Supporting Information
One-Pot Multistep Synthesis of Tri-substituted Alkenes from N-Tosylhydrazones and Alcohols

Qiang Sha, Yunyang Wei*
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China.
Fax +86(25)84317078.
E-mail: vwei@mail.njust.edu.cn

CONTENTS

General Information and Materials
Typical Procedure
Spectroscopic Data of Products
Copies of 1H, 13C and 19F NMR Spectra
.General Information and Materials

Toluene was distilled using Na prior to use. N-tosylhydrazones were prepared by condensation of carbonyl compounds with 4-methylbenzenesulfonylhydrazide,[1] Trifluoromethyl-substituted carbinols were prepared from the addition of trimethylsilyl trifluoromethane on aldehydes.[2] Other chemicals (AR grade) were obtained from commercial sources and were used without further purification. Petroleum ether (PE) refers to the fraction boiling in the 60-90 °C range. The progress of the reactions was monitored by TLC (silica gel, Polygram SILG/UV 254 plates). Column chromatography was performed on Silicycle silica gel (200–300 mesh). Melting Experimental Section points were obtained using a Yamato melting point apparatus Model MP-21 and are uncorrected. 1H, 13C and 19F NMR spectra were obtained using a Bruker DRX 500 (500 MHz) spectrometer in CDCl$_3$ with TMS as the internal standard. Ms spectra were recorded using a Thermo Scientific TSQ Quantum analyzer. The known compounds were identified by comparison of their physical and spectral data with those reported in the literature.

II. General Procedure

Catalytic one-pot oxidation-olefination.

CuCl (2.5 mg, 0.025 mmol) and 1,10-phenanthroline (4.5 mg, 0.025 mmol) were placed in a vessel and toluene (5 mL) was added. The resulting solution was stirred at room temperature until the solution became green and clear (5 to 10 minutes). Then K$_2$CO$_3$ (138 mg, 1 mmol), DEAD-H$_2$ (18.5 mg, 0.125 mmol) were added. The solution was stirred at room temperature for another 10 min. Alcohol (0.60 mmol) was added, the reaction mixture was heated at 90 °C under O$_2$ atmosphere (O$_2$ balloon) until the reaction was completed as gauged by TLC analysis. The vessel was backfilled with N$_2$. Triphenylphosphine (157.2 mg, 0.6 mmol), Cul (9.5 mg, 0.05 mmol), LiO$_2$-Bu (56.0 mg, 0.7 mmol), Tosylhydrazone (0.5 mmol) were added. The solution was stirred at 90 °C for 10 h. The solvent was removed under reduced pressure and the crude alkene was purified by flash chromatography on silica gel.
III. Spectroscopic Data of Products

(E)-prop-1-ene-1,2-diyl dibenzene (3a)[3]

Colorless liquid; yield (Z+E): 65.0 mg (67%); R_f = 0.41 (PE).

^1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.57-7.55 (m, 2H), 7.42-7.39 (m, 6H), 7.33-7.26 (m, 2H), 6.87 (d, J = 1 Hz, 1H), 2.32 (d, J = 1 Hz, 3H). ^1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.51 (s, 0.14 H). Integrations indicate a Z/E ratio of 12:88.

^13C NMR (125 MHz, CDCl_3, E-isomer): δ = 144.06, 138.45, 137.51, 129.23, 128.40, 128.25, 127.79, 127.26, 126.54, 126.09, 17.55.

(E)-1-chloro-4-(1-phenylprop-1-en-2-yl)benzene (3b)[4]

Colorless liquid; yield (Z+E): 65.0 mg (57%); R_f = 0.41 (PE).

^1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.50 (d, J = 8.5 Hz, 2H), 7.44-7.38 (m, 6H), 7.32-7.29 (m, 1H), 6.88 (s, 1H), 2.31 (s, 3H). ^1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.56 (s, 0.23 H). Integrations indicate a Z/E ratio of 19:81.

^13C NMR (125 MHz, CDCl_3, E-isomer): δ = 142.43, 138.11, 136.30, 133.02, 129.22, 128.51, 128.31, 128.23, 127.36, 126.76, 17.46.

(E)-2-(1-phenylprop-1-en-2-yl)thiophene (3c)[5]

Colorless liquid; yield (Z+E): 58.0 mg (58%); R_f = 0.41 (PE).

^1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.43-7.41 (m, 4H), 7.32-7.30 (m, 1H), 7.25 (d, J = 5 Hz, 1H), 7.20 (d, J = 3.5 Hz, 1H), 7.09 (s, 1H), 7.37 (s, 3H). ^1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.60 (s, 0.19 H). Integrations indicate a Z/E ratio of 16:84.

^13C NMR (125 MHz, CDCl_3, E-isomer): δ = 148.04, 137.70, 131.11, 129.34, 128.30, 127.57, 126.72, 126.21, 124.05, 123.43, 17.46.

(E)-1-chloro-4-(2-phenylprop-1-en-1-yl)benzene (3d)[4]

Colorless liquid; yield (Z+E): 75.2 mg (66%); R_f = 0.41 (PE).

^1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.53 (d, J = 8 Hz, 2H), 7.41-7.37 (m, 4H), 7.35-7.27 (m, 3H), 6.79 (s, 1H), 2.28 (s, 3H). ^1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.43 (s, 0.12 H). Integrations indicate a Z/E ratio of 11:89.

^13C NMR (125 MHz, CDCl_3, E-isomer): δ = 143.69, 138.20, 136.79, 132.19, 130.46, 128.42, 128.38, 127.43, 126.50, 126.02, 17.54.

(E)-but-1-ene-1,2-diyl dibenzene (3e)[6]
Colorless liquid; yield (Z+E): 57.2 mg (55%); R_f = 0.46 (PE).

1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.57 (d, J = 8 Hz, 2H), 7.48-7.43 (m, 6H), 7.40-7.33 (m, 2H), 6.81 (s, 1H), 2.85 (q, J = 7 Hz, 2H), 1.18 (t, J = 7 Hz, 3H). 1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.49 (s, 0.01 H). Integrations indicate a Z/E ratio of 1:99.

13C NMR (125 MHz, CDCl_3, E-isomer): δ = 144.61, 142.85, 138.45, 128.86, 128.48, 128.38, 127.75, 127.29, 126.66, 23.41, 13.63.

13C NMR (125 MHz, CDCl_3, E-isomer): δ = 145.38, 142.44, 137.25, 131.45, 130.44, 128.49, 127.46, 126.68, 126.43, 120.46, 23.37, 13.50.

IR (film): 1651, 1466, 1378, 1155, 1011, 696 cm⁻¹.

Ms (EI, 70 eV): m/z = 286.

HRMS (EI, 70 eV) calcd for C_16H_15Br: 286.0357, found 286.0360.

Colorless liquid; yield (Z+E): 57.7 mg (52%); R_f = 0.49 (PE).

1H NMR (500 MHz, CDCl_3, E-isomer): δ = 7.48 (d, J = 8 Hz, 2H), 7.40-7.34 (m, 6H), 7.32-7.26 (m, 2H), 2.71 (t, J = 8 Hz, 2H), 1.54-1.46 (m, 2H), 0.92 (d, J = 7.5 Hz, 3H). 1H NMR (500 MHz, CDCl_3, Z-isomer): δ = 6.46 (s, 0.01 H). Integrations indicate a Z/E ratio of 1:99.

13C NMR (125 MHz, CDCl_3, E-isomer): δ = 144.61, 142.85, 138.45, 128.86, 128.48, 128.38, 127.75, 127.29, 126.66, 23.41, 13.63.

13C NMR (125 MHz, CDCl_3, E-isomer): δ = 146.59, 142.13, 141.92, 128.98, 128.52, 128.35, 127.66, 126.71, 126.24, 125.24, 23.38, 13.49.
(E)-2-(2-phenylbut-1-en-1-yl)thiophene (3i)\[8\]

Colorless liquid; yield ($Z+E$): 54.6 mg (51%); R_f = 0.35 (PE).

1H NMR (500 MHz, CDCl$_3$, E-isomer): δ = 7.49 (d, $J = 7.5$ Hz, 2H), 7.39-7.36 (m, 2H), 7.31-7.29 (m, 2H), 7.09-7.05 (m, 2H), 6.85 (s, 1H), 2.93 (q, $J = 7.5$ Hz, 2H), 1.17 (t, $J = 7.5$ Hz, 3H). 1H NMR (500 MHz, CDCl$_3$, Z-isomer): δ = 6.62 (s, 0.01 H). Integrations indicate a Z/E ratio of 1:99.

13C NMR (125 MHz, CDCl$_3$, E-isomer): δ = 142.75, 142.61, 140.91, 128.44, 127.69, 127.23, 126.99, 126.42, 125.01, 120.37, 24.57, 12.99.

(E)-1-(2-phenylbut-1-en-1-yl)naphthalene (3j)\[8\]

Colorless liquid; yield ($Z+E$): 76.1 mg (59%); R_f = 0.28 (PE).

1H NMR (500 MHz, CDCl$_3$, E-isomer): δ = 8.04 (dd, $J = 7$ Hz, 1.5 Hz, 1H), 7.89 (dd, $J = 7$ Hz, 2 Hz, 1H), 7.82 (d, $J = 8$ Hz, 1H), 7.60 (d, $J = 7.5$ Hz, 2H), 7.52-7.49 (m, 3H), 7.37-7.34 (m, 1H), 7.12 (q, $J = 7$ Hz, 2H), 0.98 (t, $J = 7.5$ Hz, 3H). 1H NMR (500 MHz, CDCl$_3$, Z-isomer): δ = 6.71 (s, 0.01 H). Integrations indicate a Z/E ratio of 1:99.

13C NMR (125 MHz, CDCl$_3$, E-isomer): δ = 145.83, 142.15, 135.84, 133.60, 132.33, 129.83, 128.49, 128.41, 127.35, 127.28, 126.80, 126.04, 125.88, 125.56, 125.45, 125.30, 23.63, 13.71.

(E)-1-methyl-2-(2-phenylbut-1-en-1-yl)benzene (3k)\[8\]

Colorless liquid; yield ($Z+E$): 52.2 mg (47%); R_f = 0.48 (PE).

1H NMR (500 MHz, CDCl$_3$, E-isomer): δ = 7.53-7.51 (m, 2H), 7.42-7.39 (m, 2H), 7.34-7.31 (m, 1H), 7.26-7.22 (m, 4H), 6.69 (s, 1H), 2.61 (q, $J = 7.5$ Hz, 2H), 2.31 (s, 3H), 0.99 (t, $J = 7.5$ Hz, 3H). 1H NMR (500 MHz, CDCl$_3$, Z-isomer): δ = 6.53 (s, 0.01 H). Integrations indicate a Z/E ratio of 1:99.

13C NMR (125 MHz, CDCl$_3$, E-isomer): δ = 144.19, 142.40, 137.75, 136.76, 129.82, 128.77, 128.37, 127.14, 126.89, 126.76, 125.51, 23.25, 20.11, 13.49.

(E)-1-methyl-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4b)\[9\]

Colorless liquid; yield ($Z+E$): 99.2 mg (80%); R_f = 0.69 (PE).

1H NMR (500 MHz, CDCl$_3$, E-isomer): δ = 7.44-7.43 (m, 3H), 7.36-7.34 (m, 2H), 7.28 (s, 1H), 7.24 (d, $J = 7$ Hz, 1H), 7.21-7.18 (m, 2H), 7.05 (d, $J = 7.5$ Hz, 2H). 1H NMR (500 MHz, CDCl$_3$, Z-isomer): δ = 7.10 (s, 0.09 H). Integrations indicate a Z/E ratio of 8:92.

(E)-1-methyl-2-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4b)\[9\]
Colorless liquid; yield (Z+E): 95.6 mg (73%); Rf = 0.66 (PE).

\(^1\)H NMR (500 MHz, CDCl\(_3\), E-isomer): \(\delta = 7.45-7.44\) (m, 3H), 7.37-7.36 (m, 2H), 7.25 (s, 1H), 7.03-7.01 (m, 2H), 6.96-6.95 (m, 2H), 2.31 (s, 3H). \(^1\)H NMR (500 MHz, CDCl\(_3\), Z-isomer): \(\delta = 7.10\) (s, 0.12 H). Integrations indicate a Z/E ratio of 11:89.

\((E)-1\)-bromo-2-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4c)

Colorless liquid; yield (Z+E): 85.9 mg (76%); Rf = 0.70 (PE).

\(^1\)H NMR (500 MHz, CDCl\(_3\), E-isomer): \(\delta = 7.58\) (dd, \(J = 8\) Hz, 1.5 Hz, 1H), 7.48 (d, \(J = 1.5\) Hz, 1H), 7.33-7.32 (m, 3H), 7.28-7.26 (m, 2H), 7.06 (td, \(J = 7.5\) Hz, 1.5 Hz, 1H), 6.97 (td, \(J = 7.5\) Hz, 1H, 1H), 6.81 (dd, \(J = 8\) Hz, 1.5 Hz, 1H).

\(^1\)C NMR (125 MHz, CDCl\(_3\), E-isomer): \(\delta = 134.43, 133.08 (J = 5\) Hz\), 133.04, 132.71, 131.93, 131.17, 129.88, 128.83, 128.69, 126.92, 124.83.

\(^1\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -65.41\) (s, 0.90F, E-isomer), -56.75 (s, 0.10F, Z-isomer). Integrations indicate a Z/E ratio of 10:90.

IR (film): 1651, 1463, 1379, 1295, 1129, 962, 724 cm\(^{-1}\).

Ms (EI, 70 eV): \(m/z = 326\).

HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9921.

\((E)-1\)-bromo-3-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4d)

Colorless liquid; yield (Z+E): 61.0 mg (54%); Rf = 0.70 (PE).

\(^1\)H NMR (500 MHz, CDCl\(_3\), E-isomer): \(\delta = 7.43-7.40\) (m, 3H), 7.35-7.33 (m, 1H), 7.30-7.28 (m, 2H), 7.18-7.17 (m, 2H), 7.02 (t, \(J = 7.5\) Hz, 1H), 6.91 (d, \(J = 8\) Hz, 1H).

\(^1\)C NMR (125 MHz, CDCl\(_3\), E-isomer): \(\delta = 135.66, 132.99, 131.81, 131.75, 131.70, 129.73, 129.12, 128.44, 122.34.

\(^1\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -66.08\) (s, 0.92F, E-isomer), -56.30 (s, 0.08F, Z-isomer). Integrations indicate a Z/E ratio of 8:92.

IR (film): 1592, 1469, 1293, 1158, 962, 668 cm\(^{-1}\).

Ms (EI, 70 eV): \(m/z = 326\).

HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9922.

\((E)-1\)-bromo-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4e)

Colorless liquid; yield (Z+E): 71.2 mg (63%); Rf = 0.70 (PE).
1H NMR (500 MHz, CDCl₃, E-isomer): δ = 7.42-7.41 (m, 3H), 7.31-7.29 (m, 4H), 7.18 (s, 1H), 6.87 (d, J = 8 Hz, 2H).
13C NMR (125 MHz, CDCl₃, E-isomer): δ = 132.50, 132.36, 132.02 (J = 5 Hz), 131.57, 131.51, 129.77, 129.14, 129.06, 123.22.
19F NMR (470 MHz, CDCl₃): δ = -65.96 (s, 0.92F, E-isomer), -56.27 (s, 0.08F, Z-isomer). Integrations indicate a Z/E ratio of 8:92.
IR (film): 1588, 1464, 1379, 1267, 1128, 1073, 958, 819, 702 cm⁻¹.
Ms (EI, 70 eV): m/z = 326.
HRMS (EI, 70 eV) calcd for C₁₅H₁₀BrF₃: 325.9918, found 325.9916.

(E)-2-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)furan (4f)

\[
\begin{array}{c}
\text{O} \\
\text{CF₃}
\end{array}
\]

Colorless liquid; yield (Z+E): 71.4 mg (60%); R_f = 0.67 (PE).
1H NMR (500 MHz, CDCl₃, E-isomer): δ = 7.47-7.45 (m, 3H), 7.35-7.32 (m, 3H), 7.12 (d, J = 1.5 Hz, 1H), 6.24 (dd, J = 3.5 Hz, 2 Hz, 1H), 5.73 (d, J = 3.5 Hz, 1H).
13C NMR (125 MHz, CDCl₃, E-isomer): δ = 149.60, 143.63, 132.83, 129.57, 128.96, 128.38, 128.32, 121.87, 121.84 (J = 5 Hz), 113.23, 118.85.
19F NMR (470 MHz, CDCl₃): δ = -65.88 (s, 0.90F, E-isomer), -58.69 (s, 0.10F, Z-isomer). Integrations indicate a Z/E ratio of 10:90.
IR (film): 1650, 1468, 1369, 1296, 1167, 1122, 668 cm⁻¹.
Ms (EI, 70 eV): m/z = 238.
HRMS (EI, 70 eV) calcd for C₁₃H₉F₃O: 238.0605, found 238.0606.

(E)-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzonitrile (4g)

\[
\begin{array}{c}
\text{CF₃} \\
\text{NC}
\end{array}
\]

Colorless liquid; yield (Z+E): 41.0 mg (30%); R_f = 0.08 (PE).
1H NMR (500 MHz, CDCl₃, E-isomer): δ = 7.44-7.40 (m, 4H), 7.32 (d, J = 2 Hz, 1H), 7.26-7.23 (m, 3H), 7.09 (d, J = 7.5 Hz, 2H).
13C NMR (125 MHz, CDCl₃, E-isomer): δ = 138.17, 133.85, 133.69, 132.00, 131.68, 131.36 (J = 5 Hz), 130.41, 129.58, 129.41, 129.23, 128.75, 128.55, 128.50.
19F NMR (470 MHz, CDCl₃): δ = -66.33 (s, 1F, E-isomer).
IR (film): 1681, 1463, 1379, 1268, 1132, 701 cm⁻¹.
Ms (EI, 70 eV): m/z = 273.
HRMS (EI, 70 eV) calcd for C₁₆H₁₀F₃N: 273.0765, found 273.0761.

(E)-1-bromo-2-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4h)

\[
\begin{array}{c}
\text{Br} \\
\text{CF₃}
\end{array}
\]

Colorless liquid; yield (Z+E): 79.1 mg (70%); R_f = 0.53 (PE).
\(^1\)H NMR (500 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 7.67\) (d, \(J = 8\) Hz, 1H), 7.42-7.36 (m, 3H), 7.33 (s, 1H), 7.25 (d, \(J = 7\) Hz, 1H), 7.21-7.18 (m, 2H), 7.02 (d, \(J = 7.5\) Hz, 2H).

\(^13\)C NMR (125 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 141.18, 135.14\) (\(J = 5\) Hz), 133.50, 131.85, 130.53, 129.62, 129.44, 128.53, 128.33, 127.91, 124.76.

\(^19\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -65.58\) (s, 0.85F, \(E\)-isomer), -57.02 (s, 0.15F, \(Z\)-isomer). Integrations indicate a \(Z/E\) ratio of 15:85.

IR (film): 1464, 1379, 1274, 1127, 736 cm\(^{-1}\).

Ms (EI, 70 eV): \(m/z = 326\).

HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9913.

\((E)-1\)-bromo-3-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4i)

\[
\begin{align*}
&\text{Colorless liquid; yield (Z+E): 91.5 mg (81\%); } R_f = 0.72 (\text{PE}). \\
&\text{\(^1\)H NMR (500 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 7.55\) (d, \(J = 7.5\) Hz, 1H), 7.50 (s, 1H), 7.27-7.20 (m, 6H), 7.03 (d, \(J = 7.5\) Hz, 2H).} \\
&\text{\(^13\)C NMR (125 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 134.80, 134.11\) (\(J = 5\) Hz), 133.04, 132.74, 132.05, 130.54, 130.10, 129.31, 128.80, 128.49, 122.92.} \\
&\text{\(^19\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -65.62\) (s, 0.92F, \(E\)-isomer), -56.31 (s, 0.08F, \(Z\)-isomer). Integrations indicate a \(Z/E\) ratio of 8:92.} \\
&\text{IR (film): 1466, 1379, 1274, 1128, 965, 779, 719 cm\(^{-1}\).} \\
&\text{Ms (EI, 70 eV): \(m/z = 326\).} \\
&\text{HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9924.} \\
\end{align*}
\]

\((E)-1\)-bromo-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4j)

\[
\begin{align*}
&\text{Colorless liquid; yield (Z+E): 114.1 mg (70\%); } R_f = 0.68 (\text{PE}). \\
&\text{\(^1\)H NMR (500 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 7.54\) (d, \(J = 8\) Hz, 2H), 7.28 (s, 1H), 7.26-7.19 (m, 5H), 7.05 (d, \(J = 7.5\) Hz, 2H).} \\
&\text{\(^13\)C NMR (125 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 133.86, 133.22, 132.30, 131.67, 130.53, 129.31, 128.48, 123.28.} \\
&\text{\(^19\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -65.70\) (s, 0.89F, \(E\)-isomer), -56.39 (s, 0.08F, \(Z\)-isomer). Integrations indicate a \(Z/E\) ratio of 11:89.} \\
&\text{IR (film): 1464, 1379, 1274, 1128, 965, 822, 731 cm\(^{-1}\).} \\
&\text{Ms (EI, 70 eV): \(m/z = 326\).} \\
&\text{HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9919.} \\
\end{align*}
\]

\((E)-1\)-chloro-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4k)

\[
\begin{align*}
&\text{Colorless liquid; yield (Z+E): 100.1 mg (71\%); } R_f = 0.72 (\text{PE}). \\
&\text{\(^1\)H NMR (500 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 7.51\) (d, \(J = 8\) Hz, 2H), 7.28 (s, 1H), 7.26-7.19 (m, 5H), 7.05 (d, \(J = 7.5\) Hz, 2H).} \\
&\text{\(^13\)C NMR (125 MHz, CDCl\(_3\), \(E\)-isomer): \(\delta = 133.86, 133.22, 132.30, 131.67, 130.53, 129.31, 128.48, 123.28.} \\
&\text{\(^19\)F NMR (470 MHz, CDCl\(_3\)): \(\delta = -65.70\) (s, 0.89F, \(E\)-isomer), -56.39 (s, 0.11F, \(Z\)-isomer). Integrations indicate a \(Z/E\) ratio of 11:89.} \\
&\text{IR (film): 1464, 1379, 1274, 1127, 960, 822, 731 cm\(^{-1}\).} \\
&\text{Ms (EI, 70 eV): \(m/z = 326\).} \\
&\text{HRMS (EI, 70 eV) calcd for C\(_{15}\)H\(_{10}\)BrF\(_3\): 325.9918, found 325.9919.} \\
\end{align*}
\]
1H NMR (500 MHz, CDCl₃, E-isomer): \(\delta = 7.38 \) (d, \(J = 8.5 \) Hz, 2H), 7.28-7.25 (m, 4H), 7.21 (d, \(J = 7.5 \) Hz, 2H), 7.04 (d, \(J = 7.5 \) Hz, 2H).

13C NMR (125 MHz, CDCl₃, E-isomer): \(\delta = 135.05, 133.89 \) (\(J = 5 \) Hz), 133.25, 131.40, 131.20, 129.35, 129.17, 128.47.

19F NMR (470 MHz, CDCl₃): \(\delta = -65.72 \) (s, 0.92F, E-isomer), -56.38 (s, 0.08F, Z-isomer). Integrations indicate a Z/E ratio of 8:92.

IR (film): 1465, 1379, 1274, 1126, 960, 824, 692 cm\(^{-1}\).

Ms (EI, 70 eV): \(m/z = 282 \).

HRMS (EI, 70 eV) calcd for C₆H₁₀ClF₃: 282.0423, found 282.0420.

\((E)-1\)-methoxy-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4l)

\[
\begin{align*}
\text{Colorless liquid; yield (Z+E): 79.2 mg (57%); } R_f &= 0.20 \text{ (PE).} \\
\text{1H NMR (500 MHz, CDCl₃, E-isomer): } \delta &= 7.38-7.33 \text{ (m, 2H), 7.21-7.17 (m, 4H), 7.04 (d, } J = 7.5 \text{ Hz, 2H), 6.91 (d, } J = 7.5 \text{ Hz, 2H), 3.83 (s, 3H).} \\
\text{13C NMR (125 MHz, CDCl₃, E-isomer): } \delta &= 159.94, 133.81, 132.99 \text{ (} J = 5 \text{ Hz), 132.94, 131.13, 130.04, 129.59, 128.78, 128.61, 128.55, 128.49, 128.29, 128.13, 114.45, 113.85, 55.25.} \\
\text{19F NMR (470 MHz, CDCl₃): } \delta &= -66.01 \text{ (s, 0.83F, E-isomer), -56.50 (s, 0.17F, Z-isomer). Integrations indicate a Z/E ratio of 17:83.} \\
\text{IR (film): 1611, 1463, 1379, 1272, 1173, 693 cm}\text{.} \\
\text{Ms (EI, 70 eV): } m/z &= 278.} \\
\text{HRMS (EI, 70 eV) calcd for C}_{16}\text{H}_{13}\text{F}_3\text{O: 278.0918, found 278.0914.}
\end{align*}
\]

\((E)-1\)-methyl-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4m)

\[
\begin{align*}
\text{Colorless liquid; yield (Z+E): 110.0 mg (84%); } R_f &= 0.53 \text{ (PE).} \\
\text{1H NMR (500 MHz, CDCl₃, E-isomer): } \delta &= 7.25-7.19 \text{ (m, 8H), 7.07 (d, } J = 7.5 \text{ Hz, 2H), 2.42 (s, 3H).} \\
\text{13C NMR (125 MHz, CDCl₃, E-isomer): } \delta &= 138.71, 133.79, 132.98 \text{ (} J = 5 \text{ Hz), 132.94, 131.13, 130.04, 129.75, 128.84, 128.30, 21.37.} \\
\text{19F NMR (470 MHz, CDCl₃): } \delta &= -65.85 \text{ (s, 0.89F, E-isomer), -56.30 (s, 0.11F, Z-isomer). Integrations indicate a Z/E ratio of 11:89.} \\
\text{IR (film): 1651, 1463, 1379, 1273, 1126, 960, 814, 693 cm}\text{.} \\
\text{Ms (EI, 70 eV): } m/z &= 262.} \\
\text{HRMS (EI, 70 eV) calcd for C}_{16}\text{H}_{13}\text{F}_3: 262.0969, found 262.0972.}
\end{align*}
\]

\((Z)-2\)-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)thiophene (4n)

\[
\begin{align*}
\text{Colorless liquid; yield (Z+E): 94.0 mg (74%); } R_f &= 0.53 \text{ (PE).}
\end{align*}
\]
1H NMR (500 MHz, CDCl$_3$, Z-isomer): $\delta = 7.41$ (d, $J = 5$ Hz, 1H), 7.34 (s, 1H), 7.30-7.24 (m, 3H), 7.17 (d, $J = 7.5$ Hz, 2H), 7.10-7.08 (m, 2H).

13C NMR (125 MHz, CDCl$_3$, Z-isomer): $\delta = 135.58$ (J = 5 Hz), 133.49, 132.33, 129.98, 129.41, 129.34, 128.46, 127.94, 127.50.

19F NMR (470 MHz, CDCl$_3$): $\delta = -66.54$ (s, 0.93F, Z-isomer), -57.62 (s, 0.07F, E-isomer). Integrations indicate a Z/E ratio of 93:7.

IR (film): 1466, 1379, 1274, 1133, 985, 700 cm$^{-1}$.

Ms (EI, 70 eV): $m/z = 254$.

HRMS (EI, 70 eV) calcd for C$_{13}$H$_{9}$F$_3$S: 254.0377, found 254.0382.

References:

Copies of 1H, 13C and 19F NMR Spectra

(E)-prop-1-ene-1,2-diyl dibenzene (3a)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-chloro-4-(1-phenylprop-1-en-2-yl)benzene (3b)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-2-(1-phenylprop-1-en-2-yl)thiophene (3c)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-chloro-4-(2-phenylprop-1-en-1-yl)benzene (3d)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)

![NMR spectra and chemical structures](Image)

Template for *SYNLETT* and *SYNTHESIS* © Thieme Stuttgart · New York
(E)-but-1-ene-1,2-diyl dibenzene (3e)

1H NMR (500 MHz, CDCl₃)

13C NMR (125 MHz, CDCl₃)
(E)-pent-1-ene-1,2-diyl dibenzene (3f)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-bromo-4-(2-phenylbut-1-en-1-yl)benzene (3g)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-(2-phenylbut-1-en-1-yl)-4-(trifluoromethyl)benzene (3h)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-2-(2-phenylbut-1-en-1-yl)thiophene (3i)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-(2-phenylbut-1-en-1-yl)naphthalene (3j)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-1-methyl-2-(2-phenylbut-1-en-1-yl)benzene (3k)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
(E)-(3,3,3-trifluoroprop-1-ene-1,2-diyl)dibenzene (4a)

1H NMR (500 MHz, CDCl$_3$)

(E)-1-methyl-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4b)

1H NMR (500 MHz, CDCl$_3$)
(E)-1-bromo-2-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4c)

$\text{H NMR (500 MHz, CDCl}_3\text{)}$

$\text{C NMR (125 MHz, CDCl}_3\text{)}$

Template for **SYNLETT** and **SYNTHESIS** © Thieme Stuttgart · New York
\[^{19}\text{F NMR (470 MHz, CDCl}_3 \text{)} \]

\[(E)-1\text{-bromo-3-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4d)} \]

\[^{1}\text{H NMR (500 MHz, CDCl}_3 \text{)} \]
13C NMR (125 MHz, CDCl$_3$)

19F NMR (470 MHz, CDCl$_3$)
(E)-1-bromo-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzene (4e)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
19F NMR (470 MHz, CDCl$_3$)

(E)-2-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)furan (4f)

1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

19F NMR (470 MHz, CDCl$_3$)
(E)-4-(3,3,3-trifluoro-2-phenylprop-1-en-1-yl)benzonitrile (4g)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
19F NMR (470 MHz, CDCl$_3$)

(E)-1-bromo-2-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4h)

1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

19F NMR (470 MHz, CDCl$_3$)
\((E)-1\text{-bromo-3-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)}\text{benzene (4i)}\)

\(^1\text{H NMR (500 MHz, CDCl}_3\text{)}\):

\[\begin{array}{c}
\text{major} \\
\text{minor}
\end{array}\]

\[^{13}\text{C NMR (125 MHz, CDCl}_3\text{)}\):

\[\begin{array}{c}
\text{major} \\
\text{minor}
\end{array}\]
19F NMR (470 MHz, CDCl$_3$)

(E)-1-bromo-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4j)

1H NMR (500 MHz, CDCl$_3$)

(E)-1-bromo-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4j)
13C NMR (125 MHz, CDCl$_3$)

19F NMR (470 MHz, CDCl$_3$)
(E)-1-chloro-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4k)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
19F NMR (470 MHz, CDCl$_3$)

(E)-1-methoxy-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4l)

1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl$_3$)

19F NMR (470 MHz, CDCl$_3$)
(E)-1-methyl-4-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)benzene (4m)

1H NMR (500 MHz, CDCl$_3$)

13C NMR (125 MHz, CDCl$_3$)
19F NMR (470 MHz, CDCl$_3$)

(Z)-2-(3,3,3-trifluoro-1-phenylprop-1-en-2-yl)thiophene (4n)

1H NMR (500 MHz, CDCl$_3$)
13C NMR (125 MHz, CDCl₃)

![13C NMR spectrum](image1)

19F NMR (470 MHz, CDCl₃)

![19F NMR spectrum](image2)