Supporting information

Synthesis of Ethers from Carbonyl Compounds by Reductive Etherification Catalyzed by Iron(III) and Silyl Chloride

Risto Savela, Reko Leino*

Laboratory of Organic Chemistry, Åbo Akademi University, 20500 Åbo, Finland

reko.leino@abo.fi

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst preparation and characterization</td>
<td>2-8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
</tbody>
</table>
| Copies of NMR-spectra and GC-chromatograms
 Dibenzylether (1) | 9-10 |
| Bis(4-methylbenzyl) ether (2) | 11-12 |
| Bis(2-methylbenzyl) ether (3) | 13-14 |
| Bis(4-tert-butylbenzyl) ether (4) | 15-16 |
| Bis(4-chlorobenzyl) ether (5) | 17-18 |
| Bis(2-chlorobenzyl) ether (6) | 19-20 |
| Bis(3,4-dichlorobenzyl) ether (7) | 21-22 |
| Bis(4-fluorobenzyl) ether (8) | 23-24 |
| Bis[4-(trifluoromethyl)benzyl] ether (9) | 25-26 |
| Bis(4-bromobenzyl) ether (10) | 27-28 |
| Bis(3-hydroxybenzyl) ether (11) | 29-30 |
| Bis(4-acetoxybenzyl) ether (12) | 31-32 |
| Bis(2-nitrobenzyl) ether (13) | 33-34 |
| 4,4’-[Oxybis(methylene)]bisbenzoic acid dimethyl ester (14) | 35-36 |
| Bis(4-biphenylmethyl) ether (15) | 37-38 |
| Dicyclohexyl ether (16) | 39-40 |
| [Oxybis(methylene)]dicyclohexane (17) | 41-42 |
| Di-n-hexyl ether (18) | 43-44 |
| 1,1’-(Oxydiethylidene)bis(cyclohexane (19) | 45-50 |
| 1-Bromo-4-[(phenylmethoxy)methyl]benzene (20) | 51-52 |
| 1-[Benzoxy)methyl]-4-(trifluoromethyl)benzene (21) | 53-54 |
| 1-Nitro-2-[(phenylmethoxy)methyl]benzene (22) | 55-56 |
| 1-Methyl-4-[(phenylmethoxy)methyl]benzene (23) | 57-58 |
| 3-[(Phenylmethoxy)methyl]phenol (24) | 59-60 |
| Benzyl hexyl ether (25) | 61-62 |
| Benzyl cyclohexyl ether (26) | 63-64 |
| Benzyl cyclohexyl ether (26) Table 3, Entry 8 | 65-66 |
| 1-[(Cyclohexyloxy)methyl]-4-methylbenzene (27) | 67-68 |
| 4-[(Cyclohexyloxy)methyl]benzoic acid methyl ester (28) | 69-70 |
| 4-[(Cyclohexyloxy)methyl]-1,1'-biphenyl (29) | 71-73 |
| Cyclohexyl octyl ether (30) | 74-75 |
| 1,3-Dimethylbutyl octyl ether (31) | 76-78 |
| 4-[[[(1R,2S,5R)-5-Methyl-2-(1-methylethyl)cyclohexyl]oxy]methyl]-1,1’-biphenyl (33) | 82-84 |
| Allyl benzyl ether (34) | 85-87 |
| 1-Fluoro-4-[(2-propen-1-yloxy)methyl]-benzene (35) | 88-90 |
| Allyl 2-adamantyl ether (36) | 91-93 |
Catalyst Preparation and Characterization

General considerations. The catalysts employed for substrate scope screening were prepared from iron(II) acetate (Sigma Aldrich, 99.99%) by atmospheric oxidation at room temperature or at 110 °C in a conventional drying oven. Since the oxidation at ambient temperature is time consuming,1 also oxidations at 110 °C were investigated as a faster method for producing the catalyst. For the oxidation at elevated temperature, two batches of iron(II) acetate were spread as thin layers on open glass vessels, after which the vessels were covered with aluminium foil and kept at 110 °C for either 24 or 72 hours. All three catalyst preparations were characterized by IR spectroscopy, elemental analysis, Mössbauer spectroscopy and ICP in order to verify and determine the iron(III) contents in the catalysts. It is evident from the Mössbauer spectra that there are no significant differences between the catalyst samples prepared for 24 and 72 hours, respectively, at 110 °C. Only the catalyst sample oxidized at ambient temperature over an extended period contains small amounts of other Fe(III) species, possibly due to the prolonged exposure to atmospheric moisture or other type of decay of the catalyst.

Oxidation reactions at 110 °C. In the first experiment, 5.09 g of iron(II) acetate was kept for 24 hours at 110 °C, yielding 4.98 g of a tile red powder. In the subsequent experiment, 5.10 g of iron(II) acetate was kept for 72 hour at 110 °C yielding 4.69 g of tile red powder.

Elemental analysis and ICP-results.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>C %</th>
<th>H %</th>
<th>Fe %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(III) oxo acetate rt</td>
<td>24.66</td>
<td>3.77</td>
<td>31.25</td>
</tr>
<tr>
<td>Fe(III) oxo acetate 110 °C 24 h</td>
<td>25.72</td>
<td>3.47</td>
<td>34.65</td>
</tr>
<tr>
<td>Fe(III) oxo acetate 110 °C 72 h</td>
<td>23.69</td>
<td>3.29</td>
<td>37.39</td>
</tr>
</tbody>
</table>
IR-Spectra
Fe(III) oxo acetate: oxidized at rt
Fe(III) oxo acetate: oxidized at 110 °C 24h
Fe(III) oxo acetate: oxidized at 110 °C 72h
Mössbauer spectra
Fe(III) oxo acetate: oxidized at rt
Fe(III) oxo acetate: oxidized at 110 °C 24h
Fe(III) oxo acetate: oxidized at 110 °C 72h

References:

Spectra:

Dibenzylether (1)
Data File C:\CHEM32\1\DATA\RMS\DM 2014-01-13 12-15-22\001F0101.D
Sample Name: Bz2O purif

Acq. Operator : RMS
Acq. Instrument : Instrument 1
Injection Date : 13-Jan-14, 12:16:46
Inj : 1
Inj Volume : 1 µl
Analysis Method : C:\CHEM32\1\DATA\RMS\DM 2014-01-13 12-15-22\AA-DEFAULT.M
Last changed : 1/22/2014 11:45:12 AM by RMS
(modified after loading)
Method Info : AAGC-default

Area Percent Report

Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.709</td>
<td>BB</td>
<td>866.54364</td>
<td>535.54907</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Width</th>
<th>Area [pA*s]</th>
<th>Height [pA]</th>
<th>Percent [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.999</td>
<td>BB</td>
<td>2426.53564</td>
<td>1196.86963</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
Bis(2-methylbenzyl) ether (3)
Area Percent Report

Multiplier: 1.0000
Dilution: 1.0000

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.689 min</td>
<td>0.8323 min</td>
<td>4124.05811</td>
<td>1702.00586</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>

Signal 1: FID1 A,
Bis(4-tert-butylbenzyl) ether (4)
Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.853</td>
<td>BB</td>
<td>0.0243</td>
<td>8.6363</td>
<td>5.4926</td>
<td>0.2775</td>
</tr>
<tr>
<td>2</td>
<td>11.732</td>
<td>BB</td>
<td>0.0256</td>
<td>11.1712</td>
<td>6.6372</td>
<td>0.3590</td>
</tr>
<tr>
<td>3</td>
<td>20.485</td>
<td>BB</td>
<td>0.0233</td>
<td>23.7880</td>
<td>16.0314</td>
<td>0.7644</td>
</tr>
<tr>
<td>4</td>
<td>21.058</td>
<td>BB</td>
<td>0.0291</td>
<td>3068.1425</td>
<td>1423.4364</td>
<td>98.5989</td>
</tr>
</tbody>
</table>
Bis(4-chlorobenzyl) ether (5)
Data File C:\CHEM32\DATA\RMS\TOLU2 2014-02-05 12-31-34\001F0101.D
Sample Name: p-C1-Bz2Opur

Acq. Operator : RMS
Seq. Line : 1
Acq. Instrument : Instrument 1
Location : Vial 1
Injection Date : 05-Feb-14, 12:33:12
Inj Volume : 1 μl
Inj : 1
Acq. Method : C:\CHEM32\DATA\RMS\TOLU2 2014-02-05 12-31-34\AA-DEFAULT.M
Last changed : 11/20/2013 12:14:04 PM by RMS
Analysis Method : C:\CHEM32\METHODS\AA-DEFAULT.M
Last changed : 2/5/2014 2:02:59 PM by RMS
(modified after loading)
Method Info : AAQC-default

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.483</td>
<td>0.0236</td>
<td>3.98356</td>
<td>2.60727</td>
<td>0.13804</td>
</tr>
<tr>
<td>18.640</td>
<td>0.0272</td>
<td>11.83137</td>
<td>6.84970</td>
<td>0.40997</td>
</tr>
<tr>
<td>18.825</td>
<td>0.0330</td>
<td>2070.07080</td>
<td>1156.62012</td>
<td>99.45199</td>
</tr>
</tbody>
</table>

Bis(2-chlorobenzyl) ether (6)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.225</td>
<td>BB</td>
<td>0.021</td>
<td>56.66539</td>
<td>40.46131</td>
<td>1.62031</td>
</tr>
<tr>
<td>2</td>
<td>18.304</td>
<td>BB</td>
<td>0.0344</td>
<td>3440.52856</td>
<td>1413.04236</td>
<td>98.37969</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Bis(3,4-dichlorobenzyl) ether (7)
Data File C:\CHEM32\DATA\RMS\DM 2014-06-04 09-24-31\001F0101.D
Sample Name: 3,4DClBz2O cl pur

Acq. Operator : RMS
Acq. Instrument : Instrument 1
Injection Date : 04-Jun-14, 09:26:07
Inj Volume : 1 μl
Acq. Method : C:\CHEM32\DATA\RMS\DM 2014-06-04 09-24-31\AA-A-DEFAULT.M
Last changed : 11/20/2013 12:14:04 PM by RMS
Analysis Method : C:\CHEM32\METHODS\RMS_A-CL.M
Last changed : 6/10/2014 12:39:40 PM by RMS
(modified after loading)
Method Info : ÂAGC-default

Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.125</td>
<td>0.0263</td>
<td>206.85336</td>
<td>125.04919</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
Bis(4-fluorobenzyl) ether (8)
Data File C:\CHEM32\DATA\RMS\TOLU2 2014-02-03 13-20-23\001F0101.D
Sample Name: p-F-Ez2Opur

Acq. Operator : RMS Seq. Line : 1
Acq. Instrument : Instrument 1 Location : Vial 1
Injection Date : 03-Feb-14, 13:21:40 Inj : 1
Injection Volume : 1 μL
Acq. Method : C:\CHEM32\DATA\RMS\TOLU2 2014-02-03 13-20-23\AA-DEFAULT.M
Last changed : 11/20/2013 12:14:04 PM by RMS
Analysis Method : C:\CHEM32\METHODS\AA-DEFAULT.M
Last changed : 2/3/2016 2:36:37 PM by RMS
(modified after loading)
Method Info : AGC-default

Area Percent Report

Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

Peak RetTime Type Width Area Height Area %
[min] [min] [pA*s] [pA] %
---|------|--------|------------------|--------|-------|
1 14.771 BB 0.0365 5680.32422 2104.16968 1.000e2

24
Bis[4-(trifluoromethyl)benzyl] ether (9)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1A,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.210</td>
<td>BB</td>
<td>0.0255</td>
<td>6.14944</td>
<td>3.67779</td>
<td>0.12022</td>
</tr>
<tr>
<td>2</td>
<td>14.777</td>
<td>BB</td>
<td>0.0227</td>
<td>8.10428</td>
<td>5.65591</td>
<td>0.15843</td>
</tr>
<tr>
<td>3</td>
<td>15.526</td>
<td>BB</td>
<td>0.0232</td>
<td>47.41444</td>
<td>32.17606</td>
<td>0.92691</td>
</tr>
<tr>
<td>4</td>
<td>16.281</td>
<td>BB</td>
<td>0.0291</td>
<td>5.58594</td>
<td>2.81806</td>
<td>0.10920</td>
</tr>
</tbody>
</table>
Bis(4-bromobenzyl) ether (10)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.761</td>
<td>0.0458</td>
<td>16.3434</td>
<td>5.32224</td>
<td>2.01078</td>
</tr>
<tr>
<td>2</td>
<td>20.620</td>
<td>0.0283</td>
<td>796.44629</td>
<td>435.83734</td>
<td>97.98922</td>
</tr>
</tbody>
</table>
Bis(3-hydroxybenzyl) ether (11)
Area Percent Report

Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.325</td>
<td>HR</td>
<td>0.0407</td>
<td>590.92010</td>
<td>217.81866</td>
<td>1.0000e2</td>
</tr>
</tbody>
</table>
Bis(4-acetoxybenzyl) ether (12)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID 1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>[min]</td>
<td>[min]</td>
<td>[pA*s]</td>
<td>[pA]</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>21.949</td>
<td>0.0271</td>
<td>570.45850</td>
<td>314.78079</td>
</tr>
</tbody>
</table>
Bis(2-nitrobenzyl) ether (13)
Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area [pA*s]</th>
<th>Height</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.489</td>
<td>0.0260</td>
<td>132.94359</td>
<td>78.45081</td>
<td>1.0000e2</td>
</tr>
</tbody>
</table>
4,4’-[oxybis(methylene)]bis-benzoic acid dimethyl ester (14)
Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.236 BB</td>
<td>BB</td>
<td>0.0226</td>
<td>15.79144</td>
<td>11.12619</td>
<td>1.29590</td>
<td></td>
</tr>
<tr>
<td>23.037 BB</td>
<td>BB</td>
<td>0.0308</td>
<td>1202.78186</td>
<td>566.36792</td>
<td>98.70410</td>
<td></td>
</tr>
</tbody>
</table>
Area Percent Report

Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.703</td>
<td>BB</td>
<td>0.0581</td>
<td>72.26591</td>
<td>26.93084</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
Dicyclohexyl ether (16)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.911 Ea</td>
<td>0.0218</td>
<td>14.89379</td>
<td>10.36798</td>
<td>2.5937</td>
</tr>
<tr>
<td>2</td>
<td>11.308 Ev</td>
<td>0.0206</td>
<td>13.56299</td>
<td>10.15353</td>
<td>2.28564</td>
</tr>
<tr>
<td>3</td>
<td>11.371 Vb</td>
<td>0.0227</td>
<td>564.94310</td>
<td>393.93433</td>
<td>95.20445</td>
</tr>
</tbody>
</table>
(Oxybis(methylene))dicyclohexane (17)
Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.844</td>
<td>BB</td>
<td>0.0269</td>
<td>11.1218</td>
<td>5.92614</td>
<td>3.45830</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14.023</td>
<td>BB</td>
<td>0.0228</td>
<td>299.89438</td>
<td>207.83911</td>
<td>93.33239</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>21.300</td>
<td>BB</td>
<td>0.0263</td>
<td>6.25607</td>
<td>3.77742</td>
<td>1.94700</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26.071</td>
<td>BB</td>
<td>0.0267</td>
<td>4.05602</td>
<td>2.40347</td>
<td>1.26230</td>
<td></td>
</tr>
</tbody>
</table>
Di-\(n\)-hexyl ether (18)
Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.818</td>
<td>EB</td>
<td>0.0223</td>
<td>4.38891</td>
<td>2.96711</td>
<td>2.78971</td>
<td></td>
</tr>
<tr>
<td>10.477</td>
<td>EB</td>
<td>0.0219</td>
<td>152.93987</td>
<td>112.33995</td>
<td>97.21029</td>
<td></td>
</tr>
</tbody>
</table>
1,1'-(oxydiethyldiene)bis-cyclohexane (19)

FRACTION 1.
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.295</td>
<td>HH</td>
<td>0.0250</td>
<td>3.97694</td>
<td>2.43846</td>
<td>2.20654</td>
<td></td>
</tr>
<tr>
<td>15.273</td>
<td>HH</td>
<td>0.0231</td>
<td>176.25751</td>
<td>120.18933</td>
<td>97.79346</td>
<td></td>
</tr>
</tbody>
</table>
FRACTION 2.
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [pA*s]</th>
<th>Height [pA]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.102</td>
<td>0.0218</td>
<td>341.66617</td>
<td>236.68892</td>
<td>89.95008</td>
</tr>
<tr>
<td>2</td>
<td>15.271</td>
<td>0.0227</td>
<td>38.17358</td>
<td>26.73759</td>
<td>10.04992</td>
</tr>
</tbody>
</table>
1-Bromo-4-[(phenylmethoxy)methyl]benzene (20)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.749</td>
<td>EB</td>
<td>0.0465</td>
<td>7.60515</td>
<td>2.57156</td>
<td>1.34905</td>
</tr>
<tr>
<td>2</td>
<td>17.742</td>
<td>EB</td>
<td>0.0248</td>
<td>556.13684</td>
<td>345.22382</td>
<td>98.65095</td>
</tr>
</tbody>
</table>
1-[(Benzyl氧)methyl]-4-(trifluoromethyl)benzene (21)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.744</td>
<td>BB</td>
<td>0.0250</td>
<td>12.456</td>
<td>7.65921</td>
<td>0.67299</td>
</tr>
<tr>
<td>2</td>
<td>14.803</td>
<td>BB</td>
<td>0.0273</td>
<td>1790.520</td>
<td>980.70435</td>
<td>96.75592</td>
</tr>
<tr>
<td>3</td>
<td>15.048</td>
<td>BB</td>
<td>0.0235</td>
<td>47.59005</td>
<td>31.77939</td>
<td>2.57109</td>
</tr>
</tbody>
</table>
1-nitro-2-[(phenylmethoxy)methyl]benzene (22)
Data File C:\CHEM32\DATA\RMS\OL 2014-02-28 14-29-26\140221.0000001.D
Sample Name: 2NO2EtOBz pur

Acq. Operator : RMS
Acq. Instrument : Instrument 1
Injection Date : 28-Feb-14, 14:31:01
Injection Volume : 1 µl
Acq. Method : C:\CHEM32\DATA\RMS\OL 2014-02-28 14-29-26\AA-DEFAULT.M
Last changed : 11/20/2013 12:14:04 PM by RMS
Analysis Method : C:\CHEM32\METHODS\RMS_A-CL.M
Last changed : 3/5/2014 2:15:44 PM by RMS
(modified after loading)
Method Info : AAGC-default

Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.982</td>
<td>EB</td>
<td>0.0273</td>
<td>89.8882</td>
<td>51.55819</td>
<td>2.5228</td>
<td>99.47719</td>
</tr>
<tr>
<td>2</td>
<td>18.351</td>
<td>EB</td>
<td>0.0373</td>
<td>3473.15674</td>
<td>1254.23767</td>
<td>97.47719</td>
<td></td>
</tr>
</tbody>
</table>
1-Methyl-4-[(phenylmethoxy)methyl]benzene (23)
Data File: C:\CHEM32\1\DATA\RMS\OL 2014-02-18 12-41-57\140211000001.D
Sample Name: pMBzOBz pur

Acq. Operator: RMS
Acq. Instrument: Instrument 1
Injection Date: 18-Feb-14, 12:43:21
Injection Volume: 1 µl

Acq. Method: C:\CHEM32\1\DATA\RMS\OL 2014-02-18 12-41-57\AA-DEFAULT.M
Last changed: 11/20/2013 12:14:04 PM by RMS
Analysis Method: C:\CHEM32\1\METHODS\RMS\A-CL.M
Last changed: 6/10/2014 1:43:48 PM by RMS
(modified after loading)
Method Info: AAGC-default

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.874</td>
<td>EB</td>
<td>0.0249</td>
<td>793.79749</td>
<td>490.75501</td>
<td>95.39774</td>
</tr>
<tr>
<td>2</td>
<td>16.974</td>
<td>EB</td>
<td>0.0282</td>
<td>36.29509</td>
<td>20.15389</td>
<td>4.60226</td>
</tr>
</tbody>
</table>
3-[(phenylmethoxy)methyl]-phenol (24)

Current Data Parameters
NAME: 30hobs1
PROCHO: 1

F2 - Acquisition Parameters
DAT_1: 20140022
TIME: 10.53
INSTRUM: AVN900
PROB: 5 mm PANNO B-300
ES: 733
NS: 6
SD: 5000
SW: 30000.00 Hz
DG: 4.000 Hz
TE: 196.14 sec
D1: 1.000000 sec
NCH: 0.000000 sec
MCH: 0.000000 sec

--- CHANNEL F1 ---
NCH1: 13.4
FH1: 6.85 Hz
SL1: 1.000 Hz
SF1: 125.774343 MHz

--- CHANNEL F2 ---
CP: 96.00 kHz
PL1: 1.000 kHz
PL2: 2.000 kHz
SF2: 500.123456 MHz

F2 - Processing parameters
SI: 32768
SF: 125.774343 MHz
WSW: 0 Hz
LB: 0 Hz
CB: 0 Hz
PC: 1.00 Hz
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.708</td>
<td>EB</td>
<td>0.0273</td>
<td>673.41528</td>
<td>368.88141</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
Benzyl hexyl ether (25)
Data File: C:\CHEM32\DATA\RMS\OL 2014-04-08 12-14-31\140318000001.D
Sample Name: B-O-cHex pur

Acq. Operator: RMS
Acq. Instrument: Instrument 1
Injection Date: 08-Apr-14, 12:15:58
Injection Volume: 1 µl
Inj Volume: 1 µl

Acq. Method: C:\CHEM32\DATA\RMS\OL 2014-04-08 12-14-31\AA-DEFAULT.M
Last changed: 11/20/2013 12:14:04 PM by RMS
Analysis Method: C:\CHEM32\DATA\METHODS\RMS_A-CL.M
Last changed: 6/2/2014 12:24:59 PM by RMS
(modified after loading)
Method Info: AA GC-default

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.480</td>
<td>EB</td>
<td>0.0284</td>
<td>26.24664</td>
<td>13.68695</td>
<td>5.80556</td>
</tr>
<tr>
<td>2</td>
<td>12.625</td>
<td>EB</td>
<td>0.0210</td>
<td>425.84845</td>
<td>294.91364</td>
<td>94.19544</td>
</tr>
</tbody>
</table>
Benzyl cyclohexyl ether (26) Table 3. Entry 7
Data File C:\CHEM32\1\DATA\RMS\OL 2014-04-01 12-54-57\140318000001.D
Sample Name: ROChex pur

<table>
<thead>
<tr>
<th>Acq. Operator</th>
<th>RMS</th>
<th>Seq. Line</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acq. Instrument</td>
<td>Instrument 1</td>
<td>Location</td>
<td>Vial 1</td>
</tr>
<tr>
<td>Injection Date</td>
<td>01-Apr-14, 12:56:22</td>
<td>Inj</td>
<td>1</td>
</tr>
<tr>
<td>Inj Volume</td>
<td>1 μl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acq. Method</td>
<td>C:\CHEM32\1\DATA\RMS\OL 2014-04-01 12-54-57\AA-DEFAULT.M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last changed</td>
<td>11/20/2013 12:14:04 PM by RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Method</td>
<td>C:\CHEM32\1\METHODS\RMS_A-Cl.M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last changed</td>
<td>6/2/2014 12:26:14 PM by RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method Info</td>
<td>AAGC-default</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FID1 A, (RMS\OL 2014-04-01 12-54-57\140318000001.D)

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.367</td>
<td>BB</td>
<td>0.0237</td>
<td>47.58424</td>
<td>31.37267</td>
<td>6.67121</td>
<td></td>
</tr>
<tr>
<td>13.225</td>
<td>BB</td>
<td>0.0231</td>
<td>665.69299</td>
<td>453.41345</td>
<td>93.32879</td>
<td></td>
</tr>
</tbody>
</table>

64
Benzyl cyclohexyl ether (26) Table 3. Entry 8

Current Data Parameters
NAME: 5bcbec6f3a52
ENDING: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 2016/01/12
Time: 11:04
INSTRUM: AV500
PROBES: 5 mm PA90 SS-
PULPROG: zg39
TD: 5556
SOLVENT: CDCl3
NS: 16
DS: 2
SW1: 10330.578 Hz
FIDRES: 0.157432 Hz
AQ: 3.137425 sec
DG: 80.6
DE: 46.400 us
TE: 298.1 K
DS: 1.00000000 sec
MHCRES: 0.00000000 sec
MHCRR: 0.00000000 sec

-------- CHANNEL F1 --------
HETC1: 18
P1: 9.10 us
P1: -1.00 us
SFQ: 500.133888 MHz
F2 - Processing parameters
GI: 12768
GF: 500.1338207 MHz
WID: 0
SIS: 0
LS: 0 Hz
GS: 0 Hz
PC: 1.00
Area Percent Report

Sorted By : Signal
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [pA]</th>
<th>Height [pA]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.225</td>
<td>0.0234</td>
<td>641.63672</td>
<td>429.53717</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
1-[(cyclohexyloxy)methyl]-4-methylbenzene (27)
Area Percent Report

<table>
<thead>
<tr>
<th>Sort by</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>1.0000</td>
</tr>
<tr>
<td>Dilution</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.469</td>
<td>0.0269</td>
<td>1841.47937</td>
<td>1028.49963</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
4-[(cyclohexyloxy)methyl]benzoic acid methyl ester (28)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.006</td>
<td>min</td>
<td></td>
<td>180084</td>
<td>251237</td>
<td></td>
</tr>
</tbody>
</table>
4-[(cyclohexyloxy)methyl]-1,1’-biphenyl (29)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.851 E6</td>
<td>0.0249</td>
<td>686.80389</td>
<td>423.32532</td>
<td>1.0000e2</td>
<td></td>
</tr>
</tbody>
</table>
Cyclohexyl octyl ether (30)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID 1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime Type</th>
<th>Width [min]</th>
<th>Area [pA's]</th>
<th>Height [pA]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.372 BB</td>
<td>0.0253</td>
<td>4.19738</td>
<td>2.83910</td>
<td>0.73429</td>
</tr>
<tr>
<td>2</td>
<td>13.521 BB</td>
<td>0.0224</td>
<td>567.42499</td>
<td>404.00345</td>
<td>99.26571</td>
</tr>
</tbody>
</table>
1,3-Dimethylbutyl octyl ether (31)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak Ret Time</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.231</td>
<td>0.0223</td>
<td>1.64553</td>
<td>1.17680</td>
<td>0.33098</td>
</tr>
<tr>
<td>11.691</td>
<td>0.0212</td>
<td>495.51849</td>
<td>357.24265</td>
<td>99.66902</td>
</tr>
</tbody>
</table>
[[[(1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl]oxy]methyl]benzene (32)
Area Percent Report

Sorted By : Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>Peak RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.027</td>
<td>EB</td>
<td>0.0253</td>
<td>1206.78784</td>
<td>776.78210</td>
<td>1.000e2</td>
</tr>
</tbody>
</table>
4-[[[(1R,2S,5R)-5-methyl-2-(1-methylethyl)cyclohexyl]oxy]methyl]-1,1'-biphenyl (33)
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.804</td>
<td>EB</td>
<td>0.0252</td>
<td>442.26422</td>
<td>268.47797</td>
<td>1.0000e2</td>
</tr>
</tbody>
</table>
Allyl benzyl ether (34)
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.626</td>
<td>0.0222</td>
<td>631.72150</td>
<td>453.88846</td>
<td>95.76017</td>
</tr>
<tr>
<td>2</td>
<td>8.710</td>
<td>0.0244</td>
<td>19.09094</td>
<td>12.08492</td>
<td>2.89392</td>
</tr>
<tr>
<td>3</td>
<td>9.147</td>
<td>0.0273</td>
<td>8.87882</td>
<td>4.87444</td>
<td>1.34591</td>
</tr>
</tbody>
</table>
1-Fluoro-4-[(2-propen-1-yl)oxy]methyl]-benzene (35)
Current Data Parameters
NAME pFPnBuCl
EXPMO 2
PROCRO 1

F2 - Acquisition Parameters
Data_ 20140627
Time 11.33
INSTRUM AV900
PROSHD 5 mm PA900 80-
POLYMAG ph_400s45
TD 65596
SOLVENT CDCl3
DS 983
DOW 2
SNR 30650.025 Hz
FIELD 9.456222 Hz
AQ 1.091744 usec
BG 6953
DW 16.450 usec
DE 6.90 usec
TX 298.1 K
DT 0.000000090 sec
dll 0.000000000 sec
DELTA 1.99999998 usec
MCRADT 0 usec
MCWRR 0.015600000 sec

****** CHANNEL f1 ******
NDC1 13C
D1 6.85 usec
PL1 -1.00 dB
SF01 125.763643 MHz

****** CHANNEL f2 ******
CPTPM02 wltz216
NDC2 1H
DPD2 86.00 usec
PL2 -1.00 dB
PL13 18.00 dB
PL12 21.00 dB
SF02 500.1320005 MHz

F2 - Processing parameters
SI 2768
RF 125.7677269 MHz
M0 0
M0N 0
I2 1.00 Hz
L2 0
Q0 1.00 Hz
T0 1.00 Hz
Area Percent Report

Signal 1: FID1 A,

<table>
<thead>
<tr>
<th>#</th>
<th>RetTime</th>
<th>Type</th>
<th>Width [min]</th>
<th>Area [pA*s]</th>
<th>Height [pA]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.712</td>
<td>EV</td>
<td>0.0215</td>
<td>680.89520</td>
<td>481.00153</td>
<td>95.50863</td>
</tr>
<tr>
<td>2</td>
<td>8.779</td>
<td>VB</td>
<td>0.0238</td>
<td>22.35287</td>
<td>14.62427</td>
<td>3.13542</td>
</tr>
<tr>
<td>3</td>
<td>9.201</td>
<td>EB</td>
<td>0.0290</td>
<td>9.66681</td>
<td>5.13797</td>
<td>1.35596</td>
</tr>
</tbody>
</table>
Data File C:\CHEM3\DATA\RMS\OL 2015-01-07 09-58-28\14121600001.D
Sample Name: adamOallyl pur

Acq. Operator: RMS
Seq. Line: 1
Acq. Instrument: Instrument 1
Location: Vial 1
Injection Date: 07-Jan-15, 10:00:05
Inj: 1
Inj Volume: 1 μl
Acq. Method: C:\CHEM3\DATA\RMS\OL 2015-01-07 09-58-28\AA-DEFAULT.M
Last changed: 11/7/2014 2:27:56 PM by OL
Analysis Method: C:\CHEM3\METHODS\M.Slice1.M
Last changed: 1/7/2015 10:59:04 AM by RMS
(modified after loading)
Method Info: AAGC-default

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A,

Peak RetTime Type Width Area Height Area %
[min] [min] [pA*s] [pA] %
-----|-------|--------|--------|--------|
1 12.174 BV 0.0233 7.24862 4.88135 1.70838
2 12.239 VB 0.0231 4.05.72171 277.39471 95.62168
3 12.403 BB 0.0232 6.56720 4.45168 1.54778
4 12.773 BB 0.0234 4.76135 3.18413 1.12217