SUPPORTING INFORMATION, PART A

General. All chemicals if not noted were purchased from commercial sources. The control pore glass supports were obtained from Prime Synthesis Ltd. 1H NMR spectra were recorded on a Bruker Avance 500 (500 MHz) spectrometer or Bruker Avance II spectrometer (400 MHz). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance resulting from incomplete deuterium incorporation as the internal standard (CDCl$_3$: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, q = quartet, br = broad, m = multiplet), and coupling constants (Hz), integration. 13C MR spectra were recorded on a Bruker Avance 500 (125.8 MHz) spectrometer or Bruker Avance II spectrometer (400 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl$_3$: δ 77.26 ppm). High-resolution mass spectrometry was performed on a Agilent Technologies 6520- Q-TOF ESI-MS (positive mode) at the Stockholm University or Mid-Sweden University Mass Spectrometry Facility. Enantiomer ratios were determined by HPLC (Chiral Agilent Technologies Chiralpak OD, OJ-H, AS column or Chiralcel OD-R column (4.6 mm x 250 mm)) in comparison with authentic racemic materials. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter. Unless otherwise noted, all reactions were performed with distilled solvents under an atmosphere of N$_2$ in oven- (135 °C) or flame-dried glassware with standard vacuum line techniques. The Pd catalyst on the support was characterized for palladium loading by Inductively Coupled Plasma (ICP; Mikroanalytisches Laboratorium Kolbe, Germany). Elemental analyses on the Pd contents of the Pd-Amp-CPG were carried out by Medac LTD Analytical and chemical consultancy services (United Kingdom) by ICP-OES. The samples for TEM imaging were done by sonicating the Pd-Amp-CPG particles in ethanol, and then drop the suspension on a standard TEM grip and let it dry in air. The TEM was done on a JEOL 2000FX (JEOL) microscope at an accelerate voltage of 160 KV.
Preparation of Pd⁰-CPG nanoparticles: Amine-functionalized Amp-CPG (pore size 533Å, amine 166 μmol/g), CPG-Hybrid VBC (pore size 526Å, amine 398 μmol/g), CPG-Hybrid COPO (pore size 590Å, amine 360 μmol/g) and CPG-Hybrid (pore size 1400Å, amine 353 μmol/g) obtained from Prime Synthesis were used as supports. Thus, each amine-functionalized CPG (1g, 1 equiv, amine content) was added to a deionized water solution (45 mL, pH = 9). In parallel, Li₂PdCl₄ (2 equiv) was solubilized in a pH adjusted deionized water solution (pH = 9) and next added to the suspension. After 24 h of stirring, the Pd(II)-CPG catalyst was transferred to a centrifuge vial (45 mL) and next washed (3 x H₂O (40 mL), 3 x acetone (40 mL)) followed by drying overnight under vacuum. Next, the dry Pd(II)-CPG catalyst was suspended in deionized water (30 mL) followed by the slow addition of NaBH₄ (15 equiv), which had been dissolved in deionized water (15 mL), at room temperature. After stirring for 30 min, the obtained Pd(0)-CPG catalyst was transferred to a 45 mL centrifuge vial and washed (3 x H₂O (40 mL), 3 x acetone (40 mL)) and dried overnight under vacuum. Some of the catalysts were also further washed (3 x MeOH (40 mL), 3 x CH₂Cl₂ (40 mL)) and dried overnight under vacuum. Elemental analyses on the Pd contents of the Pd-Amp-CPG were carried out by Medac LTD Analytical and chemical consultancy services (United Kingdom) by ICP-OES.

Typical experimental procedure for the Pd-CPG catalyst screening:

To a suspension of Pd-CPG-catalyst (5 mol% to the alcohol) in toluene (0.5 mL) was added 1a (0.24 mmol, 1.2 equiv). The vial was capped, evacuated and an oxygen balloon was connected to the reaction vessel. The reaction was stirred at 70 °C for the time shown in Table 1. Next, the reaction was cooled to room temperature followed by addition of 3 (0.2 mmol, 1 eq) and 5 (20 mol%) and the reaction mixture was vigorously stirred for the time shown in Table 1. After removal of the Pd-catalyst, the crude reaction mixture was directly loaded on a silica-gel column and next chromatograph (pentane/EtOAc) afforded the corresponding product 4a.

Typical experimental procedure for the Pd⁰-Amp-CPG/chiral amine-catalyzed catalytic aerobic oxidation/Michael/carbocyclization relay sequence:

In a microwave vial, to a suspension of Pd(0)-Amp-CPG (6 mol% Pd to 1, 36 mg) in toluene (0.5 mL) was added alcohol 1 (0.12 mmol, 1.2 eq). The vial was capped, evacuated and the oxygen balloon was connected to the reaction vessel. The reaction was stirred at 70 °C for the
time shown in Table 2. Next, the reaction was cooled to room temperature. Propargyl 3 (0.1 mmol, 1 eq) and 5 (20 mol%) were added and the reaction mixture was vigorously stirred for the time shown in Table 2. After removal of the Pd-catalyst, the crude reaction mixture was directly loaded on a silica-gel column and next chromatography (pentane/EtOAc) afforded the corresponding products 4.

(1R,2R)-methyl 1-cyano-3-formyl-4-methyl-2-phenylcyclopent-3-enecarboxylate: oil. 1H NMR (400MHz, CDCl$_3$): δ 9.92 (s, 1H), 7.38-7.32 (m, 3H), 7.17-7.15 (m, 2H), 4.72 (bs, 1H), 3.89 (s, 3H), 3.41 (d, J = 14.8 Hz, 1H), 3.26 (dt, J = 12.4 Hz, J’ = 1.2 Hz, 1H), 2.33 (d, J = 0.8 Hz, 3H); 13C NMR (100MHz, CDCl$_3$): 186.2, 168.8, 157.8, 136.8, 136.6, 129.1, 128.7, 128.0, 117.4, 58.4, 54.4, 51.7, 47.9, 14.3; HRMS (ESI) : calcd for [M+Na] (C$_{16}$H$_{15}$NO$_3$) requires m/z 292.0944, found 292.0946; $\left[\alpha\right]_D^{25} = -70.9$ (c=1.0 CHCl$_3$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 85/15, λ = 210 nm, 1.0 ml/min) t_r (major enantiomer) = 19.3 min, t_r (minor enantiomer) = 29.9 min.

(1R,2R)-methyl 1-cyano-3-formyl-4-methyl-2-(4-nitrophenyl)cyclopent-3-enecarboxylate: oil. 1H NMR (400MHz, CDCl$_3$): δ 9.95 (s, 1H), 8.22 (d, J = 8.8 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 4.82 (bs, 1H), 3.91 (s, 3H), 3.49 (d, J = 18.8 Hz, 1H), 3.32 (d, J = 18.8 Hz, 1H), 2.36 (d, J = 1.2 Hz, 1H); 13C NMR (100MHz, CDCl$_3$): 185.8, 168.2, 159.0, 148.1, 144.1, 136.2, 129.2, 124.2, 117.0, 57.7, 54.7, 51.3, 48.3, 14.4; HRMS (ESI) : calcd for [M+Na] (C$_{16}$H$_{14}$N$_2$O$_5$) requires m/z 337.0792, found 337.0795; $\left[\alpha\right]_D^{25} = -88.2$ (c=1, CHCl$_3$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic
racemic material (ODH-column, n-hexane/i-PrOH = 75/25, \(\lambda = 254 \) nm, 1.0 ml/min) \(t_r \) (major enantiomer) = 33.6 min, \(t_r \) (minor enantiomer) = 41.1 min.

\[
\text{(1R,2R)-methyl 1-cyano-3-formyl-4-methyl-2-(3-nitrophenyl)cyclopent-3-ene carboxylate: oil.} \quad ^1H \text{ NMR (400MHz, CDCl}_3\text{): } \delta \ 9.97 \text{ (s, 1H), 8.22-8.19 (m, 1H), 7.98 (t, } J= 1.2 \text{ Hz, 1H), 7.59-7.53 (m, 2H), 4.83 (bs, 1H), 3.92 (s, 3H), 3.49 (d, } J = 18.8 \text{ Hz, 1H), 3.33 (d, } J = 18.8 \text{ Hz, 1H), 2.38 (d, } J = 1.6 \text{ Hz, 3H);} \quad ^13C \text{ NMR (100MHz, CDCl}_3\text{): } 185.8, 168.2, 159.3, 148.6, 139.0, 136.1, 134.7, 130.1, 123.8, 122.8, 117.1, 57.8, 54.8, 51.3, 48.1, 14.5; \quad \text{HRMS (ESI): } \text{calcd for [M+Na] (C}_{16}\text{H}_{14}\text{N}_2\text{O}_5 \text{ requires m/z 337.0792, found 337.0794; } [\alpha]_D^{25} = -89.3 \ (c=1, \text{ CHCl}_3). \quad \text{The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, n-hexane/i-PrOH = 70/30, } \lambda = 254 \text{ nm, 1.0 ml/min) } t_r \text{ (major enantiomer) = 19.4 min, } t_r \text{ (minor enantiomer) = 34.6 min.} \]

\[
\text{(1R,2R)-methyl 2-(2-chlorophenyl)-1-cyano-3-formyl-4-methylcyclopent-3-ene carboxylate: oil.} \quad ^1H \text{ NMR (400MHz, CDCl}_3\text{): } \delta \ 9.93 \text{ (s, 1H), 7.47 (dd, } J= 6.4 \text{ Hz, } J' = 1.6 \text{ Hz, 1H), 7.29-7.20 (m, 2H), 6.97 (dd, } J= 6.0 \text{ Hz, } J' = 1.6 \text{ Hz, 1H), 5.30 (bs, 1H), 3.89 (s, 3H), 3.41 (d, } J = 18.8 \text{ Hz, 1H), 3.27 (d, } J = 18.8 \text{ Hz, 1H), 2.34 (d, } J = 0.8 \text{ Hz, 3H);} \quad ^13C \text{ NMR (100MHz, CDCl}_3\text{): } 185.9, 169.0, 158.4, 136.3, 134.8, 134.4, 130.3, 129.9, 128.4, 127.2, 117.3, 54.8, 54.5, 50.9, 48.9, 14.4; \quad \text{HRMS (ESI): } \text{calcd for [M+Na] (C}_{16}\text{H}_{14}\text{ClNO}_3 \text{ requires m/z 326.0554, found 326.0562; } [\alpha]_D^{25} = -80.3 \ (c=1, \text{ CHCl}_3). \quad \text{The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (AD-column, i-hexane/i-PrOH = 90/10, } \lambda = 254 \text{ nm, 1.0 ml/min) } t_r \text{ (major enantiomer) = 33.2 min, } t_r \text{ (minor enantiomer) = 41.9 min.} \]
(1R,2R)-methyl 2-(4-bromophenyl)-1-cyano-3-formyl-4-methylcyclopent-3-enecarboxylate: oil. \[\text{1H NMR (400MHz, CDCl}_3\text{): } \delta 9.91\ (s, 1H), 7.48\ (d, J = 6.8 Hz, 2H), 7.09\ (d, J = 6.8 Hz, 2H), 4.67\ (bs, 1H), 3.88\ (s, 3H), 3.42\ (d, J = 14.8 Hz, 1H), 3.25\ (d, J = 12.8 Hz, 1H); \text{13C NMR (100MHz, CDCl}_3\text{): } 186.0, 168.6, 158.3, 136.5, 135.7, 132.2, 129.8, 122.8, 117.3, 57.8, 54.3, 51.3, 47.9, 14.3; HRMS (ESI): calcd for [M+Na] (C\textsubscript{16}H\textsubscript{14}BrNO\textsubscript{3}) requires m/z 370.0049, found 370.0050; [\alpha\textsubscript{D}]25 = -55.8\ (c=1, CHCl\textsubscript{3})

The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (AD-column, \textit{n}-hexane/i-PrOH = 90/10, \(\lambda = 250\) nm, 1.0 ml/min) \(t_r\) (major enantiomer) = 22.3 min, \(t_r\) (minor enantiomer) =34.9 min.

(1R,2R)-methyl 1-cyano-3-formyl-4-methyl-2-(p-tolyl)cyclopent-3-enecarboxylate: oil. \[\text{1H NMR (400MHz, CDCl}_3\text{): } \delta 9.91\ (s, 1H), 7.16\ (d, J = 6.4 Hz, 2H), 4.68\ (bs, 1H), 3.88\ (s, 3H), 3.39\ (d, J = 14.8 Hz, 1H), 2.33\ (s, 3H); \text{13C NMR (100MHz, CDCl}_3\text{): } 186.3, 168.9, 157.7, 138.4, 136.8, 133.6, 129.8, 127.9, 117.6, 58.2, 54.4, 51.8, 47.8, 21.4, 14.3; HRMS (ESI): calcd for [M+Na] (C\textsubscript{17}H\textsubscript{17}NO\textsubscript{3}) requires m/z 306.1101, found 306.1104; [\alpha\textsubscript{D}]25 = -85.2\ (c=1.30CHCl\textsubscript{3})

The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, \textit{n}-hexane/i-PrOH = 90/10, \(\lambda = 250\) nm, 1.0 ml/min) \(t_r\) (major enantiomer) = 23.6 min, \(t_r\) (minor enantiomer) =32.9 min.

(1R,2R)-methyl 1-cyano-3-formyl-4-methyl-2-propylcyclopent-3-enecarboxylate: oil. \[\text{1H NMR (400MHz, CDCl}_3\text{): } \delta 9.93\ (s, 1H), 3.83\ (s, 3H), 3.52\ (m, 1H), 3.19\ (dd, J\textsubscript{1} = 18.4 Hz,
$J_2 = 36.3 \text{ Hz, 2H), 2.42 (s, 3H), 1.92 (m, 1H), 1.75 (m, 1H), 1.47-1.27 (m, 2H), 0.94 (t, 3H);}^{13}\text{C NMR (100MHz, CDCl}_3\text{): 186.9, 169.5, 156.9, 137.5, 118.2, 54.2, 52.5, 49.5, 48.5, 33.4, 20.2, 14.1, 14.0; HRMS (ESI) : calcd for [M+Na] (C}_{13}\text{H}_{17}\text{NO}_3 \text{ requires m/z 258.1101, found 258.1109, } [\alpha]_{D}^{25} = +15.5 (c=1.0 \text{ CHCl}_3). \text{ The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, } n\text{-hexane/i-PrOH = 98/2, } \lambda = 230 \text{ nm, 1.0 ml/min) } t_r \text{ (major enantiomer) } = 18.1 \text{ min, } t_r \text{ (minor enantiomer) } = 19.8 \text{ min.}

\text{(1R,2R)-methyl 2-butyl-1-cyano-3-formyl-4-methylcyclopent-3-enecarboxylate: oil. }^{1}\text{H NMR (400MHz, CDCl}_3\text{): } \delta 9.93 \text{ (s, 1H), 3.83 (s, 3H), 3.53 (bs, 1H), 3.26 (d, } J_1 = 18.8 \text{ Hz, 1H), 3.13 (d, } J_1 = 20.0 \text{ Hz, 1H), 2.18 (s, 3H), 1.99-1.90 \text{ (m, 1H), 1.82-1.73 (m, 1H), 1.40-1.28 (m, 4H), 0.90 (t, } J_1 = 6.8 \text{ Hz, 3H); }^{13}\text{C NMR (100MHz, CDCl}_3\text{): 186.9, 169.5, 156.9, 137.5, 118.2, 54.2, 52.5, 49.5, 48.5, 33.4, 20.2, 14.1, 14.0; HRMS (ESI) : calcd for [M+Na] (C}_{14}\text{H}_{19}\text{NO}_3 \text{ requires m/z 272.1257, found 272.1270, } [\alpha]_{D}^{25} = +30.2 (c=1.0 \text{ CHCl}_3). \text{ The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, } n\text{-hexane/i-PrOH = 98/2, } \lambda = 230 \text{ nm, 1.0 ml/min) } t_r \text{ (major enantiomer) } = 17.7 \text{ min, } t_r \text{ (minor enantiomer) } = 19.7 \text{ min.}

\text{(1R,2R)-methyl 2-(but-3-en-1-yl)-1-cyano-3-formyl-4-methylcyclopent-3-enecarboxylate: oil. }^{1}\text{H NMR (400MHz, CDCl}_3\text{): } \delta 9.93 \text{ (s, 1H), 5.78 (m, 1H), 5.08-4.97 (m, 2H), 3.83 (s, 3H), 3.54 (m, 1H), 3.22 (dd, } J_1 = 18.4 \text{ Hz, } J_2= 36.3 \text{ Hz, 2H), 2.18 (s, 3H), 2.18-2.03 \text{ (m, 3H), 1.88 (m, 1H); }^{13}\text{C NMR (100MHz, CDCl}_3\text{): 186.9, 169.3, 157.1, 137.4, 137.3, 118.1, 115.8, 54.2, 52.0, 49.3, 48.5, 31.1, 30.5, 14.1; HRMS (ESI) : calcd for [M+Na] (C}_{14}\text{H}_{19}\text{NO}_3 \text{ requires m/z 270.1102, found 270.1106, } [\alpha]_{D}^{25} = +12.3 (c=1.0 \text{ CHCl}_3). \text{ The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (ODH-column, } n\text{-hexane/i-PrOH = 98/2, } \lambda = 230 \text{ nm, 1.0 ml/min) } t_r \text{ (minor enantiomer) } = 22.5 \text{ min, } t_r \text{ (majoror enantiomer) } = 24.2 \text{ min.}
(1R,2R)-methyl-1-cyano-3-formyl-4-methyl-2-(p-tolyl)cyclopent-3-enecarboxylate:

Yellow oil. 1H NMR (400MHz, CDCl$_3$): δ 9.91 (s, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.68 (br s, 1H), 3.88 (s, 3H), 3.79 (s, 3H), 3.38 (d, J = 18.6 Hz, 1H), 3.24 (dt, J = 18.6, 3.0 Hz, 1H), 2.32 (s, 3H); 13C NMR (100MHz, CDCl$_3$): 186.3, 168.9, 159.8, 157.6, 136.9, 129.2, 128.6, 117.6, 114.4, 57.9, 55.3, 54.4, 51.9, 47.7, 14.3; HRMS (ESI): calcd for [M+Na] (C$_{17}$H$_{17}$NO$_4$) requires m/z 322.1050, found 322.1051; $\left[\alpha\right]_{D}^{25}$ = -108.7 (c=1.6, CHCl$_3$). The enantiomeric excess was determined by HPLC analysis in comparison with authentic racemic material (AS-H-column, n-hexane/i-PrOH = 85/15, λ = 210 nm, 1.0 ml/min) t_r (major enantiomer) = 43.1 min, t_r (minor enantiomer) =73.6 min.

TEM analysis:
The samples for TEM imaging were done by sonicating the Pd-Amp-CPG particles in ethanol, and then drop the suspension on a standard TEM grip and let it dry in air. The TEM was done on a JEOL 2000FX (JEOL) microscope at an accelerate voltage of 160 KV (Figure 1S and 2S).
Figure 1S.

Figure 2S.
Display Report

Analysis Info
Analysis Name: E:\Data2\Lucal\id1476000001.d
Method: Tune_low_pos.m
Sample Name: id1476
Comment

Acquisition Parameter
Source Type: ESI
Focus: Not active
Scan Begin: 50 m/z
Scan End: 1000 m/z

Ion Polarity: Positive
Set Capillary: 4000 V
Set End Plate Offset: -500 V

Set Nebulizer: 0.4 Bar
Set Dry Heater: 180 °C
Set Dry Gas: 4.0 l/min
Set Divert Valve: Source

Bruker Compass DataAnalysis 4.0
printed: 2013-08-16 10:27:24
Display Report

Analysis Info
Analysis Name: E:\Data2\Lucalid1498000001.d
Method: Tune_low_pos.m
Sample Name: id1498
Comment:

Acquisition Date: 2013-08-16 10:17:53
Operator: Carin Larson
Instrument / Ser#: microTOF 125

Source Type: ESI
Focus: Not active
Scan Begin: 50 m/z
Scan End: 1000 m/z
Ion Polarity: Positive
Set Capillary: 4000 V
Set End Plate Offset: -500 V
Set Nebulizer: 0.4 Bar
Set Dry Heater: 160 °C
Set Dry Gas: 4.0 l/min
Set Divert Valve: Source

Intens. x10^6

--- TIC + ---

---+

Intens. x10^5

270.1106
271.1131
272.1130

---+

Intens. x10^5

270.1106

---+

257.5 260.0 262.5 265.0 267.5 270.0 272.5 275.0 277.5 280.0 m/z

---+

Bruker Compass DataAnalysis 4.0 printed: 2013-08-16 10:22:14 Page 1 of 1
Acq. Operator : SA
Acq. Instrument : Instrument 1
Injection Date : 10/8/2013 12:08:31 PM
Inj Volume : 10.000 µl
Analysis Method : C:\
Last changed : 10/8/2013 10:27:34 AM by SA
(modified after loading)
Last changed : 10/25/2013 2:45:28 PM by SA
(modified after loading)
Sample Info : CP-27-008_RAC_AS_85:15.0-1.0mL

Additional Info : Peak(s) manually integrated

DAD1 C, Sig=210,4 Ref=off (SAMSON/CP-27-008_RAC/CP-27-008_RAC.D)

Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Sample Amount: : 10.00000 [ng/µl] (not used in calc.)

Use Multiplier & Dilution Factor with ISTDS

Signal 1: DAD1 C, Sig=210,4 Ref=off

Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*sec] [mAU]
1 42.445 BB 1.6757 5.58132e4 476.78250 50.5045
2 71.212 BB 2.4824 5.46980e4 260.20987 49.4955

Instrument 1 10/25/2013 2:45:31 PM SA
Sample Name: SA-7-52_Chiral-AS.85:15.1mL.min

Acq. Operator: SA
Acq. Instrument: Instrument 1
Injection Date: 10/25/2013 1:19:58 PM
Location: Vial 1
Inj Volume: 10.000 μL

Acq. Method: C:\CHEM32\1\METHODS\K3_AS_200MIN_90HEXAN_10IPA_1ML_FLOW.M
Last changed: 10/25/2013 11:02:18 AM by SA
(modified after loading)

Analysis Method: C:\CHEM32\1\METHODS\K2_OD_200MIN_90HEXAN_10IPA_1ML_FLOW.M
Last changed: 10/25/2013 4:46:16 PM by SA
(modified after loading)

Sample Info: SA-7-52_Chiral-AS.85:15.1mL.min

Additional Info: Peak(s) manually integrated

DAD1 C, Sig=210.4 Ref=off (SAMSON\SA-7_52_CHIRAL\SA-7_52_CHIRAL.D)

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Sample Amount: 10.00000 [ng/ul] (not used in calc.)
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 C, Sig=210.4 Ref=off

Peak RetTime Type Width Area Height Area %

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.122</td>
<td>BB</td>
<td>1.7310</td>
<td>1.15816e5</td>
<td>872.27332</td>
<td>97.5952</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>73.609</td>
<td>MM</td>
<td>2.8123</td>
<td>2853.73706</td>
<td>16.91212</td>
<td>2.4048</td>
<td></td>
</tr>
</tbody>
</table>

Totals: 1.18670e5 889.18543

Instrument 1 10/25/2013 4:50:46 PM SA