-4-methylbenzenesulfonamide 9b (10.0 mmol)].

Mp: 94-96 °C.

IR (KBr): 3293, 2975, 1595, 1463, 1419, 1342, 1173, 1101, 1030, 838 cm⁻¹.

¹H NMR: δ 1.10 (d, J = 6.8 Hz, 6H, 2 CH₃), 2.38 (s, 3H, ArCH₃), 3.38-3.40 (m, 1H, CH(CH₃)₂), 5.04 (d, J = 6.8 Hz, 1H, NH), 7.27 (dd, J = 8.0 and 2.4 Hz, 1H, Ar-H), 7.89 (s, 1H, Ar-H), 8.06 (d, J = 8.0 Hz, 1H, Ar-H).

¹³C NMR: δ 20.8, 23.5, 46.5, 92.5 (Cl), 129.3, 131.0, 140.0, 142.7, 144.3.

LC-MS: m/z 340 [M+1]⁺.

Anal. Calcd. for C₁₀H₁₄INO₂S: C, 35.41; H, 4.16; N, 4.13. Found: C, 35.52; H, 4.08; N, 4.23.

Compound 2c

![Chemical Structure of Compound 2c]

Yield: 2.21 g [57%; using N-benzyl-4-methylbenzenesulfonamide 9c (10.0 mmol)].

Mp: 108-110 °C.

IR (KBr): 3322, 3027, 2918, 1583, 1459, 1407, 1330, 1159, 1030, 817 cm⁻¹.

¹H NMR: δ 2.37 (s, 3H, ArCH₃), 4.04 (d, J = 6.0 Hz, 2H, CH₂), 5.51 (br s, 1H, NH), 7.22-7.29 (m, 6H, Ar-H), 7.86 (s, 1H, Ar-H), 8.03 (d, J = 8.0 Hz, 1H, Ar-H).
Compound 2e

![Structure 2e](image)

Yield: 2.54 g [72%; using N-methyl-4-<i>t</i>-butylbenzenesulfonamide 9e (10.0 mmol)].

Mp: 99-101 °C.

IR (KBr): 3353, 2975, 1578, 1468, 1375, 1321, 1178, 1123, 1013, 641 cm⁻¹.

1H NMR: δ 1.35 (s, 9H, 3 C₃H₃), 2.59 (d, J = 5.6 Hz, 1H, NHCH₃), 5.10 (br s, 1H, NH), 7.50 (d, J ~ 8.0 Hz, 1H, Ar-H), 8.03 (s, 1H, Ar-H), 8.07 (d, J ~ 8.0 Hz, 1H, Ar-H).

13C NMR: δ 29.3, 31.1, 35.0, 92.3 (Cl), 125.7, 131.6, 137.7, 139.6, 157.7.

LC-MS: m/z 354 [M+1]+.

Anal. Calcd. for C₁₁H₁₆INO₂S: C, 37.40; H, 4.57; N, 3.97. Found: C, 37.52; H, 4.51; N, 3.89.

Compound 2f

![Structure 2f](image)

Yield: 2.28 g [61%; using N-methyl-4-phenylbenzenesulfonamide 9f (10.0 mmol)].

Mp: 127-129 °C.

IR (KBr): 3331, 1578, 1534, 1440, 1375, 1320, 1166, 1112, 1019, 832, 755, 641, 591 cm⁻¹.
1H NMR: δ 2.64 (d, J = 5.2 Hz, 3H, NHCH₃), 5.19 (d, J = 5.2 Hz, 1H, NH), 7.44-7.51 (m, 3H, Ar-H), 7.58-7.60 (m, 2H, Ar-H), 7.70 (dd, J = 8.0 and 1.6 Hz, 1H, Ar-H), 8.21 (d, J = 8.0 Hz, 1H, Ar-H), 8.27 (s, 1H, Ar-H).

13C NMR: δ 29.3, 92.7 (C-I), 127.0, 127.4, 129.0, 129.2, 132.0, 137.7, 139.1, 140.7, 146.6.

LC-MS: m/z 374 [M+1]^+.

Anal. Calcd. for C₁₃H₁₂INO₂S: C, 41.84; H, 3.24; N, 3.75. Found: C, 41.76; H, 3.28; N, 3.71.

Synthesis of 2-iodo-N-cinnamyl-N-methyl-benzenesulfonamides 3a-b by Mitsunobu reaction

To a stirred solution of 2-iodo-N,4-dimethylbenzenesulfonamide 2a (2.0 mmol), cinnamyl alcohol (2.0 mmol) and triphenylphosphine (2.0 mmol) in anhydrous THF (5 mL) was added diisopropyl azodicarboxylate (2.0 mmol) drop-wise via syringe over a period of 15 min under nitrogen atmosphere with continuous stirring at room temperature. The solution was stirred further at room temperature for 12 h. After completion of the reaction (tlc), solvent was removed using a rotary evaporator and the residue was purified by column chromatography on silica gel by using ethyl acetate/hexane (10/90) as eluent to afford the product 3a. Compound 3b was prepared similarly using 2-iodo-N-methyl-4-t-butylbenzenesulfonamide 2e (2.0 mmol).

Compound 3a

Yield: 0.614 g (72 %, gummy liquid).

IR (neat): 3025, 2921, 1732, 1589, 1452, 1326, 1156, 1107, 1025, 970, 926, 729, 652 cm⁻¹.

1H NMR: δ 2.36 (s, 3H, CH₃), 2.85 (s, 3H, CH₃), 4.01 (d, J = 6.8 Hz, 2H, CH₂), 6.17 (dt, J = 16.0 and 6.8 Hz, 1H, C=CH), 6.55 (d, J = 16.0 Hz, 1H, C=CH), 7.27-7.38 (m, 6H, Ar-H), 7.95 (s, 1H, Ar-H), 8.04 (d, J = 8.0 Hz, 1H, Ar-H).
13C NMR: \(\delta 20.7, 34.1, 52.4, 92.6 \) (Cl), 124.0, 126.5, 128.0, 128.6, 129.0, 131.9, 134.3, 136.2, 138.3, 143.5, 144.5.

LC-MS: \(m/z \) 428 [M+1]^+.

Anal. Calcd. for C_{17}H_{18}INO_2S: C, 47.79; H, 4.25; N, 3.28. Found: C, 47.85; H, 4.21; N, 3.32.

Compound 3b

![Compound 3b](image)

Yield: 0.64 g (68%).

Mp: 107-109 °C.

IR (KBr): 2964, 2866, 1584, 1545, 1452, 1326, 1271, 1118, 1025, 981, 932, 778, 625, 537 cm\(^{-1}\).

1H NMR: \(\delta 1.33 \) (s, 9H, C(CH\(_3\))\(_3\)), 2.87 (s, 3H, CH\(_3\)), 4.02 (d, \(J = 6.8 \) Hz, 2H, CH\(_2\)), 6.17 (dt, \(J = 16.0 \) and 6.8 Hz, 1H, C=CH), 6.55 (d, \(J = 16.0 \) Hz, 1H, C=CH), 7.27-7.37 (m, 5H, Ar-H), 7.47-7.49 (m, 1H, Ar-H), 8.06-8.08 (m, 2H, Ar-H).

13C NMR: \(\delta 31.0, 34.2, 34.9, 52.5, 92.8 \) (Cl), 124.1, 125.4, 126.6, 128.0, 128.8, 131.8, 134.3, 136.3, 138.4, 140.4, 157.5.

LC-MS: \(m/z \) 469 [M+1]^+.

References:

Figure S1. 1H NMR spectrum of compound 1b

Figure S2. 13C NMR spectrum of compound 1b
Figure S3. 1H NMR spectrum of compound 1c

Figure S4. 13C NMR spectrum of compound 1c
Figure S5. 1H NMR spectrum of compound 2b

Figure S6. 13C NMR spectrum of compound 2b
Figure S7. 1H NMR spectrum of compound 2c

Figure S8. 13C NMR spectrum of compound 2c
Figure S9. 1H NMR spectrum of compound 2e

Figure S10. 13C NMR spectrum of compound 2e
Figure S11. 1H NMR spectrum of compound 2f

Figure S12. 13C NMR spectrum of compound 2f
Figure S15. 1H NMR spectrum of compound 3a

Figure S16. 13C NMR spectrum of compound 3a
Figure S17. 1H NMR spectrum of compound 3b

Figure S18. 13C NMR spectrum of compound 3b
Figure S19. 1H NMR spectrum of compound 4

Figure S20. 13C NMR spectrum of compound 4
Figure S21. 1H NMR spectrum of compound 5

Figure S22. 13C NMR spectrum of compound 5
Figure S23. 1H NMR spectrum of compound 6

Figure S24. 13C NMR spectrum of compound 6
Figure S25. 1H NMR spectrum of compound 7

Figure S26. 13C NMR spectrum of compound 7
Figure S27. 1H NMR spectrum of compound 8

Figure S28. 13C NMR spectrum of compound 8
Figure S29. 1H NMR spectrum of compound 9

Figure S30. 13C NMR spectrum of compound 9
Figure S31. 1H NMR spectrum of compound 10

Figure S32. 13C NMR spectrum of compound 10
Figure S33. 1H NMR spectrum of compound 11

Figure S34. 13C NMR spectrum of compound 11
Figure S35. 1H NMR spectrum of compound 12

Figure S36. 13C NMR spectrum of compound 12
Figure S37. 1H NMR spectrum of compound 13

Figure S38. 13C NMR spectrum of compound 13
Figure S39. ^1H NMR spectrum of compound 14

Figure S40. ^{13}C NMR spectrum of compound 14
Figure S41. 1H NMR spectrum of compound 15

Figure S42. 13C NMR spectrum of compound 15
Figure S43. 1H NMR spectrum of compound 16

Figure S44. 13C NMR spectrum of compound 16
Figure S45. 1H NMR spectrum of compound 17

Figure S46. 13C NMR spectrum of compound 17
Figure S47. 1H NMR spectrum of compound 18

Figure S48. 13C NMR spectrum of compound 18
Figure S49. 1H NMR spectrum of compound 19

Figure S50. 13C NMR spectrum of compound 19
Figure S51. 1H NMR spectrum of compound 20

Figure S52. 13C NMR spectrum of compound 20
Figure S53. 1H NMR spectrum of compound 21

Figure S54. 13C NMR spectrum of compound 21
Figure S55. 1H NMR spectrum of compound 22

Figure S56. 13C NMR spectrum of compound 22
Figure S57. 1H NMR spectrum of compound 23

Figure S58. 13C NMR spectrum of compound 23
Figure S59. 1H NMR spectrum of compound 24

Figure S60. 13C NMR spectrum of compound 24
Figure S61. 1H NMR spectrum of compound 25

Figure S62. 13C NMR spectrum of compound 25
Figure S63. 1H NMR spectrum of compound 26

Figure S64. 13C NMR spectrum of compound 26