SUPPORTING INFORMATION

Synthesis of Atropisomeric MeOBIPHEP Analogues and Their Application in Silver-Catalyzed Cycloisomerization of Allenols

Florent Le Boucher d’Herouville, Anthony Millet, Michelangelo Scalone, and Véronique Michelet

a PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France.
b Process Research & Development CoE Catalysis, F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland.

Table contents:

1. X-ray crystal structure determinations of (R)-5-(AuCl)_2 complex and compound (S)-11 2

2. ^1H, ^13C and ^31P NMR spectra 3
1. X-Ray crystal structure determinations of \((R)-5-(AuCl)_2\) complex and compound \((S)-11\)

A single crystal of each compound \([(R)-5-(AuCl)_2\] complex and compound \((S)-11\) was selected, mounted onto a cryoloop, and transferred in a cold nitrogen gas stream. Intensity data were collected with a BRUKER Kappa-APEXII diffractometer with graphite-monochromated Mo-Kα radiation (\(\lambda = 0.71073\) Å). Data collections were performed with APEX2 suite (BRUKER). Unit-cell parameters refinement, integration and data reduction were carried out with SAINT program (BRUKER). SADABS (BRUKER) was used for scaling and multi-scan absorption corrections. In the WinGX\(^1\) suite of programs, the structure were solved with Sir92 program\(^2\) and refined by full-matrix least-squares methods using SHELXL-97.\(^3\)

\((S)-11\)

\[(R)-5-(AuCl)_2\]

\(^3\) Sheldrick, G. M. *Acta Crystallographica Section A* **2008**, *64*, 112.
2. 1H, 13C and 31P NMR spectra
$$\text{MeO} \text{PAr}_2 \text{MeO} \text{PAr}_2 \text{Br} \quad \text{Ar} = 4\text{-CF}_3\text{C}_6\text{H}_4$$

$$\text{Ar} = 4\text{-CF}_3\text{C}_6\text{H}_4$$
Ar = 4-\text{CO}_2\text{Bu}-\text{C}_6\text{H}_4
\[\text{Ar} = 4\text{-CO}_2\text{Bu-C}_6\text{H}_4 \]

\[\text{Ar} = 3,5\text{-} \left(\text{CF}_3 \right) \text{2-C}_6\text{H}_3 \]
\[\text{Ar} = 3,5-(\text{CF}_3)_2\text{C}_6\text{H}_3 \]