Supporting Information
for DOI: 10.1055/s-0036-1588107
© Georg Thieme Verlag KG Stuttgart · New York 2016
Supporting Information for

Towards a series of chiral primary amines bearing α-amino acid and benzo[d]imidazole and their application in asymmetric aldol reactions

Pravinkumar H. Mohite, Pavel Drabina, Filip Bureš*

Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic

Table of contents

<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1H/13C NMR and HR-MALDI-MS spectra of compounds 3-5</td>
<td>S2-S39</td>
</tr>
<tr>
<td>2. 1H NMR spectra of catalysts 5a-h measured with Mosher’s acid</td>
<td>S40-S43</td>
</tr>
<tr>
<td>3. Chiral phase HPLC analyses of catalysts 5a-h</td>
<td>S44-S51</td>
</tr>
<tr>
<td>4. Representative chiral phase HPLC analyses for aldol processes</td>
<td>S52-S53</td>
</tr>
</tbody>
</table>
1. 1H/13C NMR and HR-MALDI-MS spectra of compounds 3, 4, and 5

Figure S1 1H NMR spectrum of compound 3a (400 MHz, DMSO, 25 °C).

Figure S2 13C APT NMR spectrum of compound 3a (100 MHz, DMSO, 25 °C).
Figure S3 HR-MALDI-MS spectrum of compound 3a (DHB matrix).

Figure S4 1H NMR spectrum of compound 4a (400 MHz, CDCl$_3$, 25 °C).
Figure S5 13C APT NMR spectrum of compound 4a (100 MHz, CDCl$_3$, 25 °C).

Figure S6 HR-MALDI-MS spectrum of compound 4a (DHB matrix).
Figure S7 1H NMR spectrum of compound 5a (400 MHz, CDCl$_3$, 25 °C).

Figure S8 13C APT NMR spectrum of compound 5a (100 MHz, DMSO, 25 °C).
Figure S9 HR-MALDI-MS spectrum of compound 5a (DHB matrix).

Figure S10 1H NMR spectrum of compound 3b (400 MHz, DMSO, 25 °C).
Figure S11 13C APT NMR spectrum of compound 3b (100 MHz, DMSO, 25°C).

Figure S12 HR-MALDI-MS spectrum of compound 3b (DHB matrix).
Figure S13 1H NMR spectrum of compound 4b (400 MHz, CDCl$_3$, 25 ºC).

Figure S14 13C APT NMR spectrum of compound 4b (100 MHz, CDCl$_3$, 25 ºC).
Figure S15 HR-MALDI-MS spectrum of compound 4b (DHB matrix).

Figure S16 1H NMR spectrum of compound 5b (400 MHz, DMSO, 25°C).
Figure S17 13C APT NMR spectrum of compound 5b (100 MHz, DMSO, 25°C).

Figure S18 HR-MALDI-MS spectrum of compound 5b (DHB matrix).
Figure S19 1H NMR spectrum of compound 3c (400 MHz, DMSO, 25 °C).

Figure S20 13C NMR spectrum of compound 3c (100 MHz, DMSO, 25 °C).
Figure S21 HR-MALDI-MS spectrum of compound 3c (DHB matrix).

Figure S22 1H NMR spectrum of compound 4c (400 MHz, CDCl$_3$, 25 °C).
Figure S23 13C APT NMR spectrum of compound 4c (100 MHz, CDCl$_3$, 25 °C).

Figure S24 HR-MALDI-MS spectrum of compound 4c (DHB matrix).
Figure S25 1H NMR spectrum of compound 5c (400 MHz, DMSO, 25 ºC).

Figure S26 13C APT NMR spectrum of compound 5c (100 MHz, DMSO, 25 ºC).
Figure S27 HR-MALDI-MS spectrum of compound 5c (DHB matrix).

Figure S28 1H NMR spectrum of compound 3d (400 MHz, DMSO, 25 °C).
Figure S29 13C APT NMR spectrum of compound 3d (100 MHz, DMSO, 25°C).

Figure S30 HR-MALDI-MS spectrum of compound 3d (DHB matrix).
Figure S31 1H NMR spectrum of compound 4d (400 MHz, CDCl$_3$, 25°C).

Figure S32 13C APT NMR spectrum of compound 4d (100 MHz, CDCl$_3$, 25°C).
Figure S33 HR-MALDI-MS spectrum of compound 4d (DHB matrix).

Figure S34 1H NMR spectrum of compound 5d (500 MHz, DMSO, 25°C).
Figure S35: 13C APT NMR spectrum of compound 5d (125 MHz, DMSO, 25°C).

Figure S36: HR-MALDI-MS spectrum of compound 5d (DHB matrix).
Figure S37 1H NMR spectrum of compound 3e (400 MHz, DMSO, 25 °C).

Figure S38 13C APT NMR spectrum of compound 3e (100 MHz, DMSO, 25 °C).
Figure S39 HR-MALDI-MS spectrum of compound 3e (DHB matrix).

Figure S40 1H NMR spectrum of compound 4e (400 MHz, CDCl$_3$, 25 °C).
Figure S41 13C APT NMR spectrum of compound 4e (100 MHz, CDCl$_3$, 25 °C).

Figure S42 HR-MALDI-MS spectrum of compound 4e (DHB matrix).
Figure S43 1H NMR spectrum of compound 5e (500 MHz, DMSO, 25 °C).

Figure S44 13C APT NMR spectrum of compound 5e (125 MHz, DMSO, 25 °C).
Figure S45 HR-MALDI-MS spectrum of compound 5e (DHB matrix).

Figure S46 1H NMR spectrum of compound 3f (400 MHz, DMSO, 25 °C).
Figure S47 13C APT NMR spectrum of compound 3f (100 MHz, DMSO, 25 °C).

Figure S48 HR-MALDI-MS spectrum of compound 3f (DHB matrix).
Figure S49 1H NMR spectrum of compound 4f (400 MHz, CDCl$_3$, 25 °C).

Figure S50 13C APT NMR spectrum of compound 4f (100 MHz, CDCl$_3$, 25 °C).
Figure S51 HR-MALDI-MS spectrum of compound 4f (DHB matrix).

Figure S52 1H NMR spectrum of compound 5f (400 MHz, DMSO, 25 °C).
Figure S53 13C NMR spectrum of compound 5f (100 MHz, DMSO, 25°C).

Figure S54 HR-MALDI-MS spectrum of compound 5f (DHB matrix).
Figure S55 1H NMR spectrum of compound 3g (400 MHz, DMSO, 25°C).

Figure S56 13C APT NMR spectrum of compound 3g (100 MHz, DMSO, 25°C).
Figure S57 HR-MALDI-MS spectrum of compound 3g (DHB matrix).

Figure S58 1H NMR spectrum of compound 4g (400 MHz, CDCl$_3$, 25 °C).
Figure S59 13C APT NMR spectrum of compound 4g (100 MHz, CDCl$_3$, 25 °C).

Figure S60 HR-MALDI-MS spectrum of compound 4g (DHB matrix).
Figure S61 1H NMR spectrum of compound 5g (400 MHz, CDCl$_3$, 25 °C).

Figure S62 13C APT NMR spectrum of compound 5g (100 MHz, CDCl$_3$, 25 °C).
Figure S63 HR-MALDI-MS spectrum of compound 5g (DHB matrix).

Figure S64 1H NMR spectrum of compound 3h (400 MHz, DMSO, 25 °C).
Figure S65 13C APT NMR spectrum of compound 3h (125 MHz, DMSO, 25 °C).

Figure S66 HR-MALDI-MS spectrum of compound 3h (DHB matrix).
Figure S67 1H NMR spectrum of compound 4h (500 MHz, CDCl$_3$, 25°C).

Figure S68 13C APT NMR spectrum of compound 4h (125 MHz, CDCl$_3$, 25°C).
Figure S69 HR-MALDI-MS spectrum of compound 4h (DHB matrix).

Figure S70 1H NMR spectrum of compound 5h (500 MHz, CDCl$_3$, 25 °C).
Figure S71 13C APT NMR spectrum of compound 5h (125 MHz, CDCl$_3$, 25 °C).

Figure S72 HR-MALDI-MS spectrum of compound 5h (DHB matrix).
Figure S73 1H NMR spectrum of compound 12 (400 MHz, DMSO, 25 °C).

Figure S74 13C APT NMR spectrum of compound 12 (100 MHz, DMSO, 25 °C).
Figure S75 1H NMR spectrum of compound 13 (500 MHz, DMSO, 25 °C).

Figure S76 13C NMR spectrum of compound 13 (100 MHz, DMSO, 25 °C).
2. 1H NMR spectra of target catalysts 5a-h measured with Mosher’s acid

Figure S77 1H NMR spectrum of compound 5a measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).

Figure S78 1H NMR spectrum of compound 5b measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).
Figure S79 1H NMR spectrum of compound 5c measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).

Figure S80 1H NMR spectrum of compound 5d measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).
Figure S81 1H NMR spectrum of compound 5e measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).

Figure S82 1H NMR spectrum of compound 5f measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).
Figure S83 1H NMR spectrum of compound 5g measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).

Figure S84 1H NMR spectrum of compound 5h measured with Mosher’s acid (400 MHz, CDCl$_3$, 25 °C).
3. Chiral phase HPLC analyses of target catalysts 5a-h

Figure S85 Chiral phase HPLC analysis of 5a (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL min⁻¹, t₁ = 8.08 min, t₂ = 9.65 min). Estimated ee of 0 %.
Figure S86 Chiral phase HPLC analysis of 5b (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL.min⁻¹, tᵣ = 12.9 min, tₓ = 14.8 min). Estimated ee of 94 %.
Figure S87 Chiral phase HPLC analysis of 5c (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL min⁻¹, $t_R = 8.04$ min, $t_R = 9.65$ min). Estimated ee of 99%.
Figure S88 Chiral phase HPLC analysis of 5d (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL/min, t_R = 21.0 min). Estimated ee of 99%.
Figure S89 Chiral phase HPLC analysis of 5e (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL.min⁻¹, tᵣ = 18.5 min). Estimated ee of 99 %.
Figure S90 Chiral phase HPLC analysis of 5f (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL.min⁻¹, $t_R = 23.4$ min). Estimated ee of 99%.
Figure S91 Chiral phase HPLC analysis of 5g (Daicel Chiralcel OD-H, n-hexane/i-PrOH 90:10, flow rate 0.8 mL.min⁻¹, tᵣ₁ = 11.8 min, tᵣ₂ = 14.5 min). Estimated ee of 20%.
Figure S92: Chiral phase HPLC analysis of 5h (Daicel Chiralcel OD-H, n-hexane/i-PrOH 70:30, flow rate 0.8 mL min⁻¹, t_R = 16.7 min). Estimated ee of 99%.
4. Representative chiral phase HPLC analyses for aldol processes

Figure S93 Chiral phase HPLC analysis of 12 (Daicel Chiralpak OJ-H, n-hexane/i-PrOH 80:20, flow rate 0.8 mL.min$^{-1}$, $\lambda = 254$ nm, $t_R = 22.02$ min, $t_R = 24.62$ min)
Figure S94 Chiral phase HPLC analysis of 13 (Daicel Chiralpak OJ-H, n-hexane/i-PrOH 85:15, flow rate 0.8 mL.min⁻¹, λ = 254 nm, tᵣ(anti) = 16.75, tᵣ(anti) = 18.64, tᵣ(syn) = 21.25 min, tᵣ(syn) = 28.16 min).