New approach to the synthesis of benzo[c][1,7]naphthyridin-4(3H)-ones

Ivan V. Kulakova, Anton L. Shatsauskasb, Mariya V. Matsukevicha, Irina V. Palamarchuka, Tulegen M. Seilkhanovc, Yuriy V. Gatilovd,e, and Alexander S. Fisyukb,f

aDepartment of Organic Chemistry, Omsk F.M. Dostoevsky State University, 55a Mira Ave, 644077 Omsk, Russia
bLaboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave, 644050 Omsk, Russia; e-mail: fisyuk@chemomsu.ru
cSh. Ualikhanov Kokshetau State University, 76 Abaya St., Kokshetau 020000, Kazakhstan
dN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Science, 9 Akademika Lavrientieva Ave., Novosibirsk 630090, Russia; e-mail: gatilov@nioch.nsc.ru
eNovosibirsk State University, 2 Pirogov St., Novosibirsk 630090, Russia.

Supporting information

Table of Contents:
General Consideration ... S1
Experimental Procedures ... S1
Table Spectroscopic and physical data .. S2
1H and 13C NMR Spectra .. S9-S32
Figures 2 .. S33
X-ray structural analysis of compound 14a ... S34
X-ray data of 14a (CIF)... S35-S40

Experimental

General Information. The 1H and 13C NMR spectra of the investigated compounds were recorded on a JEOL JNM-ECA-400 or a Bruker DRX-400 instruments (400 and 100 MHz, respectively) with TMS as internal standard. 13C NMR signals were assigned by using the APT (Attached Proton Test). The IR spectra were recorded on an INFRAUM FT-801 spectrometer. The reaction course and purity of the products were checked by thin-layer chromatography on Sorbfil UV-254 plates. Melting points were determined on a Kofler bench. Elemental analysis was performed with a Carlo Erba 1106 CHN analyzer. Compounds 5,6 were prepared as previously reported1b. Aldehydes 11a-j were commercially available and used as received. PPA was prepared directly before the reactions from 6 g P2O5 and 4 ml 80% PA.

General Procedure for the Synthesis of Compounds 7, 8. A solution of benzyol chloride (170 mg; 1.2 mmol) in 1 ml of anhydrous chloroform was added dropwise to a solution of 3-aminopyridine 5, 6 (1.0 mmol) and anhydrous pyridine (120 mg, 1.5 mmol) in absolute chloroform (5 ml) with stirring and ice cooling. The mixture was stirred for 0.5 h with cooling in ice and for 2 h at room temperature. The solvent was evaporated, the residue triturated with H2O, and recrystallized from a mixture of solvents: ethanol-water.

The Synthesis of 6-Aryl-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one 12 a-d. (General Procedure A). 3-Aminopyridin-2(1H)-one 6 (260 mg, 1 mmol) and aldehyde 11 a,b,c,d (1.5 mmol) in 1.0 ml 80% trifluoroacetic acid was refluxed for 4 h. Upon cooling reaction mixture was poured on a crushed ice and neutralized by solution of 1N NaOH. The solid was filtered off and recrystallized from the mixture of solvents: 2-propanol-1,4-dioxane = 2:1.

The Synthesis of 6-Aryl-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one 12 a-h. (General Procedure B). 3-Aminopyridin-2(1H)-one 5, 6 (1 mmol) and aldehyde 11 a-h (1.5 mmol) in 1 ml PPA was heated at 110-130°C for 4-11 h. Upon cooling the mixture was poured on a crushed ice and neutralized by 1N NaOH. The solid was filtered off and recrystallized from the mixture of solvents: 2-propanol-1,4-dioxane = 2:1.

The Synthesis of 6-Aryl-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one 12 a-h. (General Procedure C). 3-Aminopyridin-2(1H)-one 5, 6 (1 mmol) and aldehyde 11 a-i (1.5 mmol) in 1.0 ml 80% phosphoric acid was heated at 110-130°C for 10-12 h. Upon cooling the mixture was poured on a crushed ice and neutralized by 1N NaOH. The solid was filtered off and recrystallized from the mixture of solvents: 2-propanol-1,4-dioxane, 2:1.

Spectroscopic and physical data
N-(6-methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)benzamide (7)
Yield: 246 mg (81%); white crystals, m.p. 276-278°C (ethanol-water, 2:1).
IR (KBr), ν, cm⁻¹: 3320 (N-H), 1643, 1511 (C(O)NH).

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.23 (s, 3H, CH₃); 6.06 (s, 1H, H-5); 7.29-7.38 (m, 3H, H-3', 4', 5' Ph); 7.39-7.50 (m, 5H, H2,3,4,5,6 Ph); 7.79 (d, 2H, J = 5.8 Hz, H-2', 6' Ph); 9.38 (s, 1H, N-H Bz); 11.92 (bs, 1H, N-H).

13C NMR (DMSO-d6): δ: 18.4, 105.6, 121.6, 127.5, 127.8, 128.1, 128.2, 131.3, 134.3, 137.7, 143.3, 149.4, 161.1, 166.0.

N-[4-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-1,2-dihydropyridin-3-yl]benzamide (8)
Yield: 247 mg (68%); white crystals, m.p. 234-236°C (ethanol-water, 2:1).
IR (KBr), ν, cm⁻¹: 1614, 3295.

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.23 (s, 3H, CH₃); 3.63 (s, 3H, OCH₃); 3.72 (s, 3H, OCH₃); 6.10 (s, 1H, H-5); 6.94 (d, 1H, J = 8.4 Hz, H-5' Ar); 7.03 (d, 1H, J = 8.4 Hz, H-6' Ar); 7.10 (s, 1H, H-2' Ar); 7.45 (t, 2H, J = 7.4 Hz, H-3', 5' Ph); 7.53 (t, 1H, J = 7.1 Hz, H-4' Ph); 7.86 (d, 2H); 3.97 (s, 1H, N-H Bz); 11.84 (bs, 1H, N-H).

13C NMR spectrum, δ, ppm (100 MHz): δ: 18.4, 55.3, 55.4, 105.6, 111.3, 111.6, 120.4, 121.5, 127.5, 128.3, 129.9, 131.4, 134.2, 143.0, 148.0, 148.9, 149.2, 161.2, 166.0.

5-methyl-2,7-diphenyloxazolo[5,4-b]pyridine (9) and 7-(3,4-dimethoxyphenyl)-5-methyl-2-phenyl[1,3]oxazolo[5,4-b]pyridine (10);

5-methyl-2,7-diphenyloxazolo[5,4-b]pyridine (9)
Yield: 115 mg (80%); white crystals, m.p. 114-115°C (ethanol). IR (KBr), ν, cm⁻¹: 1613, 3385.

1H NMR spectrum, δ, ppm (400 MHz, (CD₃)₂CO): 2.65 (s, 3H, CH₃); 7.48 - 7.59 (m, 4H, H-3', 4', 5', 4' Ph); 7.60 (s, 1H, H-6); 7.61-7.63 (m, 2H, H-2', 6' Ph); 8.25-8.29 (m, 4H, H-2'', 3'', 5'', 6'' Ph). 13C NMR spectrum, δ, ppm (100 MHz): 24.5, 119.2, 127.9, 128.5, 129.8, 129.9, 130.0, 130.2, 130.6, 133.1, 133.9, 141.1, 155.8, 161.4, 162.7.

7-(3,4-dimethoxyphenyl)-5-methyl-2-phenyl[1,3]oxazolo[5,4-b]pyridine (10)
Yield: 125 mg (72%); white crystals, m.p. 168-170°C (ethanol).
IR (KBr), ν, cm⁻¹: 1660, 3281.

1H NMR spectrum, δ, ppm (400 MHz, CDCl₃): 2.71 (s, 3H, CH₃); 3.97 (s, 3H, OCH₃); 4.05 (s, 3H, OCH₃); 7.03 (d, 1H, J = 8.4 Hz, H-5' Ar); 7.38 (s, 1H, H-6); 7.48 - 7.60 (m, 3H, H-3'', 4'', 5'' Ph); 7.78 (d, 1H, J = 8.4, 2.0 Hz, H-6' Ar); 7.95 (d, 1H, J = 2.0 Hz, H-2' Ar); 8.28 (d, 2H, J = 7.5, 2.0 Hz, H-2'', 6'' Ph).

13C NMR spectrum, δ, ppm (100 MHz): 24.4, 56.0, 111.2, 112.3, 117.3, 121.6, 126.9, 127.4, 127.6, 128.7, 128.9, 131.7, 140.0, 149.0, 150.3, 154.3, 160.4, 161.5.
Anal. Calcd for C₂₁H₁₆N₂O₃: C, 72.82; H, 5.24; N, 8.09. Found: C, 73.09; H, 5.03; N, 8.21.
8,9-Dimethoxy-2-methyl-6-phenylbenzo[c][1,7]-naphthyridin-4(3H)-one (12a)

Yield by method A 163 mg (47%), yield by method B 204 mg (59%), yield by method C 207 mg (60%); Pale yellow powder; mp 326-329 °C (ethanol-dioxane, 2:1). IR (KBr), ν, cm^{-1}: 1640, 3392;

^1^H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.37 (s, 3H, CH₃); 3.78 (s, 3H, OCH₃); 4.06 (s, 3H, OCH₃); 7.12 (s, 1H, H-1); 7.37 (s, 1H, H-10); 7.52-7.58 (m, 3H, H-3', 4', 5' Ph); 7.70 (dd, 2H, ^3^J = 7.8, ^4^J = 1.5 Hz, H-2', 6' Ph); 7.90 (s, 1H, H-7); 11.43 (bs, 1H, N-H).

^1^C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.6, 55.2, 55.9, 97.1, 103.7, 106.6, 122.1, 127.3, 127.8, 128.5, 129.3, 129.7, 132.8, 139.2, 140.0, 150.7, 152.3, 155.2, 161.0.

Anal. Calcd for C_{21}H_{18}N_{2}O_{3}: C, 72.82; H, 5.24; N, 8.09. Found: C, 72.67; H, 5.09; N, 8.21

8,9-dimethoxy-6-(4-methoxyphenyl)-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one (12b)

Yield by method C 181 mg (48%), pale yellow powder, mp 315-320 °C (2-propanol-1,4-dioxane, 2:1); IR (KBr). ν cm^{-1}: 1656, 3409;

^1^H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.36 (s, 3H, CH₃); 3.80 (s, 3H, OCH₃); 3.86 (s, 3H, OCH₃); 4.05 (s, 3H, OCH₃); 7.09-7.11 (m, 3H, H-1, H-3', 5' Ar); 7.43 (s, 1H, H-7); 7.66 (d, 2H, ^3^J = 8.6, H-2', 6' Ar); 7.88 (s, 1H, H-10); 11.43 (bs, 1H, N-H).

^1^C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 55.0, 55.2, 56.0, 97.3, 103.7, 106.7, 113.5, 122.2, 127.3, 129.5, 130.8, 131.8, 139.7, 150.7, 152.2, 155.0, 159.3, 161.3.

Anal. Calcd for C_{22}H_{20}N_{2}O_{4}: C, 70.20; H, 5.36; N, 7.44. Found: C, 70.09; H, 5.12; N, 7.61

8,9-dimethoxy-2-methyl-(pyridin-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12c)

Yield by method C 139 mg (40%), yellow powder, mp 340-342 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1640, 3415 cm^{-1}.

^1^H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.37 (s, 3H, CH₃); 3.85 (s, 3H, OCH₃); 4.06 (s, 3H, OCH₃); 7.15 (s, 1H, H-1); 7.52 (dd, 1H, ^3^J = 6.7 Hz, ^4^J = 4.5 Hz, H-5' Py); 7.89 (s, 1H, H-10); 8.02 (t, 1H, ^3^J = 8.1 Hz, H-4' Py); 8.14 (d, 1H, ^3^J = 8.1 Hz, H-3' Py); 8.39 (s, 1H, H-7); 8.76 (d, ^3^J = 4.1 Hz, H-6' Py); 11.51 (bs, 1H, N-H).

^1^C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 55.3, 55.9, 97.4, 103.4, 107.5, 122.3, 123.1, 124.8, 127.7, 130.6, 132.7, 136.7, 140.6, 147.7, 150.7, 151.6, 152.1, 158.0, 161.1.

Anal. Calcd for C_{20}H_{17}N_{3}O_{3}: C, 69.15; H, 4.93; N, 12.10. Found: C, 69.39; H, 4.82; N, 12.21
8,9-dimethoxy-2-methyl-6-(pyridin-4-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12d)

Yield by method C 115 mg (33%), yellow powder, mp. 322-324 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1641, 3484 cm⁻¹.

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.35 (s, 3H, CH₃); 3.84 (s, 3H, OCH₃); 4.05 (s, 3H, OCH₃); 7.20 (s, 1H, H-1); 7.30 (s, 1H, H-7); 7.62 (d, 2H, H = 3.7 Hz, H-3', 5' Py); 7.93 (s, 1H, H-10); 8.76 (d, H = 3.7 Hz, H-2', 6' Py); 11.65 (bs, 1H, N-H).

13C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 19.0, 56.1, 56.2, 97.7, 104.2, 107.3, 122.5, 124.4, 128.0, 130.9, 132.5, 140.8, 147.0, 149.6, 149.9, 152.3, 152.8, 161.5.

Anal. Calcd for C₂₀H₁₇N₃O₃: C, 69.15; H, 4.93; N, 12.10. Found: C, 69.51; H, 4.70; N, 12.35

6-(4-fluorophenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (12e)

Yield by method C 168 mg (46%); pale yellow powder, mp. 336-338 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1632, 1658, 3404 cm⁻¹.

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.34 (s, 3H, CH₃); 3.80 (s, 3H, OCH₃); 4.06 (s, 3H, OCH₃); 7.18 (s, 1H, H-1); 7.23-7.28 (m, 2H, H-3', 5' Ar); 7.65 (s, 1H, H-7); 7.60 (dd, 2H, H = 8.2, 6' Ar); 7.79 (s, 1H, H-10).

13C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 55.3, 55.7, 97.3, 103.4, 106.4, 114.5 (d, J₁₃C-F = 21.3 Hz), 122.2, 127.3, 129.9, 130.2, 131.3 (d, J₁₃C-F = 8.07 Hz), 133.0, 139.5, 150.9, 152.3, 154.3, 161.4, 161.7 (d, J₁₃C-F = 244 Hz).

6-(4-(dimethylamino)phenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one (12f)

Yield by method C 323 mg (83%), green powder, mp. 338-342 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1643, 1665, 3402 cm⁻¹.

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.35 (s, 3H, CH₃); 3.80 (s, 3H, OCH₃); 3.82 (s, 3H, OCH₃); 4.05 (s, 3H, OCH₃); 6.87 (d, 2H, H = 8.0 Hz, H-3', 5' Ph); 7.10 (s, 1H, H-1); 7.56 (s, 1H, H-7); 7.61 (d, 2H, H = 8.0 Hz, H-2', 6' Ph); 7.88 (s, 1H, H-10); 11.39 (bs, 1H, N-H).

13C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.6, 39.8, 55.3, 55.9, 97.3, 103.7, 107.0, 111.3, 122.2, 127.4, 129.0, 130.4, 131.6, 132.1, 139.2, 150.2, 150.5, 152.0, 155.6, 161.3.

Anal. Calcd for C₂₃H₂₃N₃O₃: C, 70.93; H, 5.95; N, 10.79. Found: C, 70.59; H, 5.78; N, 10.50.

6-(2-hydroxyphenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one (12g)

Yield 145 mg (40%), pale yellow powder, mp. 338-340 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1650, 3163 cm⁻¹.

1H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.38 (s, 3H, CH₃); 3.80 (s, 3H, OCH₃); 4.06 (s, 3H, OCH₃); 6.95 (t, 1H, H = 6.9 Hz, H-5' Ar); 7.05 (d, 1H, H = 8.0 Hz, H-3' Ar); 7.17 (s, 1H, H-1); 7.34 (d, 1H, H = 7.0 Hz, H-4' Ar); 7.38 (s, 1H, H-7); 7.55 (d, 1H, H = 7.0, H-6' Ar); 7.90 (s, 1H, H-10); 9.02 (bs, 1H, OH); 11.53 (bs, 1H, N-H).

13C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 55.2, 56.0, 97.4,
103.6, 107.3, 116.4, 118.6, 122.6, 124.2, 127.3, 129.8, 129.8, 130.6, 131.8, 140.2, 150.7, 152.4, 153.8, 155.9, 160.9.

Anal. Calcd for C_{21}H_{18}N_{2}O_{4}: C, 69.60; H, 5.36; N, 7.44. Found: C, 69.84; H, 5.12; N, 7.69

8,9-dimethoxy-2-methyl-6-(thiophen-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12h)
Yield 187 mg (53%), pale yellow powder, m.p. 338-344 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1649, 3052 cm⁻¹.

\(^1\)H NMR spectrum, δ, ppm (400 MHz, DMSO-d₆): 2.36 (s, 3H, CH₃); 3.94 (s, 3H, OCH₃); 4.07 (s, 3H, OCH₃); 7.13 (s, 1H, H-1); 7.26 (dd, 1H, ^3\)J = 5.1 Hz, ^3\)J = 3.5 Hz, H-4' Th); 7.75 (dd, 1H, ^3\)J = 5.1 Hz, ^4\)J = 1.2 Hz, H-3' Th); 7.78 (dd, 1H, ^3\)J = 3.6 Hz, ^4\)J = 1.1 Hz, H-5' Th); 7.87 (s, 1H, H-7); 7.90 (s, 1H, H-10); 11.48 (bs, 1H, N-H).

\(^1\)C NMR spectrum, δ, ppm (100 MHz, DMSO-d₆): 18.6, 35.4, 55.4, 56.0, 97.3, 103.9, 106.0, 112.5, 127.4, 127.5, 127.8, 129.7, 132.9, 140.2, 142.9, 148.1, 151.3, 152.3, 160.9.

Anal. Calcd for C_{21}H_{18}N_{2}O_{3}: C, 64.76; H, 4.58; N, 7.95. Found: C, 64.98; H, 4.81; N, 7.73

3-(benzylideneamino)-6-methyl-4-phenylpyridin-2(1H)-one (13a)
Yield: 236 mg (82%); yellow crystals, m.p. 214-215°C (2-propanol-chloroform). IR (KBr): v, cm⁻¹: 1636, 1525.

\(^1\)H NMR spectrum, δ, ppm (400 MHz, CDCl₃): 2.41 (s, 3H, CH₃); 6.25 (s, 1H, H-5); 7.35-7.40 (m, 5H, H-2',3',4',5',6' Ph); 7.48-7.53 (m, 3H, H-3",4",5" Ph); 7.75 (dd, 2H, ^3\)J = 7.1 Hz, ^4\)J = 2.4 Hz, H-2", 6" Ph); 9.35 (s, 1H, =C-H); 13.18 (bs, 1H, N-H).

\(^1\)C NMR spectrum, δ, ppm (100 MHz, CDCl₃): 18.7, 108.7, 121.6, 127.5, 128.0, 128.4, 128.6, 130.0, 130.6, 131.0, 131.7, 137.7, 140.8, 146.3, 161.2, 162.6.

2-Methyl-6-phenylbenzo[c][1,7]-naphthyridin-4(3H)-one (14a)
Yield by method B: 200 mg (70%); yield by method C: 143 mg (50%); pale yellow powder, m.p. 315-317 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1650, 3406 cm⁻¹.

\(^1\)H NMR spectrum, δ, ppm (400 MHz, DMSO-d₆): 2.39 (s, 3H, CH₃); 7.13 (s, 1H, H-1); 7.57-7.59 (m, 3H, H-3', 4', 5' Ph); 7.65-7.68 (m, 2H, H-2',6' Ph); 7.79 (td, 1H, ^3\)J = 7.7 Hz, ^4\)J = 1.2 Hz, H-8); 7.92 (td, 1H, ^3\)J = 7.6 Hz, ^4\)J = 1.2 Hz, H-9); 8.05 (d, ^3\)J = 8.2 Hz, H-7); 8.64 (d, ^3\)J = 8.2 Hz, H-10); 11.52 (bs, 1H, N-H).

\(^1\)C NMR spectrum, δ, ppm (100 MHz, DMSO-d₆): 18.6, 96.7, 123.6, 126.3, 127.1, 127.7, 128.0, 129.0, 129.3, 130.0, 130.4, 131.1, 133.4, 138.9, 141.0, 157.1, 160.9.

Anal. Calcd for C_{19}H_{14}N_{2}O: C, 79.70; H, 4.93; N, 9.78. Found: C, 79.48; H, 4.79; N, 9.97.
6-(4-methoxyphenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14b)

Yield by method C 161 mg (51%), pale yellow powder, mp. 338-340 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1635, 1668, 3409 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.37 (s, 3H, CH₃); 3.86 (s, 1H, OCH₃); 7.11 - 7.13 (m, 3H, H-1, H-3, 5' Ph); 7.62 (d, 2H, J = 8.6 Hz, H-2', 6' Ph); 7.78 (t, 1H, J = 4.1 Hz, H-4'); 7.90 (t, 1H, J = 8.2 Hz, H-9); 8.10 (d, J = 8.2 Hz, H-7); 8.61 (d, J = 8.2 Hz, H-10), 11.62 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 55.1, 97.0, 113.5, 123.8, 126.4, 127.4, 129.1, 130.2, 130.2, 131.0, 131.3, 131.4, 133.5, 140.9, 156.9, 159.5, 161.1.

Anal. Calcd for C₂₉H₁₆N₃O₂: C, 75.93; H, 5.10; N, 8.86. Found: C, 75.65; H, 5.33; N, 8.98

2-methyl-6-(pyridin-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14c)

Yield by method B 184 mg (64%), yellow powder, mp. 315-317 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1645, 3406 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.34 (s, 3H, CH₃); 7.02 (s, 1H, H-1); 7.45 (t, 1H, J = 6.1 Hz, H-5' Py); 7.68 (t, 1H, J = 7.6 Hz, H-4' Py); 7.81 (t, 1H, J = 7.6 Hz, H-8); 7.92 (t, 1H, J = 7.5 Hz, H-9); 8.01 (dd, J = 7.8 Hz, J = 0.9 Hz, H-3' Py); 8.49 (d, J = 8.4 Hz, H-7); 8.55 (d, J = 8.2 Hz, H-10); 8.71 (d, J = 4.1 Hz, H-6' Py).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 97.0, 123.1, 123.5, 124.8, 126.3, 128.0, 129.0, 130.2, 131.3, 131.4, 133.1, 136.7, 141.8, 147.8, 154.1, 157.5, 160.1.

2-methyl-6-(pyridin-4-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14d)

Yield by method B 172 mg (60%), yellow powder, mp. 300-302 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1655, 3404 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.38 (s, 3H, CH₃); 7.26 (s, 1H, H-1); 7.68 (d, 2H, J = 5.0 Hz, H-3', 5' Py); 7.85 (t, 1H, J = 7.3 Hz, H-8); 7.98 (t, 1H, J = 7.8 Hz, H-9); 8.03 (d, J = 8.2 Hz, H-7); 8.73 (d, J = 8.2 Hz, H-10); 8.79 (d, J = 5.0 Hz, H-2', 6' Py); 11.88 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 19.6, 97.8, 125.0, 126.4, 127.1, 127.5, 130.7, 131.8, 132.0, 132.7, 134.0, 143.7, 144.4, 153.3, 153.4, 161.5.

6-(4-fluorophenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14e)

Yield by method C 174 mg (57%), pale yellow powder, mp. 339-341 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1639, 1673, 3411 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.37 (s, 3H, CH₃); 7.23 (s, 1H, H-1); 7.40 (t, 2H, J = 8.7 Hz, H-3', 5' Ph); 7.72 (dd, 2H, J = 8.2 Hz, J = 5.5 Hz, H-2', 6' Ph); 7.82 (t, 1H, J = 7.6 Hz, H-8), 7.95 (t, 1H, J = 7.6 Hz, H-9); 8.03 (d, J = 8.2 Hz, H-7); 8.69 (d, J = 8.2 Hz, H-10), 11.86 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 96.7, 114.7 (d, J = 22.01 Hz), 114.8, 123.8, 126.3, 127.1, 129.2, 130.3, 130.5, 131.2, 131.5 (d, J = 8.07 Hz), 133.4, 135.4, 141.2, 156.1, 161.0, 162.1 (d, J = 246 Hz).
6-(4-(dimethylamino)phenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14f)
Yield by method C 178 mg (54%), pale green powder, mp. 361-362 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1610, 3428 cm⁻¹.
¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.34 (s, 3H, CH₃); 3.01 (s, 6H, N(CH₃)₂); 6.89 (d, 2H, ³J = 8.8 Hz, H-3', 5' Ph); 7.04 (s, 1H, H-1); 7.56 (2H, ³J = 8.8 Hz, H-2', 6' Ph); 7.73 (t, 1H, ³J = 7.6 Hz, H-8); 7.85 (t, 1H, ³J = 7.7 Hz, H-9); 8.16 (d, ³J = 8.4 Hz, H-7); 8.57 (d, ³J = 7.8 Hz, H-10).
¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 20.2, 21.2, 111.5, 126.9, 127.5, 128.6, 129.4, 130.5, 131.3, 133.2, 133.6, 134.6, 145.9, 150.9, 156.7, 159.0, 159.1, 160.0, 160.8.
Anal. Calcd for C₁₉H₁₃FN₂O: C, 74.99; H, 4.31; N, 9.21. Found: C, 75.31; H, 4.16; N, 9.44.

6-(2-hydroxyphenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14g)
Yield by method C 160 mg (53%), pale yellow powder, mp. 340-345 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr): 1649, 3486 cm⁻¹.
¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.39 (s, 3H, CH₃); 6.99 (td, 1H, ³J = 7.5 Hz, ³²J = 1.0 Hz, H-5' Ar); 7.05 (dd, 1H, ³J = 8.1 Hz, ³²J = 0.7 Hz, H-3' Ar); 7.15 (s, 1H, H-1); 7.36 (td, 1H, ³J = 7.7 Hz, ³²J = 1.5 Hz, H-4' Ar); 7.44 (dd, 1H, ³J = 7.4 Hz, ³²J = 1.6 Hz, H-6' Ar); 7.77 (td, 1H, ³J = 7.5 Hz, ³²J = 0.9 Hz, H-8); 7.90 (td, 1H, ³J = 7.6 Hz, ³²J = 1.2 Hz, H-9); 7.97 (d, ³J = 8.2 Hz, H-7); 8.61 (d, ³J = 8.2 Hz, H-10); 10.30 (bs, 1H, O-H); 11.60 (bs, 1H, N-H).
¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 96.9, 116.1, 118.5, 123.5, 124.7, 126.8, 127.8, 129.7, 132.7, 132.7, 141.1, 155.6, 156.0, 160.8.
Anal. Calcd for C₁₀H₁₉N₂O: C, 75.48; H, 4.67; N, 9.27. Found: C, 75.67; H, 4.88; N, 9.42.

2-methyl-6-(thiophen-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14h)
Yield 131 mg (45%), pale yellow powder, mp. 289-292 °C (2-propanol-1,4-dioxane, 2:1). IR (KBr), ν, cm⁻¹: 1639, 3453.
¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.37 (s, 3H, CH₃); 7.09 (s, 1H, H-1); 7.26 (dd, 1H, ³J = 5.1, ³²J = 3.7, H-4 Th); 7.68 (dd, 1H, ³J = 3.6, ³²J = 0.9, H-3 Th); 7.76 (dd, 1H, ³J = 5.1, ³²J = 0.9, H-5 Th); 7.85 (t, 1H, ³J = 7.1 Hz, H-8); 7.91 (t, 1H, ³J = 7.6 Hz, H-9); 8.52 (d, ³J = 8.4 Hz, H-7); 8.59 (d, ³J = 8.1 Hz, H-10); 11.56 (bs, 1H, N-H).
¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.7, 96.9, 123.9, 125.7, 126.6, 127.2, 128.1, 128.6, 129.5, 130.3, 130.4, 131.3, 133.2, 141.3, 142.1, 149.9, 160.7.
Anal. Calcd for C₁₇H₁₂N₂OS: C, 69.84; H, 4.14; N, 9.58. Found: C, 70.15; H, 4.37; N, 9.84.
2-methyl-6-(4-morpholinophenyl)benzo[c][1,7]naphthyridin-4(3H)-one (14i)

Yield 237 mg (64%), pale yellow powder, mp. 332-334 °C (2-propanol-dioxane, 2:1). IR (KBr): v cm⁻¹: 1517, 1662, 1642, 3143.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.36 (s, 3H, CH₃); 3.24 (t, 4H, J=4.2 Hz, H-5", H-3" N(CH₂)₂); 3.78 (t, 4H, J=4.2 Hz, H-6", H-2" O(CH₂)₂); 7.12 (d, 2H, J=8.2 Hz, H-3', 5' Ar); 7.20 (s, 1H, H-1); 7.59 (d, 2H, J=8.8 Hz, H-2', 6' Ar); 7.81 (t, 1H, J=8.0 Hz, H-8); 7.93 (t, 1H, J=7.1 Hz, H-9); 8.17 (d, 1H, J=7.8 Hz, H-7); 8.66 (d, 1H, J=8.4 Hz, H-10); 11.78 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 19.0, 48.0, 66.0, 97.4, 114.2, 124.2, 126.6, 127.8, 129.4, 129.5, 130.3, 130.5, 130.9, 131.6, 133.7, 140.9, 151.2, 157.3, 161.5.

Anal. Calcd for C₂₃H₂₁N₂O₂: 74.37; H, 5.70; N, 11.31. Found: C, 74.73; H, 5.27; N, 11.02.

2-methyl-6-(4-morpholinophenyl)-5,6-dihydrobenzo[c][1,7]naphthyridin-4(3H)-one (17i)

Yield 134 mg (36%), pale yellow powder, mp. 313-315 °C (2-propanol-dioxane, 2:1). IR (KBr): 1608, 1643, 3480 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.35 (s, 3H, CH₃); 3.23 (t, 4H, J=4.1 Hz, H-5", H-3" N(CH₂)₂); 3.55 (s, 1H, H-6); 3.78 (t, 4H, J=4.1 Hz, H-6", H-2" O(CH₂)₂); 7.11 (d, 2H, J=8.2 Hz, H-3', 5' Ar); 7.18 (s, 1H, H-1); 7.58 (d, 2H, J=8.7 Hz, H-2', 6' Ar); 7.80 (t, 1H, J=7.6 Hz, H-8); 7.91 (t, 1H, J=7.6 Hz, H-9); 8.16 (d, 1H, J=8.2 Hz, H-7); 8.64 (d, 1H, J=8.2 Hz, H-10); 11.78 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 19.0, 48.0, 66.3, 66.6, 97.4, 114.2, 124.2, 126.5, 127.7, 129.4, 129.5, 130.2, 130.5, 130.9, 131.6, 133.7, 140.9, 151.2, 161.5.

Anal. Calcd for C₂₃H₂₃N₂O₂: C, 73.97; H, 6.21; N, 11.25. Found: C, 74.33; H, 6.57; N, 11.02.

2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (18)

Yield 86 mg (41%), pale yellow powder, mp. 220-225 °C (2-propanol-dioxane, 2:1). IR (KBr): 1642, 3168 cm⁻¹.

¹H NMR spectrum, δ, ppm (400 MHz, DMSO-d6): 2.35 (s, 3H, CH₃); 7.13 (s, 1H, H-1); 7.86 (td, 1H, J = 7.4 Hz, J = 4.1 Hz, H-8); 7.92 (td, 1H, J = 7.7 Hz, J = 1.6 Hz, H-9); 8.20 (d, J = 7.8 Hz, H-7); 8.58 (d, J = 8.2 Hz, H-10); 9.21 (s, 1H, H-6); 11.66 (bs, 1H, N-H).

¹³C NMR spectrum, δ, ppm (100 MHz, DMSO-d6): 18.9, 97.4, 123.5, 128.2, 128.4, 129.5, 130.3, 131.0, 131.4, 134.4, 141.4, 150.2, 161.4.

NMR Spectral Data

N-(6-methyl-2-oxo-4-phenyl-1,2-dihydropyridin-3-yl)benzamide (7)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
N-[4-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-1,2-dihydropyridin-3-yl]benzamide (8)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
5-methyl-2,7-diphenyloxazolo[5,4-b]pyridine (9)

1H NMR (400 MHz, Acetone-d$_6$)

13C NMR (100 MHz)
7-(3,4-dimethoxyphenyl)-5-methyl-2-phenyl[1,3]oxazolo[5,4-b]pyridine (10)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
8,9-dimethoxy-2-methyl-6-phenylbenzo[c][1,7]-naphthyridin-4(3H)-one (12a)

^1^H NMR (400 MHz, DMSO-d6)

^13^C NMR (100 MHz)
8,9-dimethoxy-6-(4-methoxyphenyl)-2-methylbenzo[c][1,7]-naphthyridin-4(3H)-one (12b)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
8,9-dimethoxy-2-methyl-6-(pyridin-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12c)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
8,9-dimethoxy-2-methyl-6-(pyridin-4-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12d)

\(^1\)H NMR (400 MHz, DMSO-d\(_6\))

\(13\)C NMR (100 MHz)
6-(4-fluorophenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (12e)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
6-(4-(dimethylamino)phenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (12f)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
6-(2-hydroxyphenyl)-8,9-dimethoxy-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (12g)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
8,9-dimethoxy-2-methyl-6-(thiophen-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (12h)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
3-(benzylideneamino)-6-methyl-4-phenylpyridin-2(1H)-one (13a)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
2-methyl-6-phenylbenzo[c][1,7]naphthyridin-4(3H)-one (14a)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100MHz)
6-(4-methoxyphenyl)-2-methylbenzo[c][1,7]naphthydin-4(3H)-one (14b)

$^1\text{H} \text{NMR (400 MHz, DMSO-d}6\text{)}$

$^{13}\text{C} \text{NMR (100MHz)}$
2-methyl-6-(pyridin-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14c)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
2-methyl-6-(pyridin-4-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14d)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
6-(4-fluorophenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14e)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
6-(4-(dimethylamino)phenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14f)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
6-(2-hydroxyphenyl)-2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (14g)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
2-methyl-6-(thiophen-2-yl)benzo[c][1,7]naphthyridin-4(3H)-one (14h)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
2-methyl-6-(4-morpholinophenyl)benzo[c][1,7]naphthyridin-4(3H)-one (14i)

1H NMR (400 MHz, DMSO-d$_6$)

13C NMR (100 MHz)
2-methyl-6-(4-morpholinophenyl)-5,6-dihydrobenzo[c][1,7]naphthyridin-4(3H)-one (17i)

\(^1\)H NMR (400 MHz, DMSO-d\textsubscript{6})

\[^{13}\text{C} \text{ NMR (100 MHz)}\]
2-methylbenzo[c][1,7]naphthyridin-4(3H)-one (18)

1H NMR (400 MHz, DMSO-d6)

13C NMR (100 MHz)
Figure 2. X-ray structure of 14a. Thermal ellipsoids are shown at 50% probability. (Chloroform molecule is disordered over two positions with occupancies 0.866(7):0.134(7). Cl1A, Cl2A and Cl3A atoms are the minor part)

Analysis of Potential Hydrogen Bonds

N(3)-H(3)...O(1) [3665.01] 0.86 2.02 2.843(4) 160
C(7)-H(7)...Cl(1) [1455.02] 0.93 2.82 3.619(4) 144
C(12)-H(12)...O(1) [] 0.98 2.50 3.283(4) 137
C(12)-H(12)...N(5) [] 0.98 2.38 3.286(4) 154

Translation of ARU-code to Equivalent Position Code

[3665.] = 1-x, 1-y, -z
[1455.] = -1+x, y, z

Pi-stacking interactions: interplane distance 3.412(2) (between benzo[c][1,7]naphthyridin frames), intercentroid Cg-Cg range 3.571(2) – 3.892(2) Å.
Data were collected on a Bruker Kappa Apex II CCD diffractometer using graphite monochromated MoKα radiation. All usual procedures were performed with SHELX-97 program set. CCDC 1518432 contains the supplementary crystallographic data for this paper.

Table 2. Crystal data and structure refinement for 14a

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>C₁₉H₁₄N₂O, CHCl₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>405.69</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.8242(5) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 7.1875(4) Å, β = 91.560(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 26.9825(15) Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1904.57(18) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.415 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.493 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>832</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.28 × 0.55 × 0.58 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.51 to 27.12°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12<=h<=12, -9<=k<=9, -33<=l<=34</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>33791</td>
</tr>
<tr>
<td>Completeness to theta = 27.12°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.8960 and 0.9703</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4212 / 6 / 248</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.931</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0665, wR2 = 0.2118</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0957, wR2 = 0.2642</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.839 and -0.761 e.Å⁻³</td>
</tr>
</tbody>
</table>
X-ray data of 14a (CIF)

_audit_creation_method SHELXL-97
_chemical_name_systematic 2-methyl-6-phenyl-3H-benzo[c][1,7]naphthyridin-4-one chloroform solvate

_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety 'C19 H14 N2 O, C H Cl3'
_chemical_formula_sum 'C20 H15 Cl3 N2 O'
_chemical_formula_weight 405.69

loop_
_atom_type_symbol 'C' 'H' 'N' 'O' 'Cl'
_atom_type_description 'C' 'H' 'N' 'O' 'Cl'
_atom_type_scat_dispersion_real 0.0033 0.0016 0.0061 0.0033 0.1484 0.1585
_atom_type_scat_dispersion_imag 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
_atom_type_scat_source 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting 'Monoclinic'
_symmetry_space_group_name_H-M 'P2(1)/n'

loop_
_symmetry_equiv_pos_as_xyz '-x, -y, -z'
 'x-1/2, y-1/2, -z+1/2'
 '-x, y, z'
 '-x+1/2, y+1/2, -z+1/2'

_cell_length_a 9.8242(5)
_cell_length_b 7.1875(4)
_cell_length_c 26.9825(15)
_cell_angle_alpha 90.00
_cell_angle_beta 91.560(2)
_cell_angle_gamma 90.00
_cell_volume 1904.57(18)
_cell_formula_units_Z 4
_cell_measurement_temperature 296(2)
_cell_measurement_reflns_used 9899
_cell_measurement_theta_min 2.93
_cell_measurement_theta_max 27.01

_exptl_crystal_description 'block'
_exptl_crystal_colour 'yellow'
_exptl_crystal_size_max 0.58
_exptl_crystal_size_mid 0.55
_exptl_crystal_size_min 0.28
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffn 1.415
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 832
_exptl_absorpt_coefficient_mu 0.493
_exptl_absorpt_correction_Type multi-scan
_exptl_absorpt_correction_T_min 0.8960
_exptl_absorpt_correction_T_max 0.9703
_exptl_absorpt_process_details SADABS-2008/1

_exptl_special_details
;
;
_diffrn_ambient_temperature 296(2)
diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoKα
diffrn_radiation_source 'fine-focus sealed tube'
diffrn_radiation_monochromator graphite
diffrn_measurement_device_type 'Bruker APEX-II CCD'
diffrn_measurement_method '\f and \w scans'
diffrn_detector_area_resol_mean
_diffrn_reflns_number 33791
_diffrn_reflns_av_R_equivalents 0.0469
_diffrn_reflns_av_sigmaI/netI 0.0276
_diffrn_reflns_limit_h_min -12
_diffrn_reflns_limit_h_max 12
_diffrn_reflns_limit_k_min -9
_diffrn_reflns_limit_k_max 9
_diffrn_reflns_limit_l_min -33
_diffrn_reflns_limit_l_max 34
_diffrn_reflns_theta_min 1.51
_diffrn_reflns_theta_max 27.12
_reflns_number_total 4212
_reflns_number_gt 3340
_reflns_threshold_expression >2sigma(I)

_computing_data_collection 'Bruker APEX2'
_computing_cell_refinement 'Bruker SAINT'
_computing_data_reduction 'Bruker SAINT'
_computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)'
_computing_molecular_graphics 'Bruker SHELXTL'
_computing_publication_material 'Bruker SHELXTL'

_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^*. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details "calc w=1/[\s^2^>(Fo^2^)+(0.1759P)^2^+3.0519P] where P=(Fo^2^+2Fc^2^)/3"
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment constr
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_number_reflns 4212
_refine_ls_number_parameters 248
_refine_ls_number_restraints 6
_refine_ls_R_factor_all 0.0957
_refine_ls_R_factor_gt 0.0665
_refine_ls_wR_factor_ref 0.2642
_refine_ls_wR_factor_gt 0.2118
_refine_ls_goodness_of_fit_ref 0.925
_refine_ls_restrained_S_all 0.931
_refine_ls_shift/su_max 0.004
_refine_ls_shift/su_mean 0.000

loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group

Cl1 Cl 0.51797(19) 0.8708(3) 0.14330(10) 0.0806(8) Uani 0.866(7) 1 d P A 1
Cl2 Cl 0.25664(19) 0.9508(5) 0.18028(9) 0.0878(8) Uani 0.866(7) 1 d P A 1
Cl3 Cl 0.3801(3) 0.5935(4) 0.20038(8) 0.0970(8) Uani 0.866(7) 1 d P A 1
C12 C 0.3612(4) 0.7768(6) 0.15807(13) 0.0579(10) Uani 1 1 d . A 1
H12 H 0.3187 0.7272 0.1276 0.070 Uiso 1 1 calc R .
C12A C 0.3612(4) 0.7768(6) 0.15807(13) 0.0579(10) Uani 1 1 d . A 1
Cl1A Cl 0.5470(9) 0.8137(14) 0.1626(4) 0.057(3) Uiso 0.134(7) 1 d PD A 2
Cl2A Cl 0.2900(19) 1.0058(19) 0.1735(7) 0.090(5) Uiso 0.134(7) 1 d PD A 2
Cl3A Cl 0.3344(14) 0.6535(17) 0.2115(4) 0.075(3) Uiso 0.134(7) 1 d PD A 2
O1 O 0.3969(2) 0.5755(4) 0.04997(8) 0.0454(6) Uani 1 1 d . . .
C1 C 0.1459(3) 0.7172(4) -0.06672(10) 0.0353(6) Uani 1 1 d . . .
H1 H 0.0912 0.7498 -0.0940 0.042 Uiso 1 1 calc R .
C2 C 0.2759(3) 0.6632(4) -0.07319(10) 0.0371(6) Uani 1 1 d . . .
N3 N 0.3569(3) 0.6184(4) -0.03236(9) 0.0371(6) Uani 1 1 d . . .
H3 H 0.4396 0.5865 -0.0376 0.044 Uiso 1 1 calc R .
C4 C 0.3164(3) 0.6206(4) -0.01584(10) 0.0579(10) Uani 1 1 d . . .
C4A C 0.1750(3) 0.6774(3) -0.02247(9) 0.0289(5) Uani 1 1 d . . .
N5 N 0.1331(2) 0.6777(3) 0.07073(8) 0.0311(5) Uani 1 1 d . . .
C6 C 0.0063(3) 0.7221(4) 0.07956(10) 0.0313(6) Uani 1 1 d . . .
C6A C -0.0917(3) 0.7690(3) 0.04068(10) 0.0305(6) Uani 1 1 d . . .
C7 C -0.2299(3) 0.8036(4) 0.04964(12) 0.0395(6) Uani 1 1 d . . .
H7 H -0.2612 0.7936 0.0818 0.047 Uiso 1 1 calc R .
C8 C -0.3194(3) 0.8520(5) 0.01182(14) 0.0469(8) Uani 1 1 d . . .
H8 H -0.4100 0.8764 0.0186 0.056 Uiso 1 1 calc R .
C9 C -0.2747(4) 0.8645(5) -0.03675(13) 0.0469(8) Uani 1 1 d . . .
H9 H -0.3351 0.8998 -0.0622 0.056 Uiso 1 1 calc R .
C10 C -0.1417(3) 0.8249(4) -0.04702(11) 0.0385(6) Uani 1 1 d . . .
H10 H -0.1132 0.8312 -0.0796 0.046 Uiso 1 1 calc R .
C10A C -0.0478(3) 0.7748(3) -0.00883(10) 0.0305(6) Uani 1 1 d . . .
C10B C 0.0917(3) 0.7245(3) -0.01806(9) 0.0293(5) Uani 1 1 d . . .
C11 C 0.3405(4) 0.6435(6) -0.12252(13) 0.0552(9) Uani 1 1 d . . .
H11A H 0.2751 0.6737 -0.1484 0.066 Uiso 1 1 calc R .
H11B H 0.3709 0.5176 -0.1266 0.066 Uiso 1 1 calc R .
H11C H 0.4168 0.7264 -0.1242 0.066 Uiso 1 1 calc R .
C1' C -0.0298(3) 0.7162(4) 0.13291(10) 0.0368(6) Uani 1 1 d . . .
C2' C 0.0134(4) 0.5652(5) 0.16151(12) 0.0479(8) Uani 1 1 d . . .
H2' H 0.0615 0.4691 0.1469 0.058 Uiso 1 1 calc R .
C3' C -0.0144(5) 0.5566(8) 0.21140(15) 0.0704(12) Uani 1 1 d . . .
H3' H 0.0135 0.4541 0.2301 0.084 Uiso 1 1 calc R .
C4' C -0.0831(5) 0.6990(9) 0.23341(14) 0.0782(15) Uani 1 1 d . . .
H4' H -0.1017 0.6926 0.2670 0.094 Uiso 1 1 calc R .
C5' C -0.1245(4) 0.8504(8) 0.20631(15) 0.0703(12) Uani 1 1 d . . .
H5' H -0.1694 0.9479 0.2215 0.084 Uiso 1 1 calc R .
C6' C -0.0991(4) 0.8584(6) 0.15580(13) 0.0524(8) Uani 1 1 d . . .
H6' H -0.1291 0.9604 0.1373 0.063 Uiso 1 1 calc R .
loop
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_12
_atom_site_aniso_U_13
_atom_site_aniso_U_23
_atom_site_aniso_U_12
C11 0.0557(8) 0.0921(12) 0.0952(15) -0.0151(11) 0.0245(9) -0.0125(8)
C12 0.0534(8) 0.1184(17) 0.0915(12) -0.0424(12) 0.0007(8) 0.0071(10)
C13 0.0989(13) 0.1193(16) 0.0732(11) 0.0294(10) 0.0092(9) 0.0118(13)
C12 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
C12A 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
Cl1 0.0557(8) 0.0921(12) 0.0952(15) -0.0151(11) 0.0245(9) -0.0125(8)
Cl2 0.0534(8) 0.1184(17) 0.0915(12) -0.0424(12) 0.0007(8) 0.0071(10)
Cl3 0.0989(13) 0.1193(16) 0.0732(11) 0.0294(10) 0.0092(9) 0.0118(13)
C12 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
C12A 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
Cl1 0.0557(8) 0.0921(12) 0.0952(15) -0.0151(11) 0.0245(9) -0.0125(8)
Cl2 0.0534(8) 0.1184(17) 0.0915(12) -0.0424(12) 0.0007(8) 0.0071(10)
Cl3 0.0989(13) 0.1193(16) 0.0732(11) 0.0294(10) 0.0092(9) 0.0118(13)
C12 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
C12A 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
Cl1 0.0557(8) 0.0921(12) 0.0952(15) -0.0151(11) 0.0245(9) -0.0125(8)
Cl2 0.0534(8) 0.1184(17) 0.0915(12) -0.0424(12) 0.0007(8) 0.0071(10)
Cl3 0.0989(13) 0.1193(16) 0.0732(11) 0.0294(10) 0.0092(9) 0.0118(13)
C12 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
C12A 0.0469(18) 0.087(3) 0.0403(17) -0.0106(17) 0.0006(14) -0.0092(18)
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
C11 C12 1.738(4) . ?
C12 C12 1.736(5) . ?
C13 C12 1.750(5) . ?
C12 H12 0.980 . ?
O1 C4 1.240(4) . ?
C1 C2 1.351(4) . ?
C1 C10B 1.431(4) . ?
C1 H1 0.930 . ?
C2 N3 1.379(4) . ?
C2 C11 1.497(4) . ?
N3 C4 1.370(4) . ?
N3 H3 0.860 . ?
C4 C4A 1.464(4) . ?
C4A N5 1.376(3) . ?
C4A C10B 1.390(4) . ?

38
N5 C6 1.314(4) .
C6 C6A 1.444(4) .
C6 C1' 1.492(4) .
C6A C7 1.408(4) .
C6A C10A 1.416(4) .
C7 C8 1.373(5) .
C7 H7 0.9300 .
C8 C9 1.396(5) .
C8 H8 0.9300 .
C9 C10 1.372(5) .
C9 H9 0.9300 .
C10 C10A 1.412(4) .
C10 H10 0.9300 .
C11 H11A 0.9600 .
C11 H11B 0.9600 .
C11 H11C 0.9600 .
C1' C6' 1.383(5) .
C1' C2' 1.391(5) .
C2' C3' 1.382(5) .
C2' H2' 0.9300 .
C3' C4' 1.370(8) .
C3' H3' 0.9300 .
C4' C5' 1.367(8) .
C4' H4' 0.9300 .
C5' C6' 1.393(5) .
C5' H5' 0.9300 .
C6' H6' 0.9300 .

loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C11 C12 C13 111.3(2) .
C11 C12 C12 109.6(3) .
C13 C12 C12 111.8(2) .
C11 C12 H12 108.0 .
C13 C12 H12 108.0 .
C12 C12 H12 108.0 .
C2 C1 C10B 120.4(3) .
C2 C1 H1 119.8 .
C10B C1 H1 119.8 .
C1 C2 N3 119.4(2) .
C1 C2 C11 124.6(3) .
N3 C2 C11 116.0(3) .
C4 N3 C2 125.4(3) .
C4 N3 H3 117.3 .
C2 N3 H3 117.3 .
O1 C4 N3 120.4(3) .
O1 C4 C4A 124.7(3) .
N3 C4 C4A 114.8(2) .
N5 C4A C10B 124.0(2) .
N5 C4A C4 115.2(2) .
C10B C4A C4 120.8(2) .
C6 N5 C4A 118.8(2) .
N5 C6 C6A 122.8(2) .
N5 C6 C1' 114.8(2) .
C6A C6 C1' 122.5(2) .
C7 C6A C10A 118.5(3) .
C7 C6A C6 122.9(3) .
C10A C6A C6 118.6(2) .
C8 C7 C6A 121.2(3) .
C8 C7 H7 119.4 .
C6A C7 H7 119.4 . . ?
C7 C8 C9 120.2(3) . . ?
C7 C8 H8 119.9 . . ?
C9 C8 H8 119.9 . . ?
C10 C9 C8 120.1(3) . . ?
C10 C9 H9 119.9 . . ?
C8 C9 H9 119.9 . . ?
C9 C10 C10A 120.8(3) . . ?
C9 C10 H10 119.6 . . ?
C10A C10 H10 119.6 . . ?
C10 C10A C6A 119.1(3) . . ?
C10 C10A C10B 122.8(3) . . ?
C6A C10A C10B 118.1(2) . . ?
C4A C10B C1 119.2(2) . . ?
C4A C10B C10A 117.8(2) . . ?
C1 C10B C10A 123.1(2) . . ?
C2 C11 H11A 109.5 . . ?
C2 C11 H11B 109.5 . . ?
H11A C11 H11B 109.5 . . ?
C2 C11 H11C 109.5 . . ?
H11A C11 H11C 109.5 . . ?
C6' C1' C2' 118.4(3) . . ?
C6' C1' C6 122.9(3) . . ?
C2' C1' C6 118.7(3) . . ?
C3' C2' C1' 120.6(4) . . ?
C3' C2' H2' 119.7 . . ?
C1' C2' H2' 119.7 . . ?
C4' C3' C2' 120.1(4) . . ?
C4' C3' H3' 119.9 . . ?
C2' C3' H3' 119.9 . . ?
C5' C4' C3' 120.4(4) . . ?
C5' C4' H4' 119.8 . . ?
C3' C4' H4' 119.8 . . ?
C4' C5' C6' 119.8(4) . . ?
C4' C5' H5' 120.1 . . ?
C6' C5' H5' 120.1 . . ?
C1' C6' C5' 120.6(4) . . ?
C1' C6' H6' 119.7 . . ?
C5' C6' H6' 119.7 . . ?

_diffrn_measured_fraction_theta_max 0.998
_diffrn_reflns_theta_full 27.12
_diffrn_measured_fraction_theta_full 0.998
_refine_diff_density_max 0.839
_refine_diff_density_min -0.761
_refine_diff_density_rms 0.273