A One-Pot Intramolecular Tandem Michael-Aldol Annulation Reaction for the Synthesis of Enantiopure Pentacyclic Terpenes

Jianyu Lu,¹ Serkan Koldas,¹ Huafang Fan,¹ John Desper,¹ Victor W. Day,² and Duy H. Hua¹*

¹Department of Chemistry, Kansas State University, Manhattan, KS 66506, U.S.A.
²Department of Chemistry, University of Kansas, Lawrence, KS 66045, U.S.A.

*Corresponding author. Tel.: 785-532-6699; fax; 785-532-6666; e-mail address: duy@ksu.edu

Supporting Information

¹H and ¹³C NMR spectra of compounds ¹⁴, ⁸, (-)-⁹, (-)-⁶, (-)-¹⁰, (+)-¹¹, (-)-⁴, and (+)-⁵…..S1-S17
Single-crystal X-ray data of compound (-)-⁶…………………………………………………………………..S18-S81
Single-crystal X-ray data of compound (+)-¹¹…………………………………………………………..S81-S94
Single-crystal X-ray data of compound (+)-⁵……………………………………………………………..S94-S115
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>jpr1-7-035</td>
</tr>
<tr>
<td>Comment</td>
<td>Std Proton parameters</td>
</tr>
<tr>
<td>Origin</td>
<td>Various</td>
</tr>
<tr>
<td>Owner</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td></td>
</tr>
<tr>
<td>Spectrometer</td>
<td>mercury</td>
</tr>
<tr>
<td>Author</td>
<td>jmsyu</td>
</tr>
<tr>
<td>Solvent</td>
<td>cdc13</td>
</tr>
<tr>
<td>Temperature</td>
<td>25.0</td>
</tr>
<tr>
<td>Pulse Sequence</td>
<td>s2ps1</td>
</tr>
<tr>
<td>Experiment</td>
<td>10</td>
</tr>
<tr>
<td>Probe</td>
<td>maw</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>4</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>22</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>3.0000</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>6.0000</td>
</tr>
<tr>
<td>Protonization</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>1.9980</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2012-02-01T16:14:59</td>
</tr>
<tr>
<td>Modification Date</td>
<td>2012-02-01T16:19:54</td>
</tr>
<tr>
<td>Class</td>
<td></td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>396.16</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>6399.0</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-298.7</td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Acquired Site</td>
<td>12783</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>65226</td>
</tr>
</tbody>
</table>

The diagram shows a chemical structure with labels Me, Me, and O. The spectrum graph includes peak assignments for various chemical shifts (δ ppm) ranging from 0.0 to 7.5.
C:\NMR_nuts_2008\DATA\jyl-7-035-13C.fid

Std Carbon experiment
Mar 1 2012

USER:

SOLVENT: cdcl3

Experiment = s 2pul
Pulse length = 8.050 us ec
Recycle delay = 1.000 s ec
NA = 216
Solvent = cdcl3
FID PTS1d = 31413
PTS1d = 32768
F1 = 100.580498 MHz
F2 = 399.961731 MHz
SW1 = 24154.59 Hz
AT1 = 1.30 s ec
Hz per Pt 1stD = 0.74 Hz
SW2 = 1.00 Hz
Hz per Pt 2ndD = 1.00 Hz
O1 = 10559.8418 Hz
O2 = -0.5000 Hz
LB1 = 0.00 Hz
TP = -284.66
B = 195.66
C = 0.00
The image shows a chemical structure with labels "Me" at each carbon and oxygen atoms. The compound does not have a specific name or structure described in the text provided. The text includes details about an NMR experiment, such as pulse length, recycle delay, solvent details, and spectral parameters. The NMR spectrum is also shown, providing a graphical representation of the chemical's resonance peaks.
(-)-6

C:\NMR_nuts _2008\data\jyl-8-027-A.fid

Std Proton parameters
May 22 2012

USER:

SOLVENT: cdcl3

Experiment = s 2pul

Puls e length = 6.650 us ec

Recycle delay = 3.000 s ec

NA = 16

Solvent = cdcl3

FID PTS1d = 12783

PTS1d = 16384

F1 = 399.962158 MHz

F2 = 100.579445 MHz

SW1 = 6397.95 Hz

AT1 = 2.00 s ec

Hz per Pt 1stD = 0.39 Hz

SW2 = 1.00 Hz

Hz per Pt 2ndD = 1.00 Hz

O1 = 2399.7371 Hz

O2 = -0.5000 Hz

LB1 = 0.00 Hz

TP A = -247.71

B = 90.97

C = 0.00

"
S17
X-ray Crystallographic Study for (-)-6 [code name v32e].

A complete set of unique reflections was collected with monochromated CuKα radiation for a single-domain crystal of (-)-6. A total of 2774 1.0°-wide ω- or φ-scan frames with counting times of 6-30 seconds were collected on a Bruker Platinum 135 CCD area detector. X-rays were provided by a Bruker MicroStar microfocus rotating anode operating at 45kV and 60 mA and equipped with Helios high-brilliance multilayer x-ray optics. Preliminary lattice constants were obtained with the Bruker program SMART. Integrated reflection intensities were produced using the Bruker program SAINT. The data set was corrected empirically for variable absorption effects using equivalent reflections. The Bruker software package SHELXTL was used to solve the structure using “direct methods” techniques. All stages of weighted full-matrix least-squares refinement were conducted using Fo² data with the SHELXTL v2014 software package.

The final structural model incorporated anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atoms. Hydrogen atoms were fixed at idealized riding-model sp²- or sp³-hybridized positions with C-H bond lengths of 0.95 – 1.00 Å. The methyl groups were
placed at idealized “staggered” positions (with a C-H bond length of 0.98 Å). Isotropic thermal parameters of the idealized hydrogen atoms were fixed at values 1.2 (non-methyl) or 1.5 (methyl) times the equivalent isotropic thermal parameter of the carbon atom to which they are covalently bonded. The relevant crystallographic and structure refinement data are given in Tables S1.

The asymmetric unit of (-)-6 contains three crystallographically-independent molecules. The first independent molecule (atom labels have an A) is ordered but mild restraints had to be applied to the metrical parameters for the terminal ketone groups for the second (atoms labels have a B) and third (atom labels have a C or D) molecules. The terminal ketone group for the second molecule had minor disorder about a common site but the terminal ketone group for the third molecule had 50/50 disorder between two preferred orientations (labeled C and D). One orientation (labeled C) of the terminal ketone for the third molecule is near a crystallographic twofold axis in the unit cell and is occupied (50% of the time) whenever the D orientation of the terminal ketone is occupied by the C2-related third molecule. Both orientations for this disordered terminal ketone moiety in the third molecule and a single orientation for the second molecule were restrained to have nearly idealized geometries by using a free variable for the respective C15-C16, C16-C17, C17-C22, C19-C20, C20-C21 and C21-C22 bond lengths. This free variable refined to a final value of 1.500(5) Å. The remaining bond lengths and angles for each of these disordered groups were restrained to be multiples of this free variable that were consistent with sp²- or sp³-hybridization. The C15, C16, C17 and O4 atoms for the second and third molecules were also mildly restrained to be flat. Mild restraints were also applied to the anisotropic thermal parameters of disordered carbon C22D.

Table S1. Crystal data and structure refinement for C30H48O4.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>v32e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C30 H48 O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>472.68</td>
</tr>
<tr>
<td>Temperature</td>
<td>200(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.54178 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C2</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 39.1723(14)$ Å, $\alpha = 90^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$b = 6.1227(2)$ Å, $\beta = 105.5786(14)^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$c = 35.5409(13)$ Å, $\gamma = 90^\circ$.</td>
</tr>
<tr>
<td>Volume</td>
<td>8211.0(5) Å³</td>
</tr>
</tbody>
</table>
Z 12

Density (calculated) 1.147 Mg/m³

Absorption coefficient 0.576 mm⁻¹

F(000) 3120

Crystal size 0.540 x 0.140 x 0.040 mm³

Theta range for data collection 2.342 to 68.479°.

Index ranges -46<=h<=46, -7<=k<=4, -42<=l<=37

Reflections collected 30565

Independent reflections 10714 [R(int) = 0.0489]

Completeness to theta = 66.000° 99.2 %

Absorption correction Multi-scan

Max. and min. transmission 0.7531 and 0.5355

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 10714 / 47 / 925

Goodness-of-fit on F² 1.085

Final R indices [I>2sigma(I)] R1 = 0.0768, wR2 = 0.2320

R indices (all data) R1 = 0.0890, wR2 = 0.2452

Absolute structure parameter -0.18(15)

Extinction coefficient n/a

Largest diff. peak and hole 0.502 and -0.409 e.Å⁻³
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for C30H48O4. $U(eq)$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1A)</td>
<td>7567(1)</td>
<td>6211(8)</td>
<td>4205(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>O(2A)</td>
<td>7624(1)</td>
<td>3105(9)</td>
<td>4570(1)</td>
<td>59(1)</td>
</tr>
<tr>
<td>O(3A)</td>
<td>6543(1)</td>
<td>7195(8)</td>
<td>2228(1)</td>
<td>57(1)</td>
</tr>
<tr>
<td>O(4A)</td>
<td>7669(2)</td>
<td>14650(13)</td>
<td>358(2)</td>
<td>113(2)</td>
</tr>
<tr>
<td>C(1A)</td>
<td>7718(1)</td>
<td>3784(9)</td>
<td>3550(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(2A)</td>
<td>7798(1)</td>
<td>2990(10)</td>
<td>3972(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(3A)</td>
<td>7536(1)</td>
<td>3906(10)</td>
<td>4177(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(4A)</td>
<td>7149(1)</td>
<td>3312(9)</td>
<td>3968(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(5A)</td>
<td>7075(1)</td>
<td>4026(9)</td>
<td>3533(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(6A)</td>
<td>6691(1)</td>
<td>3740(9)</td>
<td>3291(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(7A)</td>
<td>6620(1)</td>
<td>5053(9)</td>
<td>2914(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(8A)</td>
<td>6864(1)</td>
<td>4465(9)</td>
<td>2663(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(9A)</td>
<td>7260(1)</td>
<td>4551(9)</td>
<td>2920(1)</td>
<td>35(1)</td>
</tr>
<tr>
<td>C(10A)</td>
<td>7340(1)</td>
<td>3209(8)</td>
<td>3308(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(11A)</td>
<td>7514(1)</td>
<td>4117(10)</td>
<td>2665(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(12A)</td>
<td>7475(1)</td>
<td>5899(11)</td>
<td>2354(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>7097(1)</td>
<td>6277(10)</td>
<td>2117(1)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(14A)</td>
<td>6814(1)</td>
<td>6129(9)</td>
<td>2331(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(15A)</td>
<td>8068(2)</td>
<td>12700(20)</td>
<td>82(2)</td>
<td>108(3)</td>
</tr>
<tr>
<td>C(16A)</td>
<td>7835(2)</td>
<td>12950(17)</td>
<td>351(2)</td>
<td>82(2)</td>
</tr>
<tr>
<td>Atom</td>
<td>Cx</td>
<td>Cy</td>
<td>Cz</td>
<td>Error</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C(17A)</td>
<td>7808(2)</td>
<td>11034(15)</td>
<td>597(2)</td>
<td>74(2)</td>
</tr>
<tr>
<td>C(18A)</td>
<td>6993(2)</td>
<td>6706(11)</td>
<td>1733(2)</td>
<td>61(1)</td>
</tr>
<tr>
<td>C(19A)</td>
<td>7217(2)</td>
<td>6935(12)</td>
<td>1460(2)</td>
<td>69(2)</td>
</tr>
<tr>
<td>C(20A)</td>
<td>7237(1)</td>
<td>9283(12)</td>
<td>1300(2)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(21A)</td>
<td>7501(2)</td>
<td>9208(13)</td>
<td>1052(2)</td>
<td>68(2)</td>
</tr>
<tr>
<td>C(22A)</td>
<td>7540(2)</td>
<td>11297(14)</td>
<td>832(2)</td>
<td>74(2)</td>
</tr>
<tr>
<td>C(23A)</td>
<td>6901(1)</td>
<td>4567(10)</td>
<td>4165(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(24A)</td>
<td>7079(1)</td>
<td>849(10)</td>
<td>4017(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(25A)</td>
<td>7325(1)</td>
<td>724(9)</td>
<td>3227(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(26A)</td>
<td>6750(1)</td>
<td>2274(9)</td>
<td>2452(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(27A)</td>
<td>7366(2)</td>
<td>10816(12)</td>
<td>1651(2)</td>
<td>71(2)</td>
</tr>
<tr>
<td>C(28A)</td>
<td>6874(2)</td>
<td>9980(20)</td>
<td>1061(2)</td>
<td>109(3)</td>
</tr>
<tr>
<td>C(29A)</td>
<td>7813(2)</td>
<td>6786(13)</td>
<td>4559(2)</td>
<td>75(2)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>7778(2)</td>
<td>4905(17)</td>
<td>4816(2)</td>
<td>93(3)</td>
</tr>
<tr>
<td>O(1B)</td>
<td>5966(1)</td>
<td>1453(8)</td>
<td>4450(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>O(2B)</td>
<td>6031(1)</td>
<td>-1562(9)</td>
<td>4841(1)</td>
<td>62(1)</td>
</tr>
<tr>
<td>O(3B)</td>
<td>4875(1)</td>
<td>1479(10)</td>
<td>2467(1)</td>
<td>74(1)</td>
</tr>
<tr>
<td>O(4B)</td>
<td>5990(5)</td>
<td>960(30)</td>
<td>453(4)</td>
<td>600(30)</td>
</tr>
<tr>
<td>C(1B)</td>
<td>6102(1)</td>
<td>-1205(10)</td>
<td>3808(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(2B)</td>
<td>6194(1)</td>
<td>-1838(10)</td>
<td>4239(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(3B)</td>
<td>5934(1)</td>
<td>-860(10)</td>
<td>4445(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(4B)</td>
<td>5546(1)</td>
<td>-1479(9)</td>
<td>4248(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(5B)</td>
<td>5464(1)</td>
<td>-979(9)</td>
<td>3805(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(6B)</td>
<td>5082(1)</td>
<td>-1483(10)</td>
<td>3574(2)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(7B)</td>
<td>4990(1)</td>
<td>-357(10)</td>
<td>3182(2)</td>
<td>53(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(8B)</td>
<td>5238(1)</td>
<td>-965(9)</td>
<td>2930(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(9B)</td>
<td>5633(1)</td>
<td>-732(9)</td>
<td>3178(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(10B)</td>
<td>5726(1)</td>
<td>-1890(9)</td>
<td>3577(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(11B)</td>
<td>5880(1)</td>
<td>-1176(10)</td>
<td>2918(2)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(12B)</td>
<td>5828(1)</td>
<td>497(12)</td>
<td>2592(2)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(13B)</td>
<td>5445(1)</td>
<td>898(11)</td>
<td>2369(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>C(14B)</td>
<td>5170(1)</td>
<td>565(10)</td>
<td>2583(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(15B)</td>
<td>6325(5)</td>
<td>3530(40)</td>
<td>226(5)</td>
<td>250(8)</td>
</tr>
<tr>
<td>C(16B)</td>
<td>6105(8)</td>
<td>2740(40)</td>
<td>478(7)</td>
<td>540(30)</td>
</tr>
<tr>
<td>C(17B)</td>
<td>6131(3)</td>
<td>4140(30)</td>
<td>830(4)</td>
<td>220(9)</td>
</tr>
<tr>
<td>C(18B)</td>
<td>5337(2)</td>
<td>1498(17)</td>
<td>2002(2)</td>
<td>104(3)</td>
</tr>
<tr>
<td>C(19B)</td>
<td>5555(3)</td>
<td>1902(19)</td>
<td>1711(3)</td>
<td>136(4)</td>
</tr>
<tr>
<td>C(20B)</td>
<td>5520(2)</td>
<td>4127(14)</td>
<td>1544(2)</td>
<td>82(2)</td>
</tr>
<tr>
<td>C(21B)</td>
<td>5783(3)</td>
<td>4650(20)</td>
<td>1312(3)</td>
<td>127(4)</td>
</tr>
<tr>
<td>C(22B)</td>
<td>5873(5)</td>
<td>3150(30)</td>
<td>1043(6)</td>
<td>301(14)</td>
</tr>
<tr>
<td>C(23B)</td>
<td>5306(1)</td>
<td>-83(11)</td>
<td>4432(2)</td>
<td>58(1)</td>
</tr>
<tr>
<td>C(24B)</td>
<td>5481(2)</td>
<td>-3914(10)</td>
<td>4334(2)</td>
<td>64(1)</td>
</tr>
<tr>
<td>C(25B)</td>
<td>5724(1)</td>
<td>-4394(9)</td>
<td>3536(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(26B)</td>
<td>5135(1)</td>
<td>-3237(10)</td>
<td>2743(2)</td>
<td>57(1)</td>
</tr>
<tr>
<td>C(27B)</td>
<td>5657(3)</td>
<td>5580(20)</td>
<td>1913(3)</td>
<td>152(5)</td>
</tr>
<tr>
<td>C(28B)</td>
<td>5168(3)</td>
<td>4900(30)</td>
<td>1346(4)</td>
<td>206(8)</td>
</tr>
<tr>
<td>C(29B)</td>
<td>6225(1)</td>
<td>2046(12)</td>
<td>4805(2)</td>
<td>62(1)</td>
</tr>
<tr>
<td>C(30B)</td>
<td>6183(2)</td>
<td>253(14)</td>
<td>5080(2)</td>
<td>75(2)</td>
</tr>
<tr>
<td>O(1C)</td>
<td>4219(1)</td>
<td>6116(8)</td>
<td>3994(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2C)</td>
<td>4256(1)</td>
<td>2805(9)</td>
<td>4300(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>Atom</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>O(3C)</td>
<td>3199(1)</td>
<td>8036(8)</td>
<td>2027(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>O(4C)</td>
<td>4539(7)</td>
<td>15060(50)</td>
<td>283(8)</td>
<td>257(12)</td>
</tr>
<tr>
<td>C(1C)</td>
<td>4354(1)</td>
<td>4113(9)</td>
<td>3298(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>C(2C)</td>
<td>4434(1)</td>
<td>3079(9)</td>
<td>3703(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(3C)</td>
<td>4174(1)</td>
<td>3815(9)</td>
<td>3927(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(4C)</td>
<td>3785(1)</td>
<td>3322(9)</td>
<td>3706(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(5C)</td>
<td>3715(1)</td>
<td>4271(8)</td>
<td>3287(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(6C)</td>
<td>3331(1)</td>
<td>4073(9)</td>
<td>3035(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(7C)</td>
<td>3263(1)</td>
<td>5559(9)</td>
<td>2680(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(8C)</td>
<td>3509(1)</td>
<td>5100(9)</td>
<td>2419(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(9C)</td>
<td>3903(1)</td>
<td>5073(9)</td>
<td>2676(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(10C)</td>
<td>3978(1)</td>
<td>3601(8)</td>
<td>3045(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(11C)</td>
<td>4154(1)</td>
<td>4738(10)</td>
<td>2415(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(12C)</td>
<td>4121(1)</td>
<td>6616(10)</td>
<td>2121(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(13C)</td>
<td>3746(1)</td>
<td>7097(10)</td>
<td>1897(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(14C)</td>
<td>3466(1)</td>
<td>6909(9)</td>
<td>2112(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(15C)</td>
<td>4823(7)</td>
<td>12580(60)</td>
<td>-82(9)</td>
<td>225(16)</td>
</tr>
<tr>
<td>C(16C)</td>
<td>4642(5)</td>
<td>13230(40)</td>
<td>223(6)</td>
<td>137(7)</td>
</tr>
<tr>
<td>C(17C)</td>
<td>4500(6)</td>
<td>11230(40)</td>
<td>387(5)</td>
<td>157(11)</td>
</tr>
<tr>
<td>C(18C)</td>
<td>3642(2)</td>
<td>7679(11)</td>
<td>1520(2)</td>
<td>61(1)</td>
</tr>
<tr>
<td>C(19C)</td>
<td>3859(2)</td>
<td>7864(11)</td>
<td>1237(2)</td>
<td>66(1)</td>
</tr>
<tr>
<td>C(20C)</td>
<td>3954(2)</td>
<td>10214(11)</td>
<td>1143(2)</td>
<td>68(1)</td>
</tr>
<tr>
<td>C(21C)</td>
<td>4160(2)</td>
<td>10097(15)</td>
<td>840(2)</td>
<td>105(3)</td>
</tr>
<tr>
<td>C(22C)</td>
<td>4272(5)</td>
<td>11930(30)</td>
<td>654(5)</td>
<td>108(5)</td>
</tr>
<tr>
<td>C(23C)</td>
<td>3539(1)</td>
<td>4484(10)</td>
<td>3917(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>C(24C)</td>
<td>3711(1)</td>
<td>851(10)</td>
<td>3719(2)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(25C)</td>
<td>3963(1)</td>
<td>1152(9)</td>
<td>2933(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(26C)</td>
<td>3385(1)</td>
<td>3008(10)</td>
<td>2177(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(27C)</td>
<td>4186(2)</td>
<td>11245(13)</td>
<td>1516(2)</td>
<td>85(2)</td>
</tr>
<tr>
<td>C(28C)</td>
<td>3622(2)</td>
<td>11537(14)</td>
<td>994(2)</td>
<td>97(2)</td>
</tr>
<tr>
<td>C(29C)</td>
<td>4355(2)</td>
<td>6444(12)</td>
<td>4405(2)</td>
<td>77(2)</td>
</tr>
<tr>
<td>C(30C)</td>
<td>4480(2)</td>
<td>4303(14)</td>
<td>4566(2)</td>
<td>80(2)</td>
</tr>
<tr>
<td>O(4D)</td>
<td>4538(16)</td>
<td>7480(120)</td>
<td>-99(10)</td>
<td>700(60)</td>
</tr>
<tr>
<td>C(15D)</td>
<td>4202(10)</td>
<td>5930(50)</td>
<td>287(14)</td>
<td>440(40)</td>
</tr>
<tr>
<td>C(16D)</td>
<td>4479(9)</td>
<td>7420(60)</td>
<td>210(8)</td>
<td>350(30)</td>
</tr>
<tr>
<td>C(17D)</td>
<td>4636(5)</td>
<td>8900(30)</td>
<td>541(6)</td>
<td>159(11)</td>
</tr>
<tr>
<td>C(22D)</td>
<td>4478(4)</td>
<td>8810(40)</td>
<td>886(5)</td>
<td>136(7)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for C30H48O4.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1A)-C(29A)</td>
<td>1.407(6)</td>
</tr>
<tr>
<td>O(1A)-C(3A)</td>
<td>1.418(6)</td>
</tr>
<tr>
<td>O(2A)-C(3A)</td>
<td>1.434(6)</td>
</tr>
<tr>
<td>O(2A)-C(30A)</td>
<td>1.437(8)</td>
</tr>
<tr>
<td>O(3A)-C(14A)</td>
<td>1.216(5)</td>
</tr>
<tr>
<td>O(4A)-C(16A)</td>
<td>1.230(10)</td>
</tr>
<tr>
<td>C(1A)-C(2A)</td>
<td>1.527(6)</td>
</tr>
<tr>
<td>C(1A)-C(10A)</td>
<td>1.540(5)</td>
</tr>
<tr>
<td>C(1A)-H(1AA)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(1A)-H(1AB)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2A)-C(3A)</td>
<td>1.517(5)</td>
</tr>
<tr>
<td>C(2A)-H(2AA)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2A)-H(2AB)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3A)-C(4A)</td>
<td>1.543(6)</td>
</tr>
<tr>
<td>C(4A)-C(23A)</td>
<td>1.546(5)</td>
</tr>
<tr>
<td>C(4A)-C(24A)</td>
<td>1.551(6)</td>
</tr>
<tr>
<td>C(4A)-C(5A)</td>
<td>1.556(6)</td>
</tr>
<tr>
<td>C(5A)-C(6A)</td>
<td>1.530(5)</td>
</tr>
<tr>
<td>C(5A)-C(10A)</td>
<td>1.554(5)</td>
</tr>
<tr>
<td>C(5A)-H(5A)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(6A)-C(7A)</td>
<td>1.522(6)</td>
</tr>
<tr>
<td>C(6A)-H(6AA)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(6A)-H(6AB)</td>
<td>0.9900</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(7A)-C(8A)</td>
<td>1.519(5)</td>
</tr>
<tr>
<td>C(7A)-H(7AA)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(7A)-H(7AB)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(8A)-C(14A)</td>
<td>1.530(6)</td>
</tr>
<tr>
<td>C(8A)-C(26A)</td>
<td>1.543(5)</td>
</tr>
<tr>
<td>C(8A)-C(9A)</td>
<td>1.574(5)</td>
</tr>
<tr>
<td>C(9A)-C(11A)</td>
<td>1.540(5)</td>
</tr>
<tr>
<td>C(9A)-C(10A)</td>
<td>1.561(5)</td>
</tr>
<tr>
<td>C(9A)-H(9A)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(10A)-C(25A)</td>
<td>1.546(5)</td>
</tr>
<tr>
<td>C(11A)-C(12A)</td>
<td>1.531(7)</td>
</tr>
<tr>
<td>C(11A)-H(11A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(11A)-H(11B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(12A)-C(13A)</td>
<td>1.512(7)</td>
</tr>
<tr>
<td>C(12A)-H(12A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(12A)-H(12B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(13A)-C(18A)</td>
<td>1.343(7)</td>
</tr>
<tr>
<td>C(13A)-C(14A)</td>
<td>1.503(6)</td>
</tr>
<tr>
<td>C(15A)-C(16A)</td>
<td>1.496(9)</td>
</tr>
<tr>
<td>C(15A)-H(15A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(15A)-H(15B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(15A)-H(15C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(16A)-C(17A)</td>
<td>1.483(10)</td>
</tr>
<tr>
<td>C(17A)-C(22A)</td>
<td>1.517(8)</td>
</tr>
<tr>
<td>C(17A)-H(17A)</td>
<td>0.9900</td>
</tr>
</tbody>
</table>
C(17A)-H(17B) 0.9900
C(18A)-C(19A) 1.480(7)
C(18A)-H(18A) 0.9500
C(19A)-C(20A) 1.556(8)
C(19A)-H(19A) 0.9900
C(19A)-H(19B) 0.9900
C(20A)-C(28A) 1.509(8)
C(20A)-C(21A) 1.526(7)
C(20A)-C(27A) 1.534(8)
C(21A)-C(22A) 1.529(9)
C(21A)-H(21A) 0.9900
C(21A)-H(21B) 0.9900
C(22A)-H(22A) 0.9900
C(22A)-H(22B) 0.9900
C(23A)-H(23A) 0.9800
C(23A)-H(23B) 0.9800
C(23A)-H(23C) 0.9800
C(24A)-H(24A) 0.9800
C(24A)-H(24B) 0.9800
C(24A)-H(24C) 0.9800
C(25A)-H(25A) 0.9800
C(25A)-H(25B) 0.9800
C(25A)-H(25C) 0.9800
C(26A)-H(26A) 0.9800
C(26A)-H(26B) 0.9800
C(26A)-H(26C) 0.9800
C(27A)-H(27A) 0.9800
C(27A)-H(27B) 0.9800
C(27A)-H(27C) 0.9800
C(28A)-H(28A) 0.9800
C(28A)-H(28B) 0.9800
C(28A)-H(28C) 0.9800
C(29A)-C(30A) 1.500(11)
C(29A)-H(29A) 0.9900
C(29A)-H(29B) 0.9900
C(30A)-C(30A) 0.9900
C(30A)-H(30A) 0.9900
C(30A)-H(30B) 0.9900
O(1B)-C(3B) 1.421(6)
O(1B)-C(29B) 1.437(6)
O(2B)-C(3B) 1.423(6)
O(2B)-C(30B) 1.428(8)
O(3B)-C(14B) 1.248(6)
O(4B)-C(16B) 1.170(12)
C(1B)-C(2B) 1.526(6)
C(1B)-C(10B) 1.538(5)
C(1B)-H(1BA) 0.9900
C(1B)-H(1BB) 0.9900
C(2B)-C(3B) 1.526(6)
C(2B)-H(2BA) 0.9900
C(2B)-H(2BB) 0.9900
C(3B)-C(4B) 1.542(6)
C(4B)-C(23B) 1.539(6)
C(4B)-C(5B) 1.551(6)
C(4B)-C(24B) 1.556(6)
C(5B)-C(6B) 1.531(6)
C(5B)-C(10B) 1.572(5)
C(5B)-H(5B) 1.0000
C(6B)-C(7B) 1.508(7)
C(6B)-H(6BA) 0.9900
C(6B)-H(6BB) 0.9900
C(7B)-C(8B) 1.534(6)
C(7B)-H(7BA) 0.9900
C(7B)-H(7BB) 0.9900
C(8B)-C(14B) 1.512(7)
C(8B)-C(26B) 1.547(6)
C(8B)-C(9B) 1.570(5)
C(9B)-C(11B) 1.530(6)
C(9B)-C(10B) 1.539(6)
C(9B)-H(9B) 1.0000
C(10B)-C(25B) 1.540(5)
C(11B)-C(12B) 1.519(7)
C(11B)-H(11C) 0.9900
C(11B)-H(11D) 0.9900
C(12B)-C(13B) 1.516(7)
C(12B)-H(12C) 0.9900
C(12B)-H(12D) 0.9900
C(13B)-C(18B) 1.312(9)
C(13B)-C(14B) 1.494(7)
C(15B)-C(16B) 1.482(11)
C(15B)-H(15D) 0.9800
C(15B)-H(15E) 0.9800
C(15B)-H(15F) 0.9800
C(16B)-C(17B) 1.501(12)
C(17B)-C(22B) 1.543(10)
C(17B)-H(17C) 0.9900
C(17B)-H(17D) 0.9900
C(18B)-C(19B) 1.528(11)
C(18B)-H(18B) 0.9500
C(19B)-C(20B) 1.477(9)
C(19B)-H(19C) 0.9900
C(19B)-H(19D) 0.9900
C(20B)-C(28B) 1.448(11)
C(20B)-C(21B) 1.517(8)
C(20B)-C(27B) 1.557(12)
C(21B)-C(22B) 1.436(11)
C(21B)-H(21C) 0.9900
C(21B)-H(21D) 0.9900
C(22B)-H(22C) 0.9900
C(22B)-H(22D) 0.9900
C(23B)-H(23D) 0.9800
\begin{align*}
\text{C}(23\text{B})-\text{H}(23\text{E}) & \quad 0.9800 \\
\text{C}(23\text{B})-\text{H}(23\text{F}) & \quad 0.9800 \\
\text{C}(24\text{B})-\text{H}(24\text{D}) & \quad 0.9800 \\
\text{C}(24\text{B})-\text{H}(24\text{E}) & \quad 0.9800 \\
\text{C}(24\text{B})-\text{H}(24\text{F}) & \quad 0.9800 \\
\text{C}(25\text{B})-\text{H}(25\text{D}) & \quad 0.9800 \\
\text{C}(25\text{B})-\text{H}(25\text{E}) & \quad 0.9800 \\
\text{C}(25\text{B})-\text{H}(25\text{F}) & \quad 0.9800 \\
\text{C}(26\text{B})-\text{H}(26\text{D}) & \quad 0.9800 \\
\text{C}(26\text{B})-\text{H}(26\text{E}) & \quad 0.9800 \\
\text{C}(26\text{B})-\text{H}(26\text{F}) & \quad 0.9800 \\
\text{C}(27\text{B})-\text{H}(27\text{D}) & \quad 0.9800 \\
\text{C}(27\text{B})-\text{H}(27\text{E}) & \quad 0.9800 \\
\text{C}(27\text{B})-\text{H}(27\text{F}) & \quad 0.9800 \\
\text{C}(28\text{B})-\text{H}(28\text{D}) & \quad 0.9800 \\
\text{C}(28\text{B})-\text{H}(28\text{E}) & \quad 0.9800 \\
\text{C}(28\text{B})-\text{H}(28\text{F}) & \quad 0.9800 \\
\text{C}(29\text{B})-\text{C}(30\text{B}) & \quad 1.510(9) \\
\text{C}(29\text{B})-\text{H}(29\text{C}) & \quad 0.9900 \\
\text{C}(29\text{B})-\text{H}(29\text{D}) & \quad 0.9900 \\
\text{C}(30\text{B})-\text{H}(30\text{C}) & \quad 0.9900 \\
\text{C}(30\text{B})-\text{H}(30\text{D}) & \quad 0.9900 \\
\text{O}(1\text{C})-\text{C}(29\text{C}) & \quad 1.427(7) \\
\text{O}(1\text{C})-\text{C}(3\text{C}) & \quad 1.432(5) \\
\text{O}(2\text{C})-\text{C}(3\text{C}) & \quad 1.420(6)
\end{align*}
O(2C)-C(30C) 1.433(7)
O(3C)-C(14C) 1.222(5)
O(4C)-C(16C) 1.229(19)
C(1C)-C(2C) 1.528(6)
C(1C)-C(10C) 1.541(5)
C(1C)-H(1CA) 0.9900
C(1C)-H(1CB) 0.9900
C(2C)-C(3C) 1.521(6)
C(2C)-H(2CA) 0.9900
C(2C)-H(2CB) 0.9900
C(3C)-C(4C) 1.546(6)
C(4C)-C(24C) 1.543(6)
C(4C)-C(23C) 1.547(6)
C(4C)-C(5C) 1.551(6)
C(5C)-C(6C) 1.536(5)
C(5C)-C(10C) 1.562(5)
C(5C)-H(5C) 1.0000
C(6C)-C(7C) 1.520(6)
C(6C)-H(6CA) 0.9900
C(6C)-H(6CB) 0.9900
C(7C)-C(8C) 1.532(6)
C(7C)-C(14C) 1.532(6)
C(7C)-C(26C) 1.545(6)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(8C)-C(9C)</td>
<td>1.569(5)</td>
</tr>
<tr>
<td>C(9C)-C(11C)</td>
<td>1.537(5)</td>
</tr>
<tr>
<td>C(9C)-C(10C)</td>
<td>1.551(6)</td>
</tr>
<tr>
<td>C(9C)-H(9C)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(10C)-C(25C)</td>
<td>1.548(5)</td>
</tr>
<tr>
<td>C(11C)-C(12C)</td>
<td>1.536(7)</td>
</tr>
<tr>
<td>C(11C)-H(11G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(11C)-H(11H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(12C)-C(13C)</td>
<td>1.499(6)</td>
</tr>
<tr>
<td>C(12C)-H(12G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(12C)-H(12H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(13C)-C(18C)</td>
<td>1.338(7)</td>
</tr>
<tr>
<td>C(13C)-C(14C)</td>
<td>1.501(6)</td>
</tr>
<tr>
<td>C(15C)-C(15C)#1</td>
<td>1.35(5)</td>
</tr>
<tr>
<td>C(15C)-C(16C)</td>
<td>1.50(2)</td>
</tr>
<tr>
<td>C(15C)-H(15G)</td>
<td>0.9805</td>
</tr>
<tr>
<td>C(15C)-H(15H)</td>
<td>0.9810</td>
</tr>
<tr>
<td>C(15C)-H(15I)</td>
<td>0.9807</td>
</tr>
<tr>
<td>C(16C)-C(17C)</td>
<td>1.520(19)</td>
</tr>
<tr>
<td>C(17C)-C(22C)</td>
<td>1.531(18)</td>
</tr>
<tr>
<td>C(17C)-H(17G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(17C)-H(17H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(18C)-C(19C)</td>
<td>1.489(7)</td>
</tr>
<tr>
<td>C(18C)-H(18C)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(19C)-C(20C)</td>
<td>1.545(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(19C)-H(19G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(19C)-H(19H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(20C)-C(28C)</td>
<td>1.505(9)</td>
</tr>
<tr>
<td>C(20C)-C(21C)</td>
<td>1.510(8)</td>
</tr>
<tr>
<td>C(20C)-C(27C)</td>
<td>1.529(8)</td>
</tr>
<tr>
<td>C(21C)-C(22C)</td>
<td>1.427(15)</td>
</tr>
<tr>
<td>C(21C)-C(22D)</td>
<td>1.445(11)</td>
</tr>
<tr>
<td>C(21C)-H(21G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(21C)-H(21H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22C)-H(22G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22C)-H(22H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(23C)-H(23J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(23C)-H(23K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(23C)-H(23L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24C)-H(24J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24C)-H(24K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24C)-H(24L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25C)-H(25J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25C)-H(25K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25C)-H(25L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(26C)-H(26J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(26C)-H(26K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(26C)-H(26L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(27C)-H(27J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(27C)-H(27K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(27C)-H(27L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(28C)-H(28J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(28C)-H(28K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(28C)-H(28L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(29C)-C(30C)</td>
<td>1.461(10)</td>
</tr>
<tr>
<td>C(29C)-H(29G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(29C)-H(29H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(30C)-H(30G)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(30C)-H(30H)</td>
<td>0.9900</td>
</tr>
<tr>
<td>O(4D)-C(16D)</td>
<td>1.184(12)</td>
</tr>
<tr>
<td>C(15D)-C(16D)</td>
<td>1.493(12)</td>
</tr>
<tr>
<td>C(15D)-H(15J)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(15D)-H(15K)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(15D)-H(15L)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(16D)-C(17D)</td>
<td>1.481(12)</td>
</tr>
<tr>
<td>C(17D)-C(22D)</td>
<td>1.517(11)</td>
</tr>
<tr>
<td>C(17D)-H(17E)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(17D)-H(17F)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22D)-H(22E)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22D)-H(22F)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(29A)-O(1A)-C(3A)</td>
<td>109.7(4)</td>
</tr>
<tr>
<td>C(3A)-O(2A)-C(30A)</td>
<td>106.5(5)</td>
</tr>
<tr>
<td>C(2A)-C(1A)-C(10A)</td>
<td>112.8(3)</td>
</tr>
<tr>
<td>C(2A)-C(1A)-H(1AA)</td>
<td>109.0</td>
</tr>
</tbody>
</table>
C(10A)-C(1A)-H(1AA) 109.0
C(2A)-C(1A)-H(1AB) 109.0
C(10A)-C(1A)-H(1AB) 109.0
H(1AA)-C(1A)-H(1AB) 107.8
C(3A)-C(2A)-C(1A) 111.6(3)
C(3A)-C(2A)-H(2AA) 109.3
C(1A)-C(2A)-H(2AA) 109.3
C(3A)-C(2A)-H(2AB) 109.3
C(1A)-C(2A)-H(2AB) 109.3
H(2AA)-C(2A)-H(2AB) 108.0
O(1A)-C(3A)-O(2A) 106.1(4)
O(1A)-C(3A)-C(2A) 110.2(4)
O(2A)-C(3A)-C(2A) 109.0(4)
O(1A)-C(3A)-C(4A) 108.8(3)
O(2A)-C(3A)-C(4A) 109.6(4)
C(2A)-C(3A)-C(4A) 112.8(3)
C(3A)-C(4A)-C(23A) 108.7(4)
C(3A)-C(4A)-C(24A) 110.7(4)
C(23A)-C(4A)-C(24A) 106.4(4)
C(3A)-C(4A)-C(5A) 107.9(3)
C(23A)-C(4A)-C(5A) 109.9(3)
C(24A)-C(4A)-C(5A) 113.2(4)
C(6A)-C(5A)-C(10A) 111.4(3)
C(6A)-C(5A)-C(4A) 114.7(3)
C(10A)-C(5A)-C(4A) 116.8(3)
C(6A)-C(5A)-H(5A) 104.0
C(10A)-C(5A)-H(5A) 104.0
C(4A)-C(5A)-H(5A) 104.0
C(7A)-C(6A)-C(5A) 110.8(3)
C(7A)-C(6A)-H(6AA) 109.5
C(5A)-C(6A)-H(6AA) 109.5
C(7A)-C(6A)-H(6AB) 109.5
C(5A)-C(6A)-H(6AB) 109.5
H(6AA)-C(6A)-H(6AB) 108.1
C(8A)-C(7A)-C(6A) 113.4(3)
C(8A)-C(7A)-H(7AA) 108.9
C(6A)-C(7A)-H(7AA) 108.9
C(8A)-C(7A)-H(7AB) 108.9
C(6A)-C(7A)-H(7AB) 108.9
H(7AA)-C(7A)-H(7AB) 107.7
C(7A)-C(8A)-C(14A) 109.0(3)
C(7A)-C(8A)-C(26A) 110.1(3)
C(14A)-C(8A)-C(26A) 104.2(3)
C(7A)-C(8A)-C(9A) 109.1(3)
C(14A)-C(8A)-C(9A) 109.2(3)
C(26A)-C(8A)-C(9A) 115.1(3)
C(11A)-C(9A)-C(10A) 114.8(3)
C(11A)-C(9A)-C(8A) 109.9(3)
C(10A)-C(9A)-C(8A) 115.5(3)
C(11A)-C(9A)-H(9A) 105.2
C(10A)-C(9A)-H(9A) 105.2
C(8A)-C(9A)-H(9A) 105.2
C(1A)-C(10A)-C(25A) 108.2(3)
C(1A)-C(10A)-C(5A) 108.3(3)
C(25A)-C(10A)-C(5A) 114.5(3)
C(1A)-C(10A)-C(9A) 108.0(3)
C(25A)-C(10A)-C(9A) 111.4(3)
C(5A)-C(10A)-C(9A) 106.3(3)
C(12A)-C(11A)-C(9A) 110.4(4)
C(12A)-C(11A)-H(11A) 109.6
C(9A)-C(11A)-H(11A) 109.6
C(12A)-C(11A)-H(11B) 109.6
C(9A)-C(11A)-H(11B) 109.6
H(11A)-C(11A)-H(11B) 108.1
C(13A)-C(12A)-C(11A) 113.8(4)
C(13A)-C(12A)-H(12A) 108.8
C(11A)-C(12A)-H(12A) 108.8
C(13A)-C(12A)-H(12B) 108.8
C(11A)-C(12A)-H(12B) 108.8
H(12A)-C(12A)-H(12B) 107.7
C(18A)-C(13A)-C(14A) 117.6(5)
C(18A)-C(13A)-C(12A) 125.4(4)
C(14A)-C(13A)-C(12A) 116.9(4)
O(3A)-C(14A)-C(13A) 121.2(4)
O(3A)-C(14A)-C(8A) 120.6(4)
C(13A)-C(14A)-C(8A) 118.0(4)
C(16A)-C(15A)-H(15A) 109.5
C(16A)-C(15A)-H(15B) 109.5
H(15A)-C(15A)-H(15B) 109.5
C(16A)-C(15A)-H(15C) 109.5
H(15A)-C(15A)-H(15C) 109.5
H(15B)-C(15A)-H(15C) 109.5
O(4A)-C(16A)-C(17A) 122.4(6)
O(4A)-C(16A)-C(15A) 120.9(8)
C(17A)-C(16A)-C(15A) 116.6(8)
C(16A)-C(17A)-C(22A) 114.2(6)
C(16A)-C(17A)-H(17A) 108.7
C(22A)-C(17A)-H(17A) 108.7
C(16A)-C(17A)-H(17B) 108.7
C(22A)-C(17A)-H(17B) 108.7
H(17A)-C(17A)-H(17B) 107.6
C(13A)-C(18A)-C(19A) 127.9(5)
C(13A)-C(18A)-H(18A) 116.0
C(19A)-C(18A)-H(18A) 116.0
C(18A)-C(19A)-C(20A) 115.1(5)
C(18A)-C(19A)-H(19A) 108.5
C(20A)-C(19A)-H(19A) 108.5
C(18A)-C(19A)-H(19B) 108.5
C(20A)-C(19A)-H(19B) 108.5
H(19A)-C(19A)-H(19B) 107.5
C(28A)-C(20A)-C(21A) 111.6(5)
C(28A)-C(20A)-C(27A) 109.7(6)
C(21A)-C(20A)-C(27A) 111.2(5)
C(28A)-C(20A)-C(19A) 109.6(6)
C(21A)-C(20A)-C(19A) 106.9(5)
C(27A)-C(20A)-C(19A) 107.8(5)
C(20A)-C(21A)-C(22A) 116.5(5)
C(20A)-C(21A)-H(21A) 108.2
C(22A)-C(21A)-H(21A) 108.2
C(20A)-C(21A)-H(21B) 108.2
C(22A)-C(21A)-H(21B) 108.2
H(21A)-C(21A)-H(21B) 107.3
C(17A)-C(22A)-C(21A) 111.9(6)
C(17A)-C(22A)-H(22A) 109.2
C(21A)-C(22A)-H(22A) 109.2
C(17A)-C(22A)-H(22B) 109.2
C(21A)-C(22A)-H(22B) 109.2
H(22A)-C(22A)-H(22B) 107.9
C(4A)-C(23A)-H(23A) 109.5
C(4A)-C(23A)-H(23B) 109.5
H(23A)-C(23A)-H(23B) 109.5
C(4A)-C(23A)-H(23C) 109.5
H(23A)-C(23A)-H(23C) 109.5
H(23B)-C(23A)-H(23C) 109.5
C(4A)-C(24A)-H(24A) 109.5
C(4A)-C(24A)-H(24B) 109.5
C(4A)-C(24A)-H(24C) 109.5
H(24A)-C(24A)-H(24C) 109.5
H(24B)-C(24A)-H(24C) 109.5
C(10A)-C(25A)-H(25A) 109.5
C(10A)-C(25A)-H(25B) 109.5
H(25A)-C(25A)-H(25B) 109.5
C(10A)-C(25A)-H(25C) 109.5
H(25A)-C(25A)-H(25C) 109.5
H(25B)-C(25A)-H(25C) 109.5
C(8A)-C(26A)-H(26A) 109.5
C(8A)-C(26A)-H(26B) 109.5
H(26A)-C(26A)-H(26B) 109.5
C(8A)-C(26A)-H(26C) 109.5
H(26A)-C(26A)-H(26C) 109.5
H(26B)-C(26A)-H(26C) 109.5
C(20A)-C(27A)-H(27A) 109.5
C(20A)-C(27A)-H(27B) 109.5
H(27A)-C(27A)-H(27B) 109.5
C(20A)-C(27A)-H(27C) 109.5
H(27A)-C(27A)-H(27C) 109.5
H(27B)-C(27A)-H(27C) 109.5
C(20A)-C(28A)-H(28A) 109.5
C(20A)-C(28A)-H(28B) 109.5
H(28A)-C(28A)-H(28B) 109.5
C(20A)-C(28A)-H(28C) 109.5
H(28A)-C(28A)-H(28C) 109.5
H(28B)-C(28A)-H(28C) 109.5
O(1A)-C(29A)-C(30A) 101.6(5)
O(1A)-C(29A)-H(29A) 111.4
C(30A)-C(29A)-H(29A) 111.4
O(1A)-C(29A)-H(29B) 111.4
C(30A)-C(29A)-H(29B) 111.4
H(29A)-C(29A)-H(29B) 109.3
O(2A)-C(30A)-C(29A) 108.0(5)
O(2A)-C(30A)-H(30A) 110.1
C(29A)-C(30A)-H(30A) 110.1
O(2A)-C(30A)-H(30B) 110.1
C(29A)-C(30A)-H(30B) 110.1
H(30A)-C(30A)-H(30B) 108.4
C(3B)-O(1B)-C(29B) 107.6(4)
C(3B)-O(2B)-C(30B) 108.2(4)
C(2B)-C(1B)-C(10B) 113.6(4)
C(2B)-C(1B)-H(1BA) 108.8
C(10B)-C(1B)-H(1BA) 108.8
C(2B)-C(1B)-H(1BB) 108.8
C(10B)-C(1B)-H(1BB) 108.8
H(1BA)-C(1B)-H(1BB) 107.7
C(1B)-C(2B)-C(3B) 111.9(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1B)-C(2B)-H(2BA)</td>
<td>109.2</td>
</tr>
<tr>
<td>C(3B)-C(2B)-H(2BA)</td>
<td>109.2</td>
</tr>
<tr>
<td>C(1B)-C(2B)-H(2BB)</td>
<td>109.2</td>
</tr>
<tr>
<td>C(3B)-C(2B)-H(2BB)</td>
<td>109.2</td>
</tr>
<tr>
<td>H(2BA)-C(2B)-H(2BB)</td>
<td>107.9</td>
</tr>
<tr>
<td>O(1B)-C(3B)-O(2B)</td>
<td>106.8(4)</td>
</tr>
<tr>
<td>O(1B)-C(3B)-C(2B)</td>
<td>109.3(4)</td>
</tr>
<tr>
<td>O(2B)-C(3B)-C(2B)</td>
<td>108.7(4)</td>
</tr>
<tr>
<td>O(1B)-C(3B)-C(4B)</td>
<td>108.8(3)</td>
</tr>
<tr>
<td>O(2B)-C(3B)-C(4B)</td>
<td>110.1(4)</td>
</tr>
<tr>
<td>C(2B)-C(3B)-C(4B)</td>
<td>113.0(4)</td>
</tr>
<tr>
<td>C(23B)-C(4B)-C(3B)</td>
<td>108.2(4)</td>
</tr>
<tr>
<td>C(23B)-C(4B)-C(5B)</td>
<td>109.7(4)</td>
</tr>
<tr>
<td>C(3B)-C(4B)-C(5B)</td>
<td>108.8(3)</td>
</tr>
<tr>
<td>C(23B)-C(4B)-C(24B)</td>
<td>107.4(4)</td>
</tr>
<tr>
<td>C(3B)-C(4B)-C(24B)</td>
<td>109.9(4)</td>
</tr>
<tr>
<td>C(5B)-C(4B)-C(24B)</td>
<td>112.8(4)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-C(4B)</td>
<td>114.2(3)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-C(10B)</td>
<td>109.4(3)</td>
</tr>
<tr>
<td>C(4B)-C(5B)-C(10B)</td>
<td>117.9(3)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-H(5B)</td>
<td>104.6</td>
</tr>
<tr>
<td>C(4B)-C(5B)-H(5B)</td>
<td>104.6</td>
</tr>
<tr>
<td>C(10B)-C(5B)-H(5B)</td>
<td>104.6</td>
</tr>
<tr>
<td>C(7B)-C(6B)-C(5B)</td>
<td>111.0(4)</td>
</tr>
<tr>
<td>C(7B)-C(6B)-H(6BA)</td>
<td>109.4</td>
</tr>
</tbody>
</table>
C(5B)-C(6B)-H(6BA) 109.4
C(7B)-C(6B)-H(6BB) 109.4
C(5B)-C(6B)-H(6BB) 109.4
H(6BA)-C(6B)-H(6BB) 108.0
C(6B)-C(7B)-C(8B) 113.5(4)
C(6B)-C(7B)-H(7BA) 108.9
C(8B)-C(7B)-H(7BA) 108.9
C(6B)-C(7B)-H(7BB) 108.9
C(8B)-C(7B)-H(7BB) 108.9
H(7BA)-C(7B)-H(7BB) 107.7
C(14B)-C(8B)-C(7B) 108.9(4)
C(14B)-C(8B)-C(26B) 103.9(4)
C(7B)-C(8B)-C(26B) 109.6(4)
C(14B)-C(8B)-C(9B) 109.6(4)
C(7B)-C(8B)-C(9B) 109.3(4)
C(26B)-C(8B)-C(9B) 115.3(3)
C(11B)-C(9B)-C(10B) 116.3(3)
C(11B)-C(9B)-C(8B) 109.3(4)
C(10B)-C(9B)-C(8B) 115.5(3)
C(11B)-C(9B)-H(9B) 104.8
C(10B)-C(9B)-H(9B) 104.8
C(8B)-C(9B)-H(9B) 104.8
C(1B)-C(10B)-C(9B) 108.8(3)
C(1B)-C(10B)-C(25B) 115.7(3)
C(9B)-C(10B)-C(25B) 112.2(4)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1B)-C(10B)-C(5B)</td>
<td>107.0(3)</td>
</tr>
<tr>
<td>C(9B)-C(10B)-C(5B)</td>
<td>106.6(3)</td>
</tr>
<tr>
<td>C(25B)-C(10B)-C(5B)</td>
<td>114.5(3)</td>
</tr>
<tr>
<td>C(12B)-C(11B)-C(9B)</td>
<td>111.4(4)</td>
</tr>
<tr>
<td>C(12B)-C(11B)-H(11C)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(9B)-C(11B)-H(11C)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(12B)-C(11B)-H(11D)</td>
<td>109.4</td>
</tr>
<tr>
<td>C(9B)-C(11B)-H(11D)</td>
<td>109.4</td>
</tr>
<tr>
<td>H(11C)-C(11B)-H(11D)</td>
<td>108.0</td>
</tr>
<tr>
<td>C(13B)-C(12B)-C(11B)</td>
<td>114.8(4)</td>
</tr>
<tr>
<td>C(13B)-C(12B)-H(12C)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(11B)-C(12B)-H(12C)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(13B)-C(12B)-H(12D)</td>
<td>108.6</td>
</tr>
<tr>
<td>C(11B)-C(12B)-H(12D)</td>
<td>108.6</td>
</tr>
<tr>
<td>H(12C)-C(12B)-H(12D)</td>
<td>107.5</td>
</tr>
<tr>
<td>C(18B)-C(13B)-C(14B)</td>
<td>117.4(5)</td>
</tr>
<tr>
<td>C(18B)-C(13B)-C(12B)</td>
<td>125.2(5)</td>
</tr>
<tr>
<td>C(14B)-C(13B)-C(12B)</td>
<td>117.4(5)</td>
</tr>
<tr>
<td>O(3B)-C(14B)-C(13B)</td>
<td>120.0(5)</td>
</tr>
<tr>
<td>O(3B)-C(14B)-C(8B)</td>
<td>119.6(4)</td>
</tr>
<tr>
<td>C(13B)-C(14B)-C(8B)</td>
<td>120.3(4)</td>
</tr>
<tr>
<td>C(16B)-C(15B)-H(15D)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(16B)-C(15B)-H(15E)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(15D)-C(15B)-H(15E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(16B)-C(15B)-H(15F)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
H(15D)-C(15B)-H(15F) 109.5
H(15E)-C(15B)-H(15F) 109.5
O(4B)-C(16B)-C(15B) 122.2(16)
O(4B)-C(16B)-C(17B) 122.2(15)
C(15B)-C(16B)-C(17B) 113.3(13)
C(16B)-C(17B)-C(22B) 106.1(10)
C(16B)-C(17B)-H(17C) 110.5
C(16B)-C(17B)-H(17D) 110.5
H(17C)-C(17B)-H(17D) 108.7
C(13B)-C(18B)-C(19B) 128.9(7)
C(13B)-C(18B)-H(18B) 115.6
C(19B)-C(18B)-H(18B) 115.6
C(20B)-C(19B)-C(18B) 114.4(8)
C(20B)-C(19B)-H(19C) 108.7
C(18B)-C(19B)-H(19C) 108.7
C(20B)-C(19B)-H(19D) 108.7
C(18B)-C(19B)-H(19D) 108.7
H(19C)-C(19B)-H(19D) 107.6
C(28B)-C(20B)-C(19B) 118.1(9)
C(28B)-C(20B)-C(21B) 111.3(8)
C(19B)-C(20B)-C(21B) 114.3(7)
C(28B)-C(20B)-C(27B) 106.8(11)
C(19B)-C(20B)-C(27B) 102.4(8)
| Bond | Angle (°)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C(21B)-C(20B)-C(27B)</td>
<td>101.8(7)</td>
</tr>
<tr>
<td>C(22B)-C(21B)-C(20B)</td>
<td>123.3(9)</td>
</tr>
<tr>
<td>C(22B)-C(21B)-H(21C)</td>
<td>106.5</td>
</tr>
<tr>
<td>C(20B)-C(21B)-H(21C)</td>
<td>106.5</td>
</tr>
<tr>
<td>C(22B)-C(21B)-H(21D)</td>
<td>106.5</td>
</tr>
<tr>
<td>C(20B)-C(21B)-H(21D)</td>
<td>106.5</td>
</tr>
<tr>
<td>H(21C)-C(21B)-H(21D)</td>
<td>106.5</td>
</tr>
<tr>
<td>C(21B)-C(22B)-C(17B)</td>
<td>112.7(11)</td>
</tr>
<tr>
<td>C(21B)-C(22B)-H(22C)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(17B)-C(22B)-H(22C)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(21B)-C(22B)-H(22D)</td>
<td>109.1</td>
</tr>
<tr>
<td>C(17B)-C(22B)-H(22D)</td>
<td>109.1</td>
</tr>
<tr>
<td>H(22C)-C(22B)-H(22D)</td>
<td>107.8</td>
</tr>
<tr>
<td>C(4B)-C(23B)-H(23D)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4B)-C(23B)-H(23E)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(23D)-C(23B)-H(23E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4B)-C(23B)-H(23F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(23D)-C(23B)-H(23F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(23E)-C(23B)-H(23F)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4B)-C(24B)-H(24D)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4B)-C(24B)-H(24E)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(4B)-C(24B)-H(24F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(24D)-C(24B)-H(24F)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(24E)-C(24B)-H(24F)</td>
<td>109.5</td>
</tr>
</tbody>
</table>
C(10B)-C(25B)-H(25D) 109.5
C(10B)-C(25B)-H(25E) 109.5
C(10B)-C(25B)-H(25F) 109.5
H(25D)-C(25B)-H(25F) 109.5
C(8B)-C(26B)-H(26D) 109.5
C(8B)-C(26B)-H(26E) 109.5
H(26D)-C(26B)-H(26E) 109.5
C(8B)-C(26B)-H(26F) 109.5
H(26D)-C(26B)-H(26F) 109.5
H(26E)-C(26B)-H(26F) 109.5
C(20B)-C(27B)-H(27D) 109.5
C(20B)-C(27B)-H(27E) 109.5
H(27D)-C(27B)-H(27E) 109.5
C(20B)-C(27B)-H(27F) 109.5
H(27D)-C(27B)-H(27F) 109.5
H(27E)-C(27B)-H(27F) 109.5
C(20B)-C(28B)-H(28D) 109.5
C(20B)-C(28B)-H(28E) 109.5
H(28D)-C(28B)-H(28E) 109.5
C(20B)-C(28B)-H(28F) 109.5
H(28D)-C(28B)-H(28F) 109.5
H(28E)-C(28B)-H(28F) 109.5
O(1B)-C(29B)-C(30B) 102.2(5)
O(1B)-C(29B)-H(29C) 111.3
C(30B)-C(29B)-H(29C) 111.3
O(1B)-C(29B)-H(29D) 111.3
C(30B)-C(29B)-H(29D) 111.3
H(29C)-C(29B)-H(29D) 109.2
O(2B)-C(30B)-C(29B) 106.2(4)
O(2B)-C(30B)-H(30C) 110.5
C(29B)-C(30B)-H(30C) 110.5
O(2B)-C(30B)-H(30D) 110.5
C(29B)-C(30B)-H(30D) 110.5
H(30C)-C(30B)-H(30D) 108.7
C(29C)-O(1C)-C(3C) 107.7(4)
C(3C)-O(2C)-C(30C) 106.3(4)
C(2C)-C(1C)-C(10C) 112.9(3)
C(2C)-C(1C)-H(1CA) 109.0
C(10C)-C(1C)-H(1CA) 109.0
C(2C)-C(1C)-H(1CB) 109.0
C(10C)-C(1C)-H(1CB) 109.0
H(1CA)-C(1C)-H(1CB) 107.8
C(3C)-C(2C)-C(1C) 112.0(3)
C(3C)-C(2C)-H(2CA) 109.2
C(1C)-C(2C)-H(2CA) 109.2
C(3C)-C(2C)-H(2CB) 109.2
C(1C)-C(2C)-H(2CB) 109.2
H(2CA)-C(2C)-H(2CB) 107.9
O(2C)-C(3C)-O(1C) 106.6(4)
O(2C)-C(3C)-C(2C) 110.1(4)
O(1C)-C(3C)-C(2C) 108.0(4)
O(2C)-C(3C)-C(4C) 109.7(3)
O(1C)-C(3C)-C(4C) 109.7(3)
C(2C)-C(3C)-C(4C) 112.5(4)
C(24C)-C(4C)-C(3C) 110.0(4)
C(24C)-C(4C)-C(23C) 106.8(4)
C(3C)-C(4C)-C(23C) 108.7(4)
C(24C)-C(4C)-C(5C) 114.3(4)
C(3C)-C(4C)-C(5C) 108.1(3)
C(23C)-C(4C)-C(5C) 108.8(3)
C(6C)-C(5C)-C(4C) 115.0(3)
C(6C)-C(5C)-C(10C) 110.1(3)
C(4C)-C(5C)-C(10C) 117.3(3)
C(6C)-C(5C)-H(5C) 104.3
C(4C)-C(5C)-H(5C) 104.3
C(10C)-C(5C)-H(5C) 104.3
C(7C)-C(6C)-C(5C) 111.4(3)
C(7C)-C(6C)-H(6CA) 109.3
C(5C)-C(6C)-H(6CA) 109.3
C(7C)-C(6C)-H(6CB) 109.3
C(5C)-C(6C)-H(6CB) 109.3
H(6CA)-C(6C)-H(6CB) 108.0
C(6C)-C(7C)-C(8C) 113.2(3)
C(6C)-C(7C)-H(7CA) 108.9
C(8C)-C(7C)-H(7CA) 108.9
C(6C)-C(7C)-H(7CB) 108.9
C(8C)-C(7C)-H(7CB) 108.9
H(7CA)-C(7C)-H(7CB) 107.8
C(14C)-C(8C)-C(7C) 109.4(3)
C(14C)-C(8C)-C(26C) 104.2(4)
C(7C)-C(8C)-C(26C) 109.4(3)
C(14C)-C(8C)-C(9C) 109.1(3)
C(7C)-C(8C)-C(9C) 109.2(3)
C(26C)-C(8C)-C(9C) 115.3(3)
C(11C)-C(9C)-C(10C) 115.2(3)
C(11C)-C(9C)-C(8C) 109.8(3)
C(10C)-C(9C)-C(8C) 115.6(3)
C(11C)-C(9C)-H(9C) 105.0
C(10C)-C(9C)-H(9C) 105.0
C(8C)-C(9C)-H(9C) 105.0
C(1C)-C(10C)-C(25C) 108.1(3)
C(1C)-C(10C)-C(9C) 108.0(3)
C(25C)-C(10C)-C(9C) 111.2(3)
C(1C)-C(10C)-C(5C) 107.0(3)
C(25C)-C(10C)-C(5C) 114.3(3)
C(9C)-C(10C)-C(5C) 108.1(3)
C(12C)-C(11C)-C(9C) 111.1(3)
C(12C)-C(11C)-H(11G) 109.4
C(9C)-C(11C)-H(11G) 109.4
C(12C)-C(11C)-H(11H) 109.4
C(9C)-C(11C)-H(11H) 109.4
H(11G)-C(11C)-H(11H) 108.0
C(13C)-C(12C)-C(11C) 113.7(4)
C(13C)-C(12C)-H(12G) 108.8
C(11C)-C(12C)-H(12G) 108.8
C(13C)-C(12C)-H(12H) 108.8
C(11C)-C(12C)-H(12H) 108.8
H(12G)-C(12C)-H(12H) 107.7
C(18C)-C(13C)-C(12C) 125.3(4)
C(18C)-C(13C)-C(14C) 117.4(4)
C(12C)-C(13C)-C(14C) 117.3(4)
O(3C)-C(14C)-C(13C) 121.8(4)
O(3C)-C(14C)-C(8C) 120.5(4)
C(13C)-C(14C)-C(8C) 117.5(4)
C(15C)#1-C(15C)-C(16C) 108(3)
C(15C)#1-C(15C)-H(15G) 84.0
C(16C)-C(15C)-H(15G) 111.2
C(15C)#1-C(15C)-H(15H) 112.7
C(16C)-C(15C)-H(15H) 123.9
H(15G)-C(15C)-H(15H) 109.5
C(15C)#1-C(15C)-H(15I) 26.7
C(16C)-C(15C)-H(15I) 91.2
H(15G)-C(15C)-H(15I) 109.5
H(15H)-C(15C)-H(15I) 109.5
O(4C)-C(16C)-C(15C) 127(2)
O(4C)-C(16C)-C(17C) 120(2)
C(15C)-C(16C)-C(17C) 111(2)
C(16C)-C(17C)-C(22C) 110.4(17)
C(16C)-C(17C)-H(17G) 109.6
C(22C)-C(17C)-H(17G) 109.6
C(16C)-C(17C)-H(17H) 109.6
C(22C)-C(17C)-H(17H) 109.6
H(17G)-C(17C)-H(17H) 108.1
C(13C)-C(18C)-C(19C) 128.3(5)
C(13C)-C(18C)-H(18C) 115.9
C(19C)-C(18C)-H(18C) 115.9
C(18C)-C(19C)-C(20C) 115.6(5)
C(18C)-C(19C)-H(19G) 108.4
C(20C)-C(19C)-H(19G) 108.4
C(18C)-C(19C)-H(19H) 108.4
C(20C)-C(19C)-H(19H) 108.4
H(19G)-C(19C)-H(19H) 107.4
C(28C)-C(20C)-C(21C) 110.6(6)
C(28C)-C(20C)-C(27C) 109.8(6)
C(21C)-C(20C)-C(27C) 109.5(5)
C(28C)-C(20C)-C(19C) 109.9(5)
C(21C)-C(20C)-C(19C) 108.4(5)
C(27C)-C(20C)-C(19C) 108.5(5)
C(22C)-C(21C)-C(20C) 125.5(9)
C(22D)-C(21C)-C(20C) 123.6(8)
C(22C)-C(21C)-H(21G) 105.9
C(20C)-C(21C)-H(21G) 105.9
C(22C)-C(21C)-H(21H) 105.9
C(20C)-C(21C)-H(21H) 105.9
H(21G)-C(21C)-H(21H) 106.3
C(21C)-C(22C)-C(17C) 111.8(14)
C(21C)-C(22C)-H(22G) 109.3
C(17C)-C(22C)-H(22G) 109.3
C(21C)-C(22C)-H(22H) 109.3
C(17C)-C(22C)-H(22H) 109.3
H(22G)-C(22C)-H(22H) 107.9
C(4C)-C(23C)-H(23J) 109.5
C(4C)-C(23C)-H(23K) 109.5
H(23J)-C(23C)-H(23K) 109.5
C(4C)-C(23C)-H(23L) 109.5
H(23J)-C(23C)-H(23L) 109.5
H(23K)-C(23C)-H(23L) 109.5
C(4C)-C(24C)-H(24J) 109.5
C(4C)-C(24C)-H(24K) 109.5
H(24J)-C(24C)-H(24K) 109.5
C(4C)-C(24C)-H(24L) 109.5
H(24J)-C(24C)-H(24L) 109.5
H(24K)-C(24C)-H(24L) 109.5
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10C)-C(25C)-H(25J)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(10C)-C(25C)-H(25K)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(25J)-C(25C)-H(25K)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(10C)-C(25C)-H(25L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(25J)-C(25C)-H(25L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(25K)-C(25C)-H(25L)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(8C)-C(26C)-H(26J)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(8C)-C(26C)-H(26K)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(26J)-C(26C)-H(26K)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(8C)-C(26C)-H(26L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(26J)-C(26C)-H(26L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(26K)-C(26C)-H(26L)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(27C)-H(27J)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(27C)-H(27K)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(27J)-C(27C)-H(27K)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(27C)-H(27L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(27J)-C(27C)-H(27L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(27K)-C(27C)-H(27L)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(28C)-H(28J)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(28C)-H(28K)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(28J)-C(28C)-H(28K)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(20C)-C(28C)-H(28L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(28J)-C(28C)-H(28L)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(28K)-C(28C)-H(28L)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(1C)-C(29C)-C(30C)</td>
<td>105.5(5)</td>
</tr>
</tbody>
</table>
O(1C)-C(29C)-H(29G) 110.6
C(30C)-C(29C)-H(29G) 110.6
O(1C)-C(29C)-H(29H) 110.6
C(30C)-C(29C)-H(29H) 110.6
H(29G)-C(29C)-H(29H) 108.8
O(2C)-C(30C)-C(29C) 103.7(5)
O(2C)-C(30C)-H(30G) 111.0
C(29C)-C(30C)-H(30G) 111.0
O(2C)-C(30C)-H(30H) 111.0
C(29C)-C(30C)-H(30H) 111.0
H(30G)-C(30C)-H(30H) 109.0
C(16D)-C(15D)-H(15J) 109.5
C(16D)-C(15D)-H(15K) 109.5
H(15J)-C(15D)-H(15K) 109.5
C(16D)-C(15D)-H(15L) 109.5
H(15J)-C(15D)-H(15L) 109.5
H(15K)-C(15D)-H(15L) 109.5
O(4D)-C(16D)-C(17D) 124.9(18)
O(4D)-C(16D)-C(15D) 121.6(18)
C(17D)-C(16D)-C(15D) 113.2(8)
C(16D)-C(17D)-C(22D) 116.6(13)
C(16D)-C(17D)-H(17E) 108.1
C(22D)-C(17D)-H(17E) 108.1
C(16D)-C(17D)-H(17F) 108.1
C(22D)-C(17D)-H(17F) 108.1
H(17E)-C(17D)-H(17F) 107.3
C(21C)-C(22D)-C(17D) 114.6(13)
C(21C)-C(22D)-H(22E) 108.6
C(17D)-C(22D)-H(22E) 108.6
C(21C)-C(22D)-H(22F) 108.6
C(17D)-C(22D)-H(22F) 108.6
H(22E)-C(22D)-H(22F) 107.6

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z
Table 4. Anisotropic displacement parameters (Å² x 10³) for C30H48O4. The anisotropic displacement factor exponent takes the form:

\[-2\pi^2 \left[h^2 a^* a^* U_{11} + \ldots + 2 h k a^* b^* U_{12} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1A)</td>
<td>46(2)</td>
<td>45(2)</td>
<td>58(2)</td>
<td>-16(2)</td>
<td>9(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(2A)</td>
<td>57(2)</td>
<td>73(2)</td>
<td>45(2)</td>
<td>-3(2)</td>
<td>8(2)</td>
<td>11(2)</td>
</tr>
<tr>
<td>O(3A)</td>
<td>53(2)</td>
<td>57(2)</td>
<td>61(2)</td>
<td>13(2)</td>
<td>15(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>O(4A)</td>
<td>147(5)</td>
<td>111(5)</td>
<td>89(3)</td>
<td>27(3)</td>
<td>43(3)</td>
<td>-15(4)</td>
</tr>
<tr>
<td>C(1A)</td>
<td>29(2)</td>
<td>39(2)</td>
<td>54(2)</td>
<td>-12(2)</td>
<td>13(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(2A)</td>
<td>33(2)</td>
<td>47(2)</td>
<td>52(2)</td>
<td>-10(2)</td>
<td>8(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(3A)</td>
<td>41(2)</td>
<td>46(2)</td>
<td>43(2)</td>
<td>-8(2)</td>
<td>10(2)</td>
<td>9(2)</td>
</tr>
<tr>
<td>C(4A)</td>
<td>38(2)</td>
<td>39(2)</td>
<td>44(2)</td>
<td>-1(2)</td>
<td>16(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(5A)</td>
<td>32(2)</td>
<td>30(2)</td>
<td>46(2)</td>
<td>-4(2)</td>
<td>16(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(6A)</td>
<td>30(2)</td>
<td>38(2)</td>
<td>44(2)</td>
<td>-2(2)</td>
<td>13(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(7A)</td>
<td>31(2)</td>
<td>37(2)</td>
<td>50(2)</td>
<td>-2(2)</td>
<td>12(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(8A)</td>
<td>36(2)</td>
<td>30(2)</td>
<td>46(2)</td>
<td>-7(2)</td>
<td>12(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(9A)</td>
<td>33(2)</td>
<td>30(2)</td>
<td>44(2)</td>
<td>-6(2)</td>
<td>15(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(10A)</td>
<td>30(2)</td>
<td>26(2)</td>
<td>46(2)</td>
<td>-7(2)</td>
<td>14(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(11A)</td>
<td>42(2)</td>
<td>52(3)</td>
<td>52(2)</td>
<td>-14(2)</td>
<td>25(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(12A)</td>
<td>53(2)</td>
<td>62(3)</td>
<td>55(3)</td>
<td>-5(2)</td>
<td>30(2)</td>
<td>-11(2)</td>
</tr>
<tr>
<td>C(13A)</td>
<td>59(3)</td>
<td>44(2)</td>
<td>57(3)</td>
<td>-4(2)</td>
<td>24(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(14A)</td>
<td>45(2)</td>
<td>39(2)</td>
<td>44(2)</td>
<td>-2(2)</td>
<td>12(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(15A)</td>
<td>97(5)</td>
<td>160(9)</td>
<td>75(4)</td>
<td>6(5)</td>
<td>36(4)</td>
<td>-22(5)</td>
</tr>
<tr>
<td>C(16A)</td>
<td>81(4)</td>
<td>106(6)</td>
<td>60(4)</td>
<td>11(4)</td>
<td>18(3)</td>
<td>-14(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(17A)</td>
<td>79(4)</td>
<td>92(5)</td>
<td>56(3)</td>
<td>3(3)</td>
<td>24(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(18A)</td>
<td>77(3)</td>
<td>55(3)</td>
<td>54(3)</td>
<td>1(2)</td>
<td>22(2)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(19A)</td>
<td>95(4)</td>
<td>59(3)</td>
<td>61(3)</td>
<td>-2(3)</td>
<td>34(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(20A)</td>
<td>62(3)</td>
<td>62(3)</td>
<td>55(3)</td>
<td>6(3)</td>
<td>19(2)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(21A)</td>
<td>88(4)</td>
<td>75(4)</td>
<td>47(3)</td>
<td>5(3)</td>
<td>27(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(22A)</td>
<td>81(4)</td>
<td>90(5)</td>
<td>56(3)</td>
<td>15(3)</td>
<td>26(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(23A)</td>
<td>45(2)</td>
<td>57(3)</td>
<td>48(2)</td>
<td>-3(2)</td>
<td>21(2)</td>
<td>10(2)</td>
</tr>
<tr>
<td>C(24A)</td>
<td>53(2)</td>
<td>45(2)</td>
<td>50(2)</td>
<td>3(2)</td>
<td>18(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(25A)</td>
<td>40(2)</td>
<td>31(2)</td>
<td>54(2)</td>
<td>-8(2)</td>
<td>14(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(26A)</td>
<td>45(2)</td>
<td>39(2)</td>
<td>47(2)</td>
<td>-9(2)</td>
<td>11(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(27A)</td>
<td>95(4)</td>
<td>60(3)</td>
<td>67(3)</td>
<td>-7(3)</td>
<td>36(3)</td>
<td>-8(3)</td>
</tr>
<tr>
<td>C(28A)</td>
<td>68(4)</td>
<td>171(10)</td>
<td>86(5)</td>
<td>53(6)</td>
<td>16(3)</td>
<td>7(5)</td>
</tr>
<tr>
<td>C(29A)</td>
<td>80(4)</td>
<td>70(4)</td>
<td>63(3)</td>
<td>-20(3)</td>
<td>1(3)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>88(4)</td>
<td>135(8)</td>
<td>56(3)</td>
<td>-30(4)</td>
<td>19(3)</td>
<td>-42(5)</td>
</tr>
<tr>
<td>O(1B)</td>
<td>50(2)</td>
<td>37(2)</td>
<td>61(2)</td>
<td>2(1)</td>
<td>15(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>O(2B)</td>
<td>77(2)</td>
<td>52(2)</td>
<td>58(2)</td>
<td>10(2)</td>
<td>20(2)</td>
<td>19(2)</td>
</tr>
<tr>
<td>O(3B)</td>
<td>53(2)</td>
<td>84(3)</td>
<td>81(2)</td>
<td>16(2)</td>
<td>11(2)</td>
<td>21(2)</td>
</tr>
<tr>
<td>O(4B)</td>
<td>510(30)</td>
<td>1060(80)</td>
<td>206(13)</td>
<td>240(30)</td>
<td>88(16)</td>
<td>530(40)</td>
</tr>
<tr>
<td>C(1B)</td>
<td>31(2)</td>
<td>42(2)</td>
<td>63(3)</td>
<td>-3(2)</td>
<td>14(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(2B)</td>
<td>42(2)</td>
<td>48(3)</td>
<td>62(3)</td>
<td>2(2)</td>
<td>14(2)</td>
<td>18(2)</td>
</tr>
<tr>
<td>C(3B)</td>
<td>56(2)</td>
<td>36(2)</td>
<td>55(3)</td>
<td>7(2)</td>
<td>21(2)</td>
<td>12(2)</td>
</tr>
<tr>
<td>C(4B)</td>
<td>50(2)</td>
<td>31(2)</td>
<td>72(3)</td>
<td>8(2)</td>
<td>27(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(5B)</td>
<td>32(2)</td>
<td>27(2)</td>
<td>66(3)</td>
<td>0(2)</td>
<td>19(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(6B)</td>
<td>31(2)</td>
<td>47(2)</td>
<td>83(3)</td>
<td>1(2)</td>
<td>27(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(7B)</td>
<td>28(2)</td>
<td>50(3)</td>
<td>82(3)</td>
<td>-3(2)</td>
<td>17(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(8B)</td>
<td>32</td>
<td>34</td>
<td>68</td>
<td>-5</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>C(9B)</td>
<td>30</td>
<td>30</td>
<td>62</td>
<td>-8</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>C(10B)</td>
<td>32</td>
<td>25</td>
<td>68</td>
<td>-2</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>C(11B)</td>
<td>32</td>
<td>49</td>
<td>71</td>
<td>-9</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>C(12B)</td>
<td>48</td>
<td>66</td>
<td>70</td>
<td>-6</td>
<td>26</td>
<td>-10</td>
</tr>
<tr>
<td>C(13B)</td>
<td>59</td>
<td>50</td>
<td>78</td>
<td>5</td>
<td>15</td>
<td>-4</td>
</tr>
<tr>
<td>C(14B)</td>
<td>44</td>
<td>45</td>
<td>68</td>
<td>-3</td>
<td>8</td>
<td>-2</td>
</tr>
<tr>
<td>C(17B)</td>
<td>163</td>
<td>290</td>
<td>238</td>
<td>2</td>
<td>118</td>
<td>-69</td>
</tr>
<tr>
<td>C(18B)</td>
<td>72</td>
<td>127</td>
<td>118</td>
<td>58</td>
<td>32</td>
<td>18</td>
</tr>
<tr>
<td>C(19B)</td>
<td>136</td>
<td>149</td>
<td>135</td>
<td>82</td>
<td>56</td>
<td>23</td>
</tr>
<tr>
<td>C(20B)</td>
<td>101</td>
<td>72</td>
<td>75</td>
<td>11</td>
<td>27</td>
<td>-4</td>
</tr>
<tr>
<td>C(21B)</td>
<td>163</td>
<td>133</td>
<td>104</td>
<td>5</td>
<td>70</td>
<td>-17</td>
</tr>
<tr>
<td>C(22B)</td>
<td>350</td>
<td>190</td>
<td>480</td>
<td>150</td>
<td>310</td>
<td>85</td>
</tr>
<tr>
<td>C(23B)</td>
<td>58</td>
<td>49</td>
<td>77</td>
<td>1</td>
<td>36</td>
<td>9</td>
</tr>
<tr>
<td>C(24B)</td>
<td>75</td>
<td>36</td>
<td>86</td>
<td>11</td>
<td>33</td>
<td>-2</td>
</tr>
<tr>
<td>C(25B)</td>
<td>49</td>
<td>27</td>
<td>75</td>
<td>-3</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>C(26B)</td>
<td>38</td>
<td>48</td>
<td>82</td>
<td>-14</td>
<td>13</td>
<td>-10</td>
</tr>
<tr>
<td>C(27B)</td>
<td>213</td>
<td>141</td>
<td>121</td>
<td>-42</td>
<td>76</td>
<td>-58</td>
</tr>
<tr>
<td>C(28B)</td>
<td>104</td>
<td>248</td>
<td>258</td>
<td>172</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>C(29B)</td>
<td>53</td>
<td>71</td>
<td>56</td>
<td>-1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>C(30B)</td>
<td>77</td>
<td>87</td>
<td>62</td>
<td>3</td>
<td>21</td>
<td>-6</td>
</tr>
<tr>
<td>O(1C)</td>
<td>62</td>
<td>36</td>
<td>67</td>
<td>-16</td>
<td>23</td>
<td>-6</td>
</tr>
<tr>
<td>O(2C)</td>
<td>58</td>
<td>56</td>
<td>55</td>
<td>-2</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>O(3C)</td>
<td>44</td>
<td>43</td>
<td>78</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>C(1C)</td>
<td>29</td>
<td>35</td>
<td>58</td>
<td>-10</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>C(2)</td>
<td>33(2)</td>
<td>40(2)</td>
<td>62(3)</td>
<td>-6(2)</td>
<td>11(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>45(2)</td>
<td>30(2)</td>
<td>58(3)</td>
<td>-6(2)</td>
<td>17(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>38(2)</td>
<td>29(2)</td>
<td>62(3)</td>
<td>-1(2)</td>
<td>19(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>32(2)</td>
<td>23(2)</td>
<td>57(2)</td>
<td>-4(2)</td>
<td>18(2)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>32(2)</td>
<td>36(2)</td>
<td>68(3)</td>
<td>-1(2)</td>
<td>21(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>29(2)</td>
<td>34(2)</td>
<td>71(3)</td>
<td>-3(2)</td>
<td>15(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>36(2)</td>
<td>27(2)</td>
<td>67(3)</td>
<td>-7(2)</td>
<td>14(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>32(2)</td>
<td>27(2)</td>
<td>52(2)</td>
<td>-10(2)</td>
<td>16(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>32(2)</td>
<td>24(2)</td>
<td>61(2)</td>
<td>-10(2)</td>
<td>19(2)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>38(2)</td>
<td>44(2)</td>
<td>58(3)</td>
<td>-10(2)</td>
<td>21(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>45(2)</td>
<td>57(3)</td>
<td>57(3)</td>
<td>-7(2)</td>
<td>22(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>51(2)</td>
<td>42(2)</td>
<td>58(3)</td>
<td>-5(2)</td>
<td>17(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>44(2)</td>
<td>37(2)</td>
<td>55(3)</td>
<td>-12(2)</td>
<td>10(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>190(20)</td>
<td>200(30)</td>
<td>90(11)</td>
<td>52(16)</td>
<td>53(13)</td>
<td>-30(20)</td>
</tr>
<tr>
<td>C(18)</td>
<td>70(3)</td>
<td>52(3)</td>
<td>61(3)</td>
<td>-8(2)</td>
<td>15(3)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>95(4)</td>
<td>51(3)</td>
<td>55(3)</td>
<td>-10(2)</td>
<td>27(3)</td>
<td>-11(3)</td>
</tr>
<tr>
<td>C(20)</td>
<td>92(4)</td>
<td>53(3)</td>
<td>60(3)</td>
<td>-7(3)</td>
<td>26(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>164(8)</td>
<td>89(5)</td>
<td>81(4)</td>
<td>0(4)</td>
<td>66(5)</td>
<td>-21(6)</td>
</tr>
<tr>
<td>C(22)</td>
<td>127(12)</td>
<td>103(13)</td>
<td>100(11)</td>
<td>-32(10)</td>
<td>40(10)</td>
<td>-27(11)</td>
</tr>
<tr>
<td>C(23)</td>
<td>54(2)</td>
<td>45(3)</td>
<td>74(3)</td>
<td>0(2)</td>
<td>35(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>50(2)</td>
<td>34(2)</td>
<td>69(3)</td>
<td>6(2)</td>
<td>21(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>42(2)</td>
<td>27(2)</td>
<td>64(3)</td>
<td>-8(2)</td>
<td>18(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>44(2)</td>
<td>35(2)</td>
<td>65(3)</td>
<td>-14(2)</td>
<td>9(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>109(5)</td>
<td>71(4)</td>
<td>81(4)</td>
<td>-22(4)</td>
<td>38(4)</td>
<td>-31(4)</td>
</tr>
<tr>
<td>C(28)</td>
<td>114(5)</td>
<td>72(5)</td>
<td>103(5)</td>
<td>23(4)</td>
<td>26(4)</td>
<td>9(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(29C)</td>
<td>99(4)</td>
<td>64(4)</td>
<td>68(4)</td>
<td>-27(3)</td>
<td>25(3)</td>
<td>-18(3)</td>
</tr>
<tr>
<td>C(30C)</td>
<td>89(4)</td>
<td>93(5)</td>
<td>56(3)</td>
<td>-14(3)</td>
<td>16(3)</td>
<td>-22(4)</td>
</tr>
<tr>
<td>C(17D)</td>
<td>184(19)</td>
<td>127(19)</td>
<td>230(20)</td>
<td>-61(18)</td>
<td>160(20)</td>
<td>-71(16)</td>
</tr>
<tr>
<td>C(22D)</td>
<td>133(10)</td>
<td>149(13)</td>
<td>147(11)</td>
<td>5(9)</td>
<td>76(9)</td>
<td>3(9)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for C30H48O4.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1AA)</td>
<td>7891</td>
<td>3120</td>
<td>3425</td>
<td>48</td>
</tr>
<tr>
<td>H(1AB)</td>
<td>7750</td>
<td>5388</td>
<td>3549</td>
<td>48</td>
</tr>
<tr>
<td>H(2AA)</td>
<td>7788</td>
<td>1375</td>
<td>3975</td>
<td>54</td>
</tr>
<tr>
<td>H(2AB)</td>
<td>8041</td>
<td>3443</td>
<td>4115</td>
<td>54</td>
</tr>
<tr>
<td>H(5A)</td>
<td>7111</td>
<td>5644</td>
<td>3547</td>
<td>42</td>
</tr>
<tr>
<td>H(6AA)</td>
<td>6644</td>
<td>2175</td>
<td>3228</td>
<td>44</td>
</tr>
<tr>
<td>H(6AB)</td>
<td>6529</td>
<td>4230</td>
<td>3445</td>
<td>44</td>
</tr>
<tr>
<td>H(7AA)</td>
<td>6371</td>
<td>4808</td>
<td>2761</td>
<td>47</td>
</tr>
<tr>
<td>H(7AB)</td>
<td>6647</td>
<td>6626</td>
<td>2980</td>
<td>47</td>
</tr>
<tr>
<td>H(9A)</td>
<td>7301</td>
<td>6110</td>
<td>3004</td>
<td>42</td>
</tr>
<tr>
<td>H(11A)</td>
<td>7761</td>
<td>4086</td>
<td>2831</td>
<td>56</td>
</tr>
<tr>
<td>H(11B)</td>
<td>7460</td>
<td>2675</td>
<td>2536</td>
<td>56</td>
</tr>
<tr>
<td>H(12A)</td>
<td>7571</td>
<td>7283</td>
<td>2484</td>
<td>64</td>
</tr>
<tr>
<td>H(12B)</td>
<td>7619</td>
<td>5493</td>
<td>2174</td>
<td>64</td>
</tr>
<tr>
<td>H(15A)</td>
<td>8177</td>
<td>11251</td>
<td>116</td>
<td>162</td>
</tr>
<tr>
<td>H(15B)</td>
<td>7925</td>
<td>12871</td>
<td>-189</td>
<td>162</td>
</tr>
<tr>
<td>H(15C)</td>
<td>8253</td>
<td>13822</td>
<td>142</td>
<td>162</td>
</tr>
<tr>
<td>H(17A)</td>
<td>8044</td>
<td>10756</td>
<td>779</td>
<td>89</td>
</tr>
<tr>
<td>H(17B)</td>
<td>7744</td>
<td>9737</td>
<td>427</td>
<td>89</td>
</tr>
<tr>
<td>Location</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H(18A)</td>
<td>6745</td>
<td>6886</td>
<td>1622</td>
<td>74</td>
</tr>
<tr>
<td>H(19A)</td>
<td>7126</td>
<td>5939</td>
<td>1236</td>
<td>83</td>
</tr>
<tr>
<td>H(19B)</td>
<td>7461</td>
<td>6453</td>
<td>1595</td>
<td>83</td>
</tr>
<tr>
<td>H(21A)</td>
<td>7429</td>
<td>8014</td>
<td>860</td>
<td>82</td>
</tr>
<tr>
<td>H(21B)</td>
<td>7736</td>
<td>8824</td>
<td>1226</td>
<td>82</td>
</tr>
<tr>
<td>H(22A)</td>
<td>7307</td>
<td>11692</td>
<td>654</td>
<td>89</td>
</tr>
<tr>
<td>H(22B)</td>
<td>7616</td>
<td>12504</td>
<td>1022</td>
<td>89</td>
</tr>
<tr>
<td>H(23A)</td>
<td>6654</td>
<td>4203</td>
<td>4035</td>
<td>72</td>
</tr>
<tr>
<td>H(23B)</td>
<td>6955</td>
<td>4151</td>
<td>4441</td>
<td>72</td>
</tr>
<tr>
<td>H(23C)</td>
<td>6937</td>
<td>6141</td>
<td>4145</td>
<td>72</td>
</tr>
<tr>
<td>H(24A)</td>
<td>6833</td>
<td>505</td>
<td>3883</td>
<td>73</td>
</tr>
<tr>
<td>H(24B)</td>
<td>7238</td>
<td>-20</td>
<td>3905</td>
<td>73</td>
</tr>
<tr>
<td>H(24C)</td>
<td>7125</td>
<td>506</td>
<td>4296</td>
<td>73</td>
</tr>
<tr>
<td>H(25A)</td>
<td>7086</td>
<td>324</td>
<td>3073</td>
<td>62</td>
</tr>
<tr>
<td>H(25B)</td>
<td>7497</td>
<td>346</td>
<td>3081</td>
<td>62</td>
</tr>
<tr>
<td>H(25C)</td>
<td>7383</td>
<td>-72</td>
<td>3475</td>
<td>62</td>
</tr>
<tr>
<td>H(26A)</td>
<td>6909</td>
<td>1911</td>
<td>2290</td>
<td>66</td>
</tr>
<tr>
<td>H(26B)</td>
<td>6760</td>
<td>1120</td>
<td>2646</td>
<td>66</td>
</tr>
<tr>
<td>H(26C)</td>
<td>6507</td>
<td>2401</td>
<td>2285</td>
<td>66</td>
</tr>
<tr>
<td>H(27A)</td>
<td>7602</td>
<td>10358</td>
<td>1805</td>
<td>107</td>
</tr>
<tr>
<td>H(27B)</td>
<td>7377</td>
<td>12313</td>
<td>1557</td>
<td>107</td>
</tr>
<tr>
<td>H(27C)</td>
<td>7200</td>
<td>10756</td>
<td>1814</td>
<td>107</td>
</tr>
<tr>
<td>H(28A)</td>
<td>6711</td>
<td>10012</td>
<td>1228</td>
<td>164</td>
</tr>
<tr>
<td>H(28B)</td>
<td>6888</td>
<td>11442</td>
<td>954</td>
<td>164</td>
</tr>
<tr>
<td>H(28C)</td>
<td>6786</td>
<td>8944</td>
<td>847</td>
<td>164</td>
</tr>
<tr>
<td>H(29A)</td>
<td>7748</td>
<td>8185</td>
<td>4662</td>
<td>90</td>
</tr>
<tr>
<td>H(29B)</td>
<td>8056</td>
<td>6895</td>
<td>4528</td>
<td>90</td>
</tr>
<tr>
<td>H(30A)</td>
<td>8015</td>
<td>4490</td>
<td>4984</td>
<td>111</td>
</tr>
<tr>
<td>H(30B)</td>
<td>7626</td>
<td>5319</td>
<td>4987</td>
<td>111</td>
</tr>
<tr>
<td>H(1BA)</td>
<td>6275</td>
<td>-1890</td>
<td>3687</td>
<td>54</td>
</tr>
<tr>
<td>H(1BB)</td>
<td>6124</td>
<td>399</td>
<td>3788</td>
<td>54</td>
</tr>
<tr>
<td>H(2BA)</td>
<td>6437</td>
<td>-1324</td>
<td>4370</td>
<td>61</td>
</tr>
<tr>
<td>H(2BB)</td>
<td>6192</td>
<td>-3449</td>
<td>4262</td>
<td>61</td>
</tr>
<tr>
<td>H(5B)</td>
<td>5484</td>
<td>645</td>
<td>3790</td>
<td>48</td>
</tr>
<tr>
<td>H(6BA)</td>
<td>5053</td>
<td>-3080</td>
<td>3535</td>
<td>62</td>
</tr>
<tr>
<td>H(6BB)</td>
<td>4917</td>
<td>-990</td>
<td>3725</td>
<td>62</td>
</tr>
<tr>
<td>H(7BA)</td>
<td>5000</td>
<td>1243</td>
<td>3224</td>
<td>63</td>
</tr>
<tr>
<td>H(7BB)</td>
<td>4744</td>
<td>-739</td>
<td>3039</td>
<td>63</td>
</tr>
<tr>
<td>H(9B)</td>
<td>5664</td>
<td>859</td>
<td>3242</td>
<td>48</td>
</tr>
<tr>
<td>H(11C)</td>
<td>6129</td>
<td>-1135</td>
<td>3079</td>
<td>60</td>
</tr>
<tr>
<td>H(11D)</td>
<td>5832</td>
<td>-2656</td>
<td>2804</td>
<td>60</td>
</tr>
<tr>
<td>H(12C)</td>
<td>5933</td>
<td>1899</td>
<td>2706</td>
<td>71</td>
</tr>
<tr>
<td>H(12D)</td>
<td>5960</td>
<td>5</td>
<td>2406</td>
<td>71</td>
</tr>
<tr>
<td>H(15D)</td>
<td>6394</td>
<td>5047</td>
<td>292</td>
<td>376</td>
</tr>
<tr>
<td>H(15E)</td>
<td>6538</td>
<td>2620</td>
<td>267</td>
<td>376</td>
</tr>
<tr>
<td>H(15F)</td>
<td>6189</td>
<td>3437</td>
<td>-49</td>
<td>376</td>
</tr>
<tr>
<td>H(17C)</td>
<td>6064</td>
<td>5667</td>
<td>751</td>
<td>263</td>
</tr>
<tr>
<td>H(17D)</td>
<td>6377</td>
<td>4134</td>
<td>1002</td>
<td>263</td>
</tr>
<tr>
<td>H(18B)</td>
<td>5088</td>
<td>1710</td>
<td>1903</td>
<td>125</td>
</tr>
<tr>
<td>H(19C)</td>
<td>5807</td>
<td>1629</td>
<td>1843</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>H(19D)</td>
<td>5481</td>
<td>836</td>
<td>1495</td>
<td>163</td>
</tr>
<tr>
<td>H(21C)</td>
<td>5696</td>
<td>5997</td>
<td>1162</td>
<td>152</td>
</tr>
<tr>
<td>H(21D)</td>
<td>6008</td>
<td>5045</td>
<td>1505</td>
<td>152</td>
</tr>
<tr>
<td>H(22C)</td>
<td>5653</td>
<td>2695</td>
<td>847</td>
<td>361</td>
</tr>
<tr>
<td>H(22D)</td>
<td>5982</td>
<td>1831</td>
<td>1188</td>
<td>361</td>
</tr>
<tr>
<td>H(23D)</td>
<td>5057</td>
<td>-453</td>
<td>4310</td>
<td>86</td>
</tr>
<tr>
<td>H(23E)</td>
<td>5362</td>
<td>-376</td>
<td>4713</td>
<td>86</td>
</tr>
<tr>
<td>H(23F)</td>
<td>5345</td>
<td>1467</td>
<td>4389</td>
<td>86</td>
</tr>
<tr>
<td>H(24D)</td>
<td>5630</td>
<td>-4850</td>
<td>4220</td>
<td>95</td>
</tr>
<tr>
<td>H(24E)</td>
<td>5540</td>
<td>-4146</td>
<td>4617</td>
<td>95</td>
</tr>
<tr>
<td>H(24F)</td>
<td>5231</td>
<td>-4278</td>
<td>4218</td>
<td>95</td>
</tr>
<tr>
<td>H(25D)</td>
<td>5488</td>
<td>-4881</td>
<td>3390</td>
<td>73</td>
</tr>
<tr>
<td>H(25E)</td>
<td>5898</td>
<td>-4830</td>
<td>3396</td>
<td>73</td>
</tr>
<tr>
<td>H(25F)</td>
<td>5787</td>
<td>-5063</td>
<td>3796</td>
<td>73</td>
</tr>
<tr>
<td>H(26D)</td>
<td>5171</td>
<td>-4345</td>
<td>2949</td>
<td>85</td>
</tr>
<tr>
<td>H(26E)</td>
<td>4885</td>
<td>-3225</td>
<td>2594</td>
<td>85</td>
</tr>
<tr>
<td>H(26F)</td>
<td>5282</td>
<td>-3581</td>
<td>2568</td>
<td>85</td>
</tr>
<tr>
<td>H(27D)</td>
<td>5896</td>
<td>5104</td>
<td>2056</td>
<td>228</td>
</tr>
<tr>
<td>H(27E)</td>
<td>5665</td>
<td>7107</td>
<td>1834</td>
<td>228</td>
</tr>
<tr>
<td>H(27F)</td>
<td>5498</td>
<td>5440</td>
<td>2082</td>
<td>228</td>
</tr>
<tr>
<td>H(28D)</td>
<td>5184</td>
<td>6393</td>
<td>1251</td>
<td>308</td>
</tr>
<tr>
<td>H(28E)</td>
<td>5063</td>
<td>3943</td>
<td>1125</td>
<td>308</td>
</tr>
<tr>
<td>H(28F)</td>
<td>5020</td>
<td>4905</td>
<td>1529</td>
<td>308</td>
</tr>
<tr>
<td>H(29C)</td>
<td>6173</td>
<td>3496</td>
<td>4899</td>
<td>74</td>
</tr>
<tr>
<td>H(29D)</td>
<td>6467</td>
<td>2057</td>
<td>4769</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>H(30C)</td>
<td>6416</td>
<td>-149</td>
<td>5257</td>
<td>90</td>
</tr>
<tr>
<td>H(30D)</td>
<td>6026</td>
<td>734</td>
<td>5241</td>
<td>90</td>
</tr>
<tr>
<td>H(1CA)</td>
<td>4528</td>
<td>3574</td>
<td>3163</td>
<td>48</td>
</tr>
<tr>
<td>H(1CB)</td>
<td>4383</td>
<td>5716</td>
<td>3326</td>
<td>48</td>
</tr>
<tr>
<td>H(2CA)</td>
<td>4424</td>
<td>1469</td>
<td>3677</td>
<td>54</td>
</tr>
<tr>
<td>H(2CB)</td>
<td>4678</td>
<td>3481</td>
<td>3853</td>
<td>54</td>
</tr>
<tr>
<td>H(5C)</td>
<td>3753</td>
<td>5878</td>
<td>3329</td>
<td>44</td>
</tr>
<tr>
<td>H(6CA)</td>
<td>3283</td>
<td>2541</td>
<td>2948</td>
<td>53</td>
</tr>
<tr>
<td>H(6CB)</td>
<td>3168</td>
<td>4464</td>
<td>3193</td>
<td>53</td>
</tr>
<tr>
<td>H(7CA)</td>
<td>3293</td>
<td>7096</td>
<td>2768</td>
<td>53</td>
</tr>
<tr>
<td>H(7CB)</td>
<td>3014</td>
<td>5373</td>
<td>2523</td>
<td>53</td>
</tr>
<tr>
<td>H(9C)</td>
<td>3950</td>
<td>6595</td>
<td>2779</td>
<td>43</td>
</tr>
<tr>
<td>H(11G)</td>
<td>4401</td>
<td>4656</td>
<td>2581</td>
<td>54</td>
</tr>
<tr>
<td>H(11H)</td>
<td>4097</td>
<td>3339</td>
<td>2273</td>
<td>54</td>
</tr>
<tr>
<td>H(12G)</td>
<td>4226</td>
<td>7950</td>
<td>2263</td>
<td>61</td>
</tr>
<tr>
<td>H(12H)</td>
<td>4259</td>
<td>6245</td>
<td>1934</td>
<td>61</td>
</tr>
<tr>
<td>H(15G)</td>
<td>4853</td>
<td>10988</td>
<td>-89</td>
<td>337</td>
</tr>
<tr>
<td>H(15H)</td>
<td>4759</td>
<td>13149</td>
<td>-350</td>
<td>337</td>
</tr>
<tr>
<td>H(15I)</td>
<td>5046</td>
<td>13247</td>
<td>67</td>
<td>337</td>
</tr>
<tr>
<td>H(17G)</td>
<td>4701</td>
<td>10329</td>
<td>536</td>
<td>189</td>
</tr>
<tr>
<td>H(17H)</td>
<td>4357</td>
<td>10336</td>
<td>169</td>
<td>189</td>
</tr>
<tr>
<td>H(18C)</td>
<td>3397</td>
<td>8017</td>
<td>1421</td>
<td>74</td>
</tr>
<tr>
<td>H(19G)</td>
<td>3730</td>
<td>7150</td>
<td>990</td>
<td>79</td>
</tr>
<tr>
<td>H(19H)</td>
<td>4082</td>
<td>7041</td>
<td>1341</td>
<td>79</td>
</tr>
<tr>
<td>H(21G)</td>
<td>4378</td>
<td>9258</td>
<td>961</td>
<td>126</td>
</tr>
<tr>
<td>H(21H)</td>
<td>4018</td>
<td>9171</td>
<td>626</td>
<td>126</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H(22G)</td>
<td>4409</td>
<td>12938</td>
<td>856</td>
<td>130</td>
</tr>
<tr>
<td>H(22H)</td>
<td>4061</td>
<td>12720</td>
<td>498</td>
<td>130</td>
</tr>
<tr>
<td>H(23J)</td>
<td>3577</td>
<td>6065</td>
<td>3915</td>
<td>81</td>
</tr>
<tr>
<td>H(23K)</td>
<td>3291</td>
<td>4156</td>
<td>3783</td>
<td>81</td>
</tr>
<tr>
<td>H(23L)</td>
<td>3592</td>
<td>3967</td>
<td>4188</td>
<td>81</td>
</tr>
<tr>
<td>H(24J)</td>
<td>3464</td>
<td>554</td>
<td>3578</td>
<td>75</td>
</tr>
<tr>
<td>H(24K)</td>
<td>3869</td>
<td>46</td>
<td>3596</td>
<td>75</td>
</tr>
<tr>
<td>H(24L)</td>
<td>3754</td>
<td>383</td>
<td>3991</td>
<td>75</td>
</tr>
<tr>
<td>H(25J)</td>
<td>3725</td>
<td>789</td>
<td>2772</td>
<td>65</td>
</tr>
<tr>
<td>H(25K)</td>
<td>4137</td>
<td>854</td>
<td>2786</td>
<td>65</td>
</tr>
<tr>
<td>H(25L)</td>
<td>4018</td>
<td>262</td>
<td>3171</td>
<td>65</td>
</tr>
<tr>
<td>H(26J)</td>
<td>3405</td>
<td>1757</td>
<td>2354</td>
<td>74</td>
</tr>
<tr>
<td>H(26K)</td>
<td>3138</td>
<td>3180</td>
<td>2025</td>
<td>74</td>
</tr>
<tr>
<td>H(26L)</td>
<td>3535</td>
<td>2759</td>
<td>2000</td>
<td>74</td>
</tr>
<tr>
<td>H(27J)</td>
<td>4402</td>
<td>10378</td>
<td>1612</td>
<td>127</td>
</tr>
<tr>
<td>H(27K)</td>
<td>4249</td>
<td>12737</td>
<td>1461</td>
<td>127</td>
</tr>
<tr>
<td>H(27L)</td>
<td>4055</td>
<td>11282</td>
<td>1716</td>
<td>127</td>
</tr>
<tr>
<td>H(28J)</td>
<td>3492</td>
<td>11595</td>
<td>1194</td>
<td>145</td>
</tr>
<tr>
<td>H(28K)</td>
<td>3684</td>
<td>13022</td>
<td>934</td>
<td>145</td>
</tr>
<tr>
<td>H(28L)</td>
<td>3472</td>
<td>10856</td>
<td>757</td>
<td>145</td>
</tr>
<tr>
<td>H(29G)</td>
<td>4167</td>
<td>6994</td>
<td>4519</td>
<td>92</td>
</tr>
<tr>
<td>H(29H)</td>
<td>4552</td>
<td>7510</td>
<td>4460</td>
<td>92</td>
</tr>
<tr>
<td>H(30G)</td>
<td>4732</td>
<td>4083</td>
<td>4573</td>
<td>96</td>
</tr>
<tr>
<td>H(30H)</td>
<td>4453</td>
<td>4132</td>
<td>4833</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H(15J)</td>
<td>4193</td>
<td>6114</td>
<td>558</td>
<td>655</td>
</tr>
<tr>
<td>H(15K)</td>
<td>3971</td>
<td>6300</td>
<td>110</td>
<td>655</td>
</tr>
<tr>
<td>H(15L)</td>
<td>4262</td>
<td>4416</td>
<td>244</td>
<td>655</td>
</tr>
<tr>
<td>H(17E)</td>
<td>4616</td>
<td>10412</td>
<td>440</td>
<td>191</td>
</tr>
<tr>
<td>H(17F)</td>
<td>4892</td>
<td>8556</td>
<td>636</td>
<td>191</td>
</tr>
<tr>
<td>H(22E)</td>
<td>4424</td>
<td>7274</td>
<td>933</td>
<td>163</td>
</tr>
<tr>
<td>H(22F)</td>
<td>4658</td>
<td>9334</td>
<td>1121</td>
<td>163</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for C30H48O4.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10A)-C(1A)-C(2A)-C(3A)</td>
<td>-57.2(5)</td>
</tr>
<tr>
<td>C(29A)-O(1A)-C(3A)-O(2A)</td>
<td>26.9(5)</td>
</tr>
<tr>
<td>C(29A)-O(1A)-C(3A)-C(2A)</td>
<td>-91.0(5)</td>
</tr>
<tr>
<td>C(29A)-O(1A)-C(3A)-C(4A)</td>
<td>144.8(4)</td>
</tr>
<tr>
<td>C(30A)-O(2A)-C(3A)-O(1A)</td>
<td>-12.4(5)</td>
</tr>
<tr>
<td>C(30A)-O(2A)-C(3A)-C(2A)</td>
<td>106.3(5)</td>
</tr>
<tr>
<td>C(30A)-O(2A)-C(3A)-C(4A)</td>
<td>-129.8(5)</td>
</tr>
<tr>
<td>C(1A)-C(2A)-C(3A)-O(1A)</td>
<td>-64.0(5)</td>
</tr>
<tr>
<td>C(1A)-C(2A)-C(3A)-O(2A)</td>
<td>179.9(4)</td>
</tr>
<tr>
<td>C(1A)-C(2A)-C(3A)-C(4A)</td>
<td>-64.0(5)</td>
</tr>
<tr>
<td>O(1A)-C(3A)-C(4A)-C(23A)</td>
<td>-49.8(5)</td>
</tr>
<tr>
<td>O(2A)-C(3A)-C(4A)-C(23A)</td>
<td>65.8(5)</td>
</tr>
<tr>
<td>C(2A)-C(3A)-C(4A)-C(23A)</td>
<td>-172.5(4)</td>
</tr>
<tr>
<td>O(1A)-C(3A)-C(4A)-C(24A)</td>
<td>-166.3(4)</td>
</tr>
<tr>
<td>O(2A)-C(3A)-C(4A)-C(24A)</td>
<td>-50.6(5)</td>
</tr>
<tr>
<td>C(2A)-C(3A)-C(4A)-C(24A)</td>
<td>71.0(5)</td>
</tr>
<tr>
<td>O(1A)-C(3A)-C(4A)-C(5A)</td>
<td>69.3(4)</td>
</tr>
<tr>
<td>O(2A)-C(3A)-C(4A)-C(5A)</td>
<td>-175.0(3)</td>
</tr>
<tr>
<td>C(2A)-C(3A)-C(4A)-C(5A)</td>
<td>-53.4(5)</td>
</tr>
<tr>
<td>C(3A)-C(4A)-C(5A)-C(6A)</td>
<td>-174.8(3)</td>
</tr>
<tr>
<td>C(23A)-C(4A)-C(5A)-C(6A)</td>
<td>-56.4(5)</td>
</tr>
<tr>
<td>C(24A)-C(4A)-C(5A)-C(6A)</td>
<td>62.4(4)</td>
</tr>
<tr>
<td>C(3A)-C(4A)-C(5A)-C(10A)</td>
<td>52.2(4)</td>
</tr>
<tr>
<td>Bond Sequence</td>
<td>Torsion Angle</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(23A)-C(4A)-C(5A)-C(10A)</td>
<td>170.5(3)</td>
</tr>
<tr>
<td>C(24A)-C(4A)-C(5A)-C(10A)</td>
<td>-70.7(4)</td>
</tr>
<tr>
<td>C(10A)-C(5A)-C(6A)-C(7A)</td>
<td>-60.9(4)</td>
</tr>
<tr>
<td>C(4A)-C(5A)-C(6A)-C(7A)</td>
<td>163.6(3)</td>
</tr>
<tr>
<td>C(5A)-C(6A)-C(7A)-C(8A)</td>
<td>57.3(4)</td>
</tr>
<tr>
<td>C(6A)-C(7A)-C(8A)-C(14A)</td>
<td>-170.3(3)</td>
</tr>
<tr>
<td>C(6A)-C(7A)-C(8A)-C(26A)</td>
<td>76.1(4)</td>
</tr>
<tr>
<td>C(6A)-C(7A)-C(8A)-C(9A)</td>
<td>-51.2(4)</td>
</tr>
<tr>
<td>C(7A)-C(8A)-C(9A)-C(11A)</td>
<td>-176.1(3)</td>
</tr>
<tr>
<td>C(14A)-C(8A)-C(9A)-C(11A)</td>
<td>-57.1(4)</td>
</tr>
<tr>
<td>C(26A)-C(8A)-C(9A)-C(11A)</td>
<td>59.5(5)</td>
</tr>
<tr>
<td>C(7A)-C(8A)-C(9A)-C(10A)</td>
<td>52.1(4)</td>
</tr>
<tr>
<td>C(14A)-C(8A)-C(9A)-C(10A)</td>
<td>171.0(3)</td>
</tr>
<tr>
<td>C(26A)-C(8A)-C(9A)-C(10A)</td>
<td>-72.3(4)</td>
</tr>
<tr>
<td>C(2A)-C(1A)-C(10A)-C(25A)</td>
<td>-72.5(4)</td>
</tr>
<tr>
<td>C(2A)-C(1A)-C(10A)-C(5A)</td>
<td>52.2(4)</td>
</tr>
<tr>
<td>C(2A)-C(1A)-C(10A)-C(9A)</td>
<td>166.8(3)</td>
</tr>
<tr>
<td>C(6A)-C(5A)-C(10A)-C(1A)</td>
<td>173.7(3)</td>
</tr>
<tr>
<td>C(4A)-C(5A)-C(10A)-C(1A)</td>
<td>-51.8(5)</td>
</tr>
<tr>
<td>C(6A)-C(5A)-C(10A)-C(25A)</td>
<td>-65.4(5)</td>
</tr>
<tr>
<td>C(4A)-C(5A)-C(10A)-C(25A)</td>
<td>69.1(5)</td>
</tr>
<tr>
<td>C(6A)-C(5A)-C(10A)-C(9A)</td>
<td>58.0(4)</td>
</tr>
<tr>
<td>C(4A)-C(5A)-C(10A)-C(9A)</td>
<td>-167.5(3)</td>
</tr>
<tr>
<td>C(11A)-C(9A)-C(10A)-C(1A)</td>
<td>59.6(4)</td>
</tr>
<tr>
<td>C(8A)-C(9A)-C(10A)-C(1A)</td>
<td>-170.9(3)</td>
</tr>
</tbody>
</table>
C(11A)-C(9A)-C(10A)-C(25A) -59.1(4)
C(8A)-C(9A)-C(10A)-C(25A) 70.4(4)
C(11A)-C(9A)-C(10A)-C(5A) 175.6(3)
C(8A)-C(9A)-C(10A)-C(5A) -54.9(4)
C(10A)-C(9A)-C(11A)-C(12A) -165.2(3)
C(8A)-C(9A)-C(11A)-C(12A) 62.6(4)
C(9A)-C(11A)-C(12A)-C(13A) -51.9(5)
C(11A)-C(12A)-C(13A)-C(18A) -141.6(5)
C(11A)-C(12A)-C(13A)-C(14A) 37.6(6)
C(18A)-C(13A)-C(14A)-O(3A) -30.7(7)
C(12A)-C(13A)-C(14A)-O(3A) 150.0(5)
C(18A)-C(13A)-C(14A)-C(8A) 144.6(5)
C(12A)-C(13A)-C(14A)-C(8A) -34.7(6)
C(7A)-C(8A)-C(14A)-O(3A) -22.1(5)
C(26A)-C(8A)-C(14A)-O(3A) 95.4(5)
C(9A)-C(8A)-C(14A)-O(3A) -141.1(4)
C(7A)-C(8A)-C(14A)-C(13A) 162.6(4)
C(26A)-C(8A)-C(14A)-C(13A) -79.9(4)
C(9A)-C(8A)-C(14A)-C(13A) 43.6(5)
O(4A)-C(16A)-C(17A)-C(22A) 4.4(10)
C(15A)-C(16A)-C(17A)-C(22A) -174.0(6)
C(14A)-C(13A)-C(18A)-C(19A) 179.9(5)
C(12A)-C(13A)-C(18A)-C(19A) -0.9(10)
C(13A)-C(18A)-C(19A)-C(20A) -111.5(7)
C(18A)-C(19A)-C(20A)-C(28A) -63.2(7)
<table>
<thead>
<tr>
<th>Bond Configuration</th>
<th>Angle (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(18A)-C(19A)-C(20A)-C(21A)</td>
<td>175.7(5)</td>
</tr>
<tr>
<td>C(18A)-C(19A)-C(20A)-C(27A)</td>
<td>56.1(7)</td>
</tr>
<tr>
<td>C(28A)-C(20A)-C(21A)-C(22A)</td>
<td>54.8(8)</td>
</tr>
<tr>
<td>C(27A)-C(20A)-C(21A)-C(22A)</td>
<td>-67.9(7)</td>
</tr>
<tr>
<td>C(19A)-C(20A)-C(21A)-C(22A)</td>
<td>174.7(5)</td>
</tr>
<tr>
<td>C(16A)-C(17A)-C(22A)-C(21A)</td>
<td>175.1(6)</td>
</tr>
<tr>
<td>C(20A)-C(21A)-C(22A)-C(17A)</td>
<td>-180.0(5)</td>
</tr>
<tr>
<td>C(3A)-O(1A)-C(29A)-C(30A)</td>
<td>-28.7(6)</td>
</tr>
<tr>
<td>C(3A)-O(2A)-C(30A)-C(29A)</td>
<td>-5.0(7)</td>
</tr>
<tr>
<td>O(1A)-C(29A)-C(30A)-O(2A)</td>
<td>20.2(7)</td>
</tr>
<tr>
<td>C(10B)-C(1B)-C(2B)-C(3B)</td>
<td>-57.9(5)</td>
</tr>
<tr>
<td>C(29B)-O(1B)-C(3B)-O(2B)</td>
<td>26.4(5)</td>
</tr>
<tr>
<td>C(29B)-O(1B)-C(3B)-C(2B)</td>
<td>-90.9(4)</td>
</tr>
<tr>
<td>C(29B)-O(1B)-C(3B)-C(4B)</td>
<td>145.3(4)</td>
</tr>
<tr>
<td>C(30B)-O(2B)-C(3B)-O(1B)</td>
<td>-10.6(5)</td>
</tr>
<tr>
<td>C(30B)-O(2B)-C(3B)-C(2B)</td>
<td>107.2(5)</td>
</tr>
<tr>
<td>C(30B)-O(2B)-C(3B)-C(4B)</td>
<td>-128.6(4)</td>
</tr>
<tr>
<td>C(1B)-C(2B)-C(3B)-O(1B)</td>
<td>-65.2(5)</td>
</tr>
<tr>
<td>C(1B)-C(2B)-C(3B)-O(2B)</td>
<td>178.6(4)</td>
</tr>
<tr>
<td>C(1B)-C(2B)-C(3B)-C(4B)</td>
<td>56.1(5)</td>
</tr>
<tr>
<td>O(1B)-C(3B)-C(4B)-C(23B)</td>
<td>-48.3(5)</td>
</tr>
<tr>
<td>O(2B)-C(3B)-C(4B)-C(23B)</td>
<td>68.5(5)</td>
</tr>
<tr>
<td>C(2B)-C(3B)-C(4B)-C(23B)</td>
<td>-169.8(4)</td>
</tr>
<tr>
<td>O(1B)-C(3B)-C(4B)-C(5B)</td>
<td>70.9(4)</td>
</tr>
<tr>
<td>O(2B)-C(3B)-C(4B)-C(5B)</td>
<td>-172.4(3)</td>
</tr>
</tbody>
</table>
C(2B)-C(3B)-C(4B)-C(5B) -50.7(5)
O(1B)-C(3B)-C(4B)-C(24B) -165.2(4)
O(2B)-C(3B)-C(4B)-C(24B) -48.5(5)
C(2B)-C(3B)-C(4B)-C(24B) 73.2(5)
C(23B)-C(4B)-C(5B)-C(6B) -60.8(5)
C(3B)-C(4B)-C(5B)-C(6B) -179.0(3)
C(24B)-C(4B)-C(5B)-C(6B) 58.9(5)
C(23B)-C(4B)-C(5B)-C(10B) 168.7(4)
C(3B)-C(4B)-C(5B)-C(10B) 50.5(5)
C(24B)-C(4B)-C(5B)-C(10B) -71.7(5)
C(4B)-C(5B)-C(6B)-C(7B) 162.9(4)
C(10B)-C(5B)-C(6B)-C(7B) -62.5(5)
C(5B)-C(6B)-C(7B)-C(8B) 57.5(5)
C(6B)-C(7B)-C(8B)-C(14B) -169.0(4)
C(6B)-C(7B)-C(8B)-C(26B) 78.0(5)
C(6B)-C(7B)-C(8B)-C(9B) -49.3(5)
C(14B)-C(8B)-C(9B)-C(11B) -56.6(5)
C(7B)-C(8B)-C(9B)-C(11B) -175.9(4)
C(26B)-C(8B)-C(9B)-C(11B) 60.1(5)
C(14B)-C(8B)-C(9B)-C(10B) 169.9(4)
C(7B)-C(8B)-C(9B)-C(10B) 50.6(5)
C(26B)-C(8B)-C(9B)-C(10B) -73.3(5)
C(2B)-C(1B)-C(10B)-C(9B) 167.3(3)
C(2B)-C(1B)-C(10B)-C(25B) -71.0(5)
C(2B)-C(1B)-C(10B)-C(5B) 52.5(5)
<table>
<thead>
<tr>
<th>Bond Sequence</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(11B)-C(9B)-C(10B)-C(1B)</td>
<td>58.8(4)</td>
</tr>
<tr>
<td>C(8B)-C(9B)-C(10B)-C(1B)</td>
<td>-171.1(3)</td>
</tr>
<tr>
<td>C(11B)-C(9B)-C(10B)-C(25B)</td>
<td>-60.1(5)</td>
</tr>
<tr>
<td>C(8B)-C(9B)-C(10B)-C(25B)</td>
<td>70.1(4)</td>
</tr>
<tr>
<td>C(11B)-C(9B)-C(10B)-C(5B)</td>
<td>173.9(3)</td>
</tr>
<tr>
<td>C(8B)-C(9B)-C(10B)-C(5B)</td>
<td>-56.0(4)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-C(10B)-C(1B)</td>
<td>176.3(3)</td>
</tr>
<tr>
<td>C(4B)-C(5B)-C(10B)-C(1B)</td>
<td>-51.0(5)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-C(10B)-C(9B)</td>
<td>60.1(4)</td>
</tr>
<tr>
<td>C(4B)-C(5B)-C(10B)-C(9B)</td>
<td>-167.2(3)</td>
</tr>
<tr>
<td>C(6B)-C(5B)-C(10B)-C(25B)</td>
<td>-64.6(5)</td>
</tr>
<tr>
<td>C(4B)-C(5B)-C(10B)-C(25B)</td>
<td>68.1(5)</td>
</tr>
<tr>
<td>C(10B)-C(9B)-C(11B)-C(12B)</td>
<td>-163.9(4)</td>
</tr>
<tr>
<td>C(8B)-C(9B)-C(11B)-C(12B)</td>
<td>63.1(5)</td>
</tr>
<tr>
<td>C(9B)-C(11B)-C(12B)-C(13B)</td>
<td>-48.4(6)</td>
</tr>
<tr>
<td>C(11B)-C(12B)-C(13B)-C(18B)</td>
<td>-150.8(7)</td>
</tr>
<tr>
<td>C(11B)-C(12B)-C(13B)-C(14B)</td>
<td>28.7(7)</td>
</tr>
<tr>
<td>C(18B)-C(13B)-C(14B)-O(3B)</td>
<td>-22.7(9)</td>
</tr>
<tr>
<td>C(12B)-C(13B)-C(14B)-O(3B)</td>
<td>157.8(5)</td>
</tr>
<tr>
<td>C(18B)-C(13B)-C(14B)-C(8B)</td>
<td>154.2(7)</td>
</tr>
<tr>
<td>C(12B)-C(13B)-C(14B)-C(8B)</td>
<td>-25.3(7)</td>
</tr>
<tr>
<td>C(7B)-C(8B)-C(14B)-O(3B)</td>
<td>-24.7(6)</td>
</tr>
<tr>
<td>C(26B)-C(8B)-C(14B)-O(3B)</td>
<td>92.0(5)</td>
</tr>
<tr>
<td>C(9B)-C(8B)-C(14B)-O(3B)</td>
<td>-144.2(5)</td>
</tr>
<tr>
<td>C(7B)-C(8B)-C(14B)-C(13B)</td>
<td>158.4(4)</td>
</tr>
</tbody>
</table>
C(26B)-C(8B)-C(14B)-C(13B) -84.9(5)
C(9B)-C(8B)-C(14B)-C(13B) 38.9(6)
O(4B)-C(16B)-C(17B)-C(22B) -19(4)
C(15B)-C(16B)-C(17B)-C(22B) 177(2)
C(14B)-C(13B)-C(18B)-C(19B) -178.4(9)
C(12B)-C(13B)-C(18B)-C(19B) 1.0(15)
C(13B)-C(18B)-C(19B)-C(20B) -121.3(11)
C(18B)-C(19B)-C(20B)-C(28B) -56.4(13)
C(18B)-C(19B)-C(20B)-C(21B) 169.8(8)
C(18B)-C(19B)-C(20B)-C(27B) 60.6(10)
C(28B)-C(20B)-C(21B)-C(22B) -94.4(18)
C(19B)-C(20B)-C(21B)-C(22B) 42.5(17)
C(27B)-C(20B)-C(21B)-C(22B) 152.1(15)
C(20B)-C(21B)-C(22B)-C(17B) 176.9(12)
C(16B)-C(17B)-C(22B)-C(21B) -162(2)
C(3B)-O(1B)-C(29B)-C(30B) -30.3(5)
C(3B)-O(2B)-C(30B)-C(29B) -8.2(6)
O(1B)-C(29B)-C(30B)-O(2B) 23.4(6)
C(29C)-O(1C)-C(1C)-C(2C) -113.7(4)
C(29C)-O(1C)-C(1C)-C(4C) 123.3(4)
C(1C)-C(2C)-C(3C)-O(2C) 179.5(3)
C(1C)-C(2C)-C(3C)-O(1C) -64.4(5)
C(1C)-C(2C)-C(3C)-C(4C) 56.8(5)
O(2C)-C(3C)-C(4C)-C(24C) -49.6(5)
O(1C)-C(3C)-C(4C)-C(24C) -166.3(4)
C(2C)-C(3C)-C(4C)-C(24C) 73.4(5)
O(2C)-C(3C)-C(4C)-C(23C) 67.1(4)
O(1C)-C(3C)-C(4C)-C(23C) -49.7(5)
C(2C)-C(3C)-C(4C)-C(23C) -169.9(4)
O(2C)-C(3C)-C(4C)-C(5C) -175.0(3)
O(1C)-C(3C)-C(4C)-C(5C) 68.3(4)
C(2C)-C(3C)-C(4C)-C(5C) -52.0(5)
C(24C)-C(4C)-C(5C)-C(6C) 61.4(4)
C(3C)-C(4C)-C(5C)-C(6C) -175.7(3)
C(23C)-C(4C)-C(5C)-C(6C) -57.8(5)
C(24C)-C(4C)-C(5C)-C(10C) -70.3(4)
C(3C)-C(4C)-C(5C)-C(10C) 52.5(4)
C(23C)-C(4C)-C(5C)-C(10C) 170.4(3)
C(4C)-C(5C)-C(6C)-C(7C) 164.4(3)
C(10C)-C(5C)-C(6C)-C(7C) -60.5(4)
C(5C)-C(6C)-C(7C)-C(8C) 58.1(5)
C(6C)-C(7C)-C(8C)-C(14C) -170.2(3)
C(6C)-C(7C)-C(8C)-C(26C) 76.2(4)
C(6C)-C(7C)-C(8C)-C(9C) -50.9(5)
C(14C)-C(8C)-C(9C)-C(11C) -57.5(4)
C(7C)-C(8C)-C(9C)-C(11C) -177.0(3)
C(26C)-C(8C)-C(9C)-C(11C) 59.3(5)
C(14C)-C(8C)-C(9C)-C(10C) 170.2(3)
C(7C)-C(8C)-C(9C)-C(10C) 50.7(4)
C(26C)-C(8C)-C(9C)-C(10C) -73.0(5)
C(2C)-C(1C)-C(10C)-C(25C) -70.2(4)
C(2C)-C(1C)-C(10C)-C(9C) 169.4(3)
C(2C)-C(1C)-C(10C)-C(5C) 35.3(4)
C(11C)-C(9C)-C(10C)-C(1C) 60.8(4)
C(8C)-C(9C)-C(10C)-C(1C) -169.5(3)
C(11C)-C(9C)-C(10C)-C(25C) -57.6(4)
C(8C)-C(9C)-C(10C)-C(25C) 72.1(4)
C(11C)-C(9C)-C(10C)-C(5C) 176.2(3)
C(8C)-C(9C)-C(10C)-C(5C) -54.0(4)
C(6C)-C(5C)-C(10C)-C(1C) 173.0(3)
C(4C)-C(5C)-C(10C)-C(1C) -53.0(4)
C(6C)-C(5C)-C(10C)-C(25C) -67.3(5)
C(4C)-C(5C)-C(10C)-C(25C) 66.7(5)
C(6C)-C(5C)-C(10C)-C(9C) 57.0(4)
C(4C)-C(5C)-C(10C)-C(9C) -169.0(3)
C(10C)-C(9C)-C(11C)-C(12C) -165.8(3)
C(8C)-C(9C)-C(11C)-C(12C) 61.6(4)
C(9C)-C(11C)-C(12C)-C(13C) -50.5(5)
C(9C)-C(11C)-C(12C)-C(13C) -142.8(5)
C(11C)-C(12C)-C(13C)-C(14C) 37.2(6)
C(18C)-C(13C)-C(14C)-O(3C) -30.4(7)
C(12C)-C(13C)-C(14C)-O(3C) 149.6(4)
C(18C)-C(13C)-C(14C)-C(8C) 144.1(5)
C(12C)-C(13C)-C(14C)-C(8C) -35.9(6)
C(7C)-C(8C)-C(14C)-O(3C) -21.0(5)
C(26C)-C(8C)-C(14C)-O(3C) 95.9(5)
C(9C)-C(8C)-C(14C)-O(3C) -140.4(4)
C(7C)-C(8C)-C(14C)-C(13C) 164.4(4)
C(26C)-C(8C)-C(14C)-C(13C) -78.6(4)
C(9C)-C(8C)-C(14C)-C(13C) 45.0(5)
C(15C)#1-C(15C)-C(16C)-O(4C) 96(3)
C(15C)#1-C(15C)-C(16C)-C(17C) -100.4(16)
O(4C)-C(16C)-C(17C)-C(22C) -7(3)
C(15C)-C(16C)-C(17C)-C(22C) -172.0(18)
C(12C)-C(13C)-C(18C)-C(19C) 3.6(9)
C(14C)-C(13C)-C(18C)-C(19C) -176.3(5)
C(13C)-C(18C)-C(19C)-C(20C) -103.9(7)
C(18C)-C(19C)-C(20C)-C(28C) -56.5(7)
C(18C)-C(19C)-C(20C)-C(21C) -177.5(5)
C(18C)-C(19C)-C(20C)-C(27C) 63.6(7)
C(28C)-C(20C)-C(21C)-C(22C) 54.2(14)
C(27C)-C(20C)-C(21C)-C(22C) -67.0(13)
C(19C)-C(20C)-C(21C)-C(22C) 174.8(12)
C(28C)-C(20C)-C(21C)-C(22D) -175.5(14)
C(27C)-C(20C)-C(21C)-C(22D) 63.4(15)
C(19C)-C(20C)-C(21C)-C(22D) -54.8(15)
C(20C)-C(21C)-C(22C)-C(17C) 175.3(12)
C(16C)-C(17C)-C(22C)-C(21C) -174.8(16)
C(3C)-O(1C)-C(29C)-C(30C) 15.1(6)
C(3C)-O(2C)-C(30C)-C(29C) 32.1(6)
O(1C)-C(29C)-C(30C)-O(2C) -28.8(7)
O(4D)-C(16D)-C(17D)-C(22D) 169(5)
C(15D)-C(16D)-C(17D)-C(22D) -5(4)
C(20C)-C(21C)-C(22D)-C(17D) 178.6(11)
C(16D)-C(17D)-C(22D)-C(21C) -82(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z
Table 7. Hydrogen bonds for C30H48O4 [Å and °].

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th>(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(30B)-H(30D)...O(2C)#2</td>
<td>0.99</td>
<td>2.54</td>
<td>3.505(8)</td>
<td>164.4</td>
</tr>
<tr>
<td>C(15C)-H(15I)...O(4C)#1</td>
<td>0.98</td>
<td>2.55</td>
<td>3.16(4)</td>
<td>120.5</td>
</tr>
<tr>
<td>C(17C)-H(17H)...O(4B)#3</td>
<td>0.99</td>
<td>2.30</td>
<td>3.09(3)</td>
<td>136.5</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z
#2 -x+1,y,-z+1
#3 -x+1,y+1,-z

Single-crystal X-ray data for compound (+)-11:

Table 1 Crystal data and structure refinement for jl1301m.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>jl1301m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{30}H_{46}O_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>454.67</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>119.99</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_{1}</td>
</tr>
<tr>
<td>a/Å</td>
<td>6.1638(15)</td>
</tr>
</tbody>
</table>
Table 2 Fractional Atomic Coordinates (×10^4) and Equivalent Isotropic Displacement Parameters (Å^2×10^3) for j11301m. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{ij} tensor.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3A_1</td>
<td>9781(9)</td>
<td>4420(2)</td>
<td>10357(4)</td>
<td>38.3(14)</td>
</tr>
<tr>
<td>O3B_1</td>
<td>6481(8)</td>
<td>4376(2)</td>
<td>9452(4)</td>
<td>36.6(14)</td>
</tr>
<tr>
<td>O16_1</td>
<td>2087(9)</td>
<td>2460(3)</td>
<td>4749(4)</td>
<td>42.7(15)</td>
</tr>
<tr>
<td>C1_1</td>
<td>8724(13)</td>
<td>4572(3)</td>
<td>8027(5)</td>
<td>32.9(19)</td>
</tr>
<tr>
<td>C2_1</td>
<td>9606(13)</td>
<td>4680(4)</td>
<td>8930(5)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C3_1</td>
<td>8823(12)</td>
<td>4302(4)</td>
<td>9525(5)</td>
<td>32.8(19)</td>
</tr>
<tr>
<td>C4_1</td>
<td>9327(12)</td>
<td>3710(3)</td>
<td>9324(5)</td>
<td>31.8(19)</td>
</tr>
<tr>
<td>C5_1</td>
<td>8552(12)</td>
<td>3611(3)</td>
<td>8386(5)</td>
<td>30.6(18)</td>
</tr>
<tr>
<td>C6_1</td>
<td>8862(13)</td>
<td>3030(3)</td>
<td>8120(6)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C7_1</td>
<td>7589(13)</td>
<td>2918(3)</td>
<td>7264(5)</td>
<td>34(2)</td>
</tr>
<tr>
<td>C8_1</td>
<td>8198(11)</td>
<td>3289(3)</td>
<td>6588(5)</td>
<td>29.4(18)</td>
</tr>
<tr>
<td>C9_1</td>
<td>8027(12)</td>
<td>3877(3)</td>
<td>6894(5)</td>
<td>30.5(18)</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>U</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>C10_1</td>
<td>9359</td>
<td>4000</td>
<td>7772</td>
<td>30.0</td>
</tr>
<tr>
<td>C11_1</td>
<td>8355</td>
<td>4266</td>
<td>6212</td>
<td>35.0</td>
</tr>
<tr>
<td>C12_1</td>
<td>6772</td>
<td>4177</td>
<td>5403</td>
<td>33.3</td>
</tr>
<tr>
<td>C13_1</td>
<td>6995</td>
<td>3607</td>
<td>5086</td>
<td>28.9</td>
</tr>
<tr>
<td>C14_1</td>
<td>6630</td>
<td>3225</td>
<td>5787</td>
<td>32.0</td>
</tr>
<tr>
<td>C15_1</td>
<td>4972</td>
<td>2875</td>
<td>5646</td>
<td>32.7</td>
</tr>
<tr>
<td>C16_1</td>
<td>3344</td>
<td>2848</td>
<td>4890</td>
<td>36</td>
</tr>
<tr>
<td>C17_1</td>
<td>3232</td>
<td>3182</td>
<td>4285</td>
<td>39</td>
</tr>
<tr>
<td>C18_1</td>
<td>5625</td>
<td>3474</td>
<td>4239</td>
<td>32.4</td>
</tr>
<tr>
<td>C19_1</td>
<td>5567</td>
<td>3910</td>
<td>3591</td>
<td>36</td>
</tr>
<tr>
<td>C20_1</td>
<td>4239</td>
<td>3804</td>
<td>2737</td>
<td>35</td>
</tr>
<tr>
<td>C21_1</td>
<td>1903</td>
<td>3635</td>
<td>2831</td>
<td>40</td>
</tr>
<tr>
<td>C22_1</td>
<td>1888</td>
<td>3182</td>
<td>3449</td>
<td>39</td>
</tr>
<tr>
<td>C23_1</td>
<td>8018</td>
<td>3344</td>
<td>9839</td>
<td>38</td>
</tr>
<tr>
<td>C24_1</td>
<td>11761</td>
<td>3588</td>
<td>9646</td>
<td>46</td>
</tr>
<tr>
<td>C25_1</td>
<td>11889</td>
<td>4000</td>
<td>7779</td>
<td>38</td>
</tr>
<tr>
<td>C26_1</td>
<td>10527</td>
<td>3119</td>
<td>6435</td>
<td>38</td>
</tr>
<tr>
<td>C27_1</td>
<td>5279</td>
<td>3373</td>
<td>2280</td>
<td>41</td>
</tr>
<tr>
<td>C28_1</td>
<td>4082</td>
<td>4314</td>
<td>2217</td>
<td>41</td>
</tr>
<tr>
<td>C29_1</td>
<td>8153</td>
<td>4680</td>
<td>10741</td>
<td>56</td>
</tr>
<tr>
<td>C30_1</td>
<td>6062</td>
<td>4535</td>
<td>10233</td>
<td>63</td>
</tr>
<tr>
<td>O3A_2</td>
<td>1562</td>
<td>5461</td>
<td>3420</td>
<td>36.6</td>
</tr>
<tr>
<td>O3B_2</td>
<td>-914</td>
<td>5532</td>
<td>4293</td>
<td>35.5</td>
</tr>
<tr>
<td>O16_2</td>
<td>-1125</td>
<td>7402</td>
<td>8969</td>
<td>45.4</td>
</tr>
<tr>
<td>C1_2</td>
<td>2598</td>
<td>5316</td>
<td>5746</td>
<td>36</td>
</tr>
<tr>
<td>C2_2</td>
<td>2637</td>
<td>5196</td>
<td>4838</td>
<td>34</td>
</tr>
<tr>
<td>C3_2</td>
<td>1373</td>
<td>5587</td>
<td>4243</td>
<td>29.4</td>
</tr>
<tr>
<td>C4_2</td>
<td>2107</td>
<td>6175</td>
<td>4439</td>
<td>29.8</td>
</tr>
<tr>
<td>C5_2</td>
<td>2147</td>
<td>6276</td>
<td>5360</td>
<td>31.2</td>
</tr>
<tr>
<td>C6_2</td>
<td>2722</td>
<td>6851</td>
<td>5625</td>
<td>30.4</td>
</tr>
<tr>
<td>C7_2</td>
<td>2223</td>
<td>6968</td>
<td>6488</td>
<td>31.1</td>
</tr>
<tr>
<td>C8_2</td>
<td>3452</td>
<td>6607</td>
<td>7161</td>
<td>31.5</td>
</tr>
<tr>
<td>C9_2</td>
<td>2988</td>
<td>6013</td>
<td>6868</td>
<td>29.0</td>
</tr>
<tr>
<td>C10_2</td>
<td>3499</td>
<td>5880</td>
<td>6001</td>
<td>29.5</td>
</tr>
<tr>
<td>C11_2</td>
<td>3903</td>
<td>5619</td>
<td>7546</td>
<td>32.8</td>
</tr>
<tr>
<td>C12_2</td>
<td>3141</td>
<td>5730</td>
<td>8370</td>
<td>35</td>
</tr>
<tr>
<td>C13_2</td>
<td>3679</td>
<td>6299</td>
<td>8661</td>
<td>32.0</td>
</tr>
<tr>
<td>C14_2</td>
<td>2658</td>
<td>6664</td>
<td>7977</td>
<td>28.5</td>
</tr>
<tr>
<td>C15_2</td>
<td>1080</td>
<td>7028</td>
<td>8097</td>
<td>31.9</td>
</tr>
<tr>
<td>C16_2</td>
<td>149</td>
<td>7048</td>
<td>8844</td>
<td>39</td>
</tr>
<tr>
<td>C17_2</td>
<td>664</td>
<td>6598</td>
<td>9467</td>
<td>31.3</td>
</tr>
<tr>
<td>C18_2</td>
<td>3134</td>
<td>6453</td>
<td>9520</td>
<td>32.7</td>
</tr>
<tr>
<td>Atom</td>
<td>U11</td>
<td>U22</td>
<td>U33</td>
<td>U23</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>O3A_1</td>
<td>43(3)</td>
<td>34(4)</td>
<td>38(3)</td>
<td>-7(3)</td>
</tr>
<tr>
<td>O3B_1</td>
<td>31(3)</td>
<td>34(4)</td>
<td>45(4)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>O16_1</td>
<td>38(3)</td>
<td>33(4)</td>
<td>57(4)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>C1_1</td>
<td>40(4)</td>
<td>21(5)</td>
<td>38(5)</td>
<td>-2(4)</td>
</tr>
<tr>
<td>C2_1</td>
<td>32(4)</td>
<td>30(5)</td>
<td>46(6)</td>
<td>-4(4)</td>
</tr>
<tr>
<td>C3_1</td>
<td>35(4)</td>
<td>35(5)</td>
<td>27(5)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C4_1</td>
<td>34(4)</td>
<td>25(5)</td>
<td>38(5)</td>
<td>-3(4)</td>
</tr>
<tr>
<td>C5_1</td>
<td>26(4)</td>
<td>26(5)</td>
<td>41(5)</td>
<td>4(4)</td>
</tr>
<tr>
<td>C6_1</td>
<td>30(4)</td>
<td>20(5)</td>
<td>57(6)</td>
<td>3(4)</td>
</tr>
<tr>
<td>C7_1</td>
<td>32(4)</td>
<td>26(5)</td>
<td>44(6)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C8_1</td>
<td>25(4)</td>
<td>23(5)</td>
<td>41(5)</td>
<td>-1(4)</td>
</tr>
<tr>
<td>C9_1</td>
<td>32(4)</td>
<td>29(5)</td>
<td>30(5)</td>
<td>-3(4)</td>
</tr>
<tr>
<td>C10_1</td>
<td>27(4)</td>
<td>22(4)</td>
<td>42(5)</td>
<td>-4(4)</td>
</tr>
<tr>
<td>C11_1</td>
<td>41(4)</td>
<td>20(5)</td>
<td>42(5)</td>
<td>-5(4)</td>
</tr>
<tr>
<td>C12_1</td>
<td>36(4)</td>
<td>26(5)</td>
<td>36(5)</td>
<td>-4(4)</td>
</tr>
<tr>
<td>C13_1</td>
<td>28(4)</td>
<td>25(5)</td>
<td>36(5)</td>
<td>-5(4)</td>
</tr>
<tr>
<td>C14_1</td>
<td>28(4)</td>
<td>27(5)</td>
<td>43(5)</td>
<td>-1(4)</td>
</tr>
<tr>
<td>C15_1</td>
<td>33(4)</td>
<td>22(5)</td>
<td>45(6)</td>
<td>-5(4)</td>
</tr>
<tr>
<td>C16_1</td>
<td>27(4)</td>
<td>31(5)</td>
<td>53(6)</td>
<td>-9(4)</td>
</tr>
<tr>
<td>C17_1</td>
<td>27(4)</td>
<td>35(5)</td>
<td>39(5)</td>
<td>-2(4)</td>
</tr>
<tr>
<td>C18_1</td>
<td>26(4)</td>
<td>27(5)</td>
<td>45(5)</td>
<td>6(4)</td>
</tr>
<tr>
<td>C19_1</td>
<td>31(4)</td>
<td>27(5)</td>
<td>48(6)</td>
<td>1(4)</td>
</tr>
<tr>
<td>C20_1</td>
<td>31(4)</td>
<td>32(5)</td>
<td>44(5)</td>
<td>5(4)</td>
</tr>
<tr>
<td>C21_1</td>
<td>29(4)</td>
<td>36(6)</td>
<td>55(6)</td>
<td>1(4)</td>
</tr>
</tbody>
</table>

Table 3 Anisotropic Displacement Parameters (Å²×10³) for jll301m. The Anisotropic displacement factor exponent takes the form: -2π²[h²a*²U11+2hka*b*U12+...].
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C22_1</td>
<td>33 (4)</td>
<td>36 (6)</td>
<td>47 (6)</td>
<td>0 (4)</td>
<td>4 (4)</td>
<td>-1 (4)</td>
</tr>
<tr>
<td>C23_1</td>
<td>37 (4)</td>
<td>30 (5)</td>
<td>47 (6)</td>
<td>-1 (4)</td>
<td>8 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>C24_1</td>
<td>36 (5)</td>
<td>43 (6)</td>
<td>55 (6)</td>
<td>1 (5)</td>
<td>1 (4)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>C25_1</td>
<td>30 (4)</td>
<td>40 (6)</td>
<td>46 (6)</td>
<td>1 (4)</td>
<td>11 (4)</td>
<td>2 (4)</td>
</tr>
<tr>
<td>C26_1</td>
<td>26 (4)</td>
<td>39 (6)</td>
<td>51 (6)</td>
<td>1 (4)</td>
<td>13 (4)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>C27_1</td>
<td>36 (4)</td>
<td>38 (6)</td>
<td>49 (6)</td>
<td>-3 (4)</td>
<td>8 (4)</td>
<td>7 (4)</td>
</tr>
<tr>
<td>C28_1</td>
<td>45 (5)</td>
<td>25 (5)</td>
<td>53 (6)</td>
<td>1 (4)</td>
<td>13 (4)</td>
<td>-10 (4)</td>
</tr>
<tr>
<td>C29_1</td>
<td>49 (6)</td>
<td>62 (8)</td>
<td>61 (7)</td>
<td>-20 (6)</td>
<td>20 (5)</td>
<td>-4 (5)</td>
</tr>
<tr>
<td>C30_1</td>
<td>41 (5)</td>
<td>92 (10)</td>
<td>53 (7)</td>
<td>-33 (6)</td>
<td>-3 (5)</td>
<td>9 (5)</td>
</tr>
<tr>
<td>O3A_2</td>
<td>31 (3)</td>
<td>33 (4)</td>
<td>44 (4)</td>
<td>-2 (3)</td>
<td>5 (3)</td>
<td>-3 (2)</td>
</tr>
<tr>
<td>O3B_2</td>
<td>22 (3)</td>
<td>36 (4)</td>
<td>47 (4)</td>
<td>-6 (3)</td>
<td>2 (2)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>O16_2</td>
<td>41 (3)</td>
<td>33 (4)</td>
<td>62 (4)</td>
<td>-7 (3)</td>
<td>8 (3)</td>
<td>11 (3)</td>
</tr>
<tr>
<td>C1_2</td>
<td>31 (4)</td>
<td>20 (5)</td>
<td>55 (6)</td>
<td>3 (4)</td>
<td>7 (4)</td>
<td>-1 (3)</td>
</tr>
<tr>
<td>C2_2</td>
<td>41 (5)</td>
<td>24 (5)</td>
<td>39 (5)</td>
<td>-2 (4)</td>
<td>8 (4)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>C3_2</td>
<td>27 (4)</td>
<td>26 (5)</td>
<td>35 (5)</td>
<td>-1 (4)</td>
<td>5 (3)</td>
<td>-1 (3)</td>
</tr>
<tr>
<td>C4_2</td>
<td>26 (4)</td>
<td>23 (5)</td>
<td>42 (5)</td>
<td>2 (4)</td>
<td>10 (3)</td>
<td>-3 (3)</td>
</tr>
<tr>
<td>C5_2</td>
<td>24 (4)</td>
<td>19 (4)</td>
<td>50 (6)</td>
<td>5 (4)</td>
<td>4 (3)</td>
<td>0 (3)</td>
</tr>
<tr>
<td>C6_2</td>
<td>25 (4)</td>
<td>25 (5)</td>
<td>40 (5)</td>
<td>6 (4)</td>
<td>3 (3)</td>
<td>-2 (3)</td>
</tr>
<tr>
<td>C7_2</td>
<td>29 (4)</td>
<td>18 (4)</td>
<td>45 (5)</td>
<td>2 (4)</td>
<td>4 (3)</td>
<td>-5 (3)</td>
</tr>
<tr>
<td>C8_2</td>
<td>28 (4)</td>
<td>23 (5)</td>
<td>43 (5)</td>
<td>-4 (4)</td>
<td>4 (3)</td>
<td>-8 (3)</td>
</tr>
<tr>
<td>C9_2</td>
<td>23 (4)</td>
<td>22 (4)</td>
<td>41 (5)</td>
<td>4 (4)</td>
<td>2 (3)</td>
<td>-3 (3)</td>
</tr>
<tr>
<td>C10_2</td>
<td>26 (4)</td>
<td>18 (4)</td>
<td>43 (5)</td>
<td>2 (3)</td>
<td>3 (3)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>C11_2</td>
<td>34 (4)</td>
<td>24 (5)</td>
<td>39 (5)</td>
<td>6 (4)</td>
<td>2 (3)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>C12_2</td>
<td>35 (4)</td>
<td>30 (5)</td>
<td>37 (5)</td>
<td>4 (4)</td>
<td>-1 (4)</td>
<td>-1 (3)</td>
</tr>
<tr>
<td>C13_2</td>
<td>29 (4)</td>
<td>32 (5)</td>
<td>35 (5)</td>
<td>5 (4)</td>
<td>5 (3)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>C14_2</td>
<td>32 (4)</td>
<td>23 (5)</td>
<td>32 (5)</td>
<td>-8 (3)</td>
<td>9 (3)</td>
<td>-9 (3)</td>
</tr>
<tr>
<td>C15_2</td>
<td>31 (4)</td>
<td>28 (5)</td>
<td>37 (5)</td>
<td>3 (4)</td>
<td>5 (3)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>C16_2</td>
<td>28 (4)</td>
<td>32 (5)</td>
<td>55 (6)</td>
<td>-7 (4)</td>
<td>3 (4)</td>
<td>0 (3)</td>
</tr>
<tr>
<td>C17_2</td>
<td>28 (4)</td>
<td>28 (5)</td>
<td>37 (5)</td>
<td>1 (4)</td>
<td>3 (3)</td>
<td>-1 (3)</td>
</tr>
<tr>
<td>C18_2</td>
<td>27 (4)</td>
<td>31 (5)</td>
<td>39 (5)</td>
<td>0 (4)</td>
<td>3 (3)</td>
<td>0 (3)</td>
</tr>
<tr>
<td>C19_2</td>
<td>35 (4)</td>
<td>46 (6)</td>
<td>38 (5)</td>
<td>2 (4)</td>
<td>6 (4)</td>
<td>0 (4)</td>
</tr>
<tr>
<td>C20_2</td>
<td>36 (4)</td>
<td>38 (6)</td>
<td>44 (6)</td>
<td>-2 (4)</td>
<td>2 (4)</td>
<td>-1 (4)</td>
</tr>
<tr>
<td>C21_2</td>
<td>29 (4)</td>
<td>41 (6)</td>
<td>55 (6)</td>
<td>-2 (5)</td>
<td>10 (4)</td>
<td>-1 (4)</td>
</tr>
<tr>
<td>C22_2</td>
<td>36 (4)</td>
<td>36 (6)</td>
<td>49 (6)</td>
<td>-3 (4)</td>
<td>6 (4)</td>
<td>9 (4)</td>
</tr>
<tr>
<td>C23_2</td>
<td>35 (4)</td>
<td>23 (5)</td>
<td>47 (6)</td>
<td>2 (4)</td>
<td>7 (4)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>C24_2</td>
<td>31 (4)</td>
<td>37 (5)</td>
<td>50 (6)</td>
<td>0 (4)</td>
<td>15 (4)</td>
<td>-1 (4)</td>
</tr>
<tr>
<td>C25_2</td>
<td>33 (4)</td>
<td>37 (5)</td>
<td>41 (5)</td>
<td>-1 (4)</td>
<td>4 (4)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>C26_2</td>
<td>30 (4)</td>
<td>22 (5)</td>
<td>60 (6)</td>
<td>6 (4)</td>
<td>5 (4)</td>
<td>-4 (3)</td>
</tr>
<tr>
<td>C27_2</td>
<td>48 (5)</td>
<td>47 (6)</td>
<td>48 (6)</td>
<td>-4 (5)</td>
<td>14 (4)</td>
<td>-4 (4)</td>
</tr>
<tr>
<td>C28_2</td>
<td>52 (5)</td>
<td>51 (7)</td>
<td>39 (6)</td>
<td>7 (5)</td>
<td>7 (4)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>C29_2</td>
<td>38 (5)</td>
<td>62 (8)</td>
<td>77 (8)</td>
<td>-8 (6)</td>
<td>16 (5)</td>
<td>-2 (5)</td>
</tr>
<tr>
<td>C30_2</td>
<td>59 (7)</td>
<td>113 (12)</td>
<td>65 (8)</td>
<td>-47 (8)</td>
<td>21 (6)</td>
<td>-26 (7)</td>
</tr>
</tbody>
</table>
Table 4 Bond Lengths for jll301m.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
<th>Atom</th>
<th>Atom</th>
<th>Length/Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3A_1 C3_1</td>
<td>1.415 (9)</td>
<td>O3A_2 C3_2</td>
<td>1.410 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3A_1 C29_1</td>
<td>1.434 (10)</td>
<td>O3A_2 C29_2</td>
<td>1.407 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B_1 C3_1</td>
<td>1.439 (9)</td>
<td>O3B_2 C3_2</td>
<td>1.433 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3B_1 C30_1</td>
<td>1.408 (11)</td>
<td>O3B_2 C30_2</td>
<td>1.392 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O16_1 C16_1</td>
<td>1.238 (10)</td>
<td>O16_2 C16_2</td>
<td>1.225 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1_1 C2_1</td>
<td>1.506 (11)</td>
<td>C1_2 C2_2</td>
<td>1.523 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1_1 C10_1</td>
<td>1.563 (11)</td>
<td>C1_2 C10_2</td>
<td>1.548 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2_1 C3_1</td>
<td>1.502 (12)</td>
<td>C2_2 C3_2</td>
<td>1.498 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3_1 C4_1</td>
<td>1.563 (12)</td>
<td>C3_2 C4_2</td>
<td>1.559 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4_1 C5_1</td>
<td>1.545 (11)</td>
<td>C4_2 C5_2</td>
<td>1.527 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4_1 C23_1</td>
<td>1.565 (12)</td>
<td>C4_2 C23_2</td>
<td>1.535 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4_1 C24_1</td>
<td>1.529 (11)</td>
<td>C4_2 C24_2</td>
<td>1.530 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5_1 C6_1</td>
<td>1.544 (12)</td>
<td>C5_2 C6_2</td>
<td>1.528 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5_1 C10_1</td>
<td>1.548 (11)</td>
<td>C5_2 C10_2</td>
<td>1.569 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6_1 C7_1</td>
<td>1.504 (11)</td>
<td>C6_2 C7_2</td>
<td>1.531 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7_1 C8_1</td>
<td>1.546 (11)</td>
<td>C7_2 C8_2</td>
<td>1.518 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8_1 C9_1</td>
<td>1.566 (11)</td>
<td>C8_2 C9_2</td>
<td>1.574 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8_1 C14_1</td>
<td>1.490 (11)</td>
<td>C8_2 C14_2</td>
<td>1.513 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8_1 C26_1</td>
<td>1.561 (10)</td>
<td>C8_2 C26_2</td>
<td>1.550 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9_1 C10_1</td>
<td>1.553 (11)</td>
<td>C9_2 C10_2</td>
<td>1.547 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9_1 C11_1</td>
<td>1.524 (12)</td>
<td>C9_2 C11_2</td>
<td>1.516 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10_1 C25_1</td>
<td>1.558 (10)</td>
<td>C10_2 C25_2</td>
<td>1.546 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11_1 C12_1</td>
<td>1.514 (11)</td>
<td>C11_2 C12_2</td>
<td>1.534 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12_1 C13_1</td>
<td>1.535 (11)</td>
<td>C12_2 C13_2</td>
<td>1.520 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13_1 C14_1</td>
<td>1.543 (11)</td>
<td>C13_2 C14_2</td>
<td>1.494 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C13_1 C18_1</td>
<td>1.525 (11)</td>
<td>C13_2 C18_2</td>
<td>1.556 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14_1 C15_1</td>
<td>1.334 (11)</td>
<td>C14_2 C15_2</td>
<td>1.374 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15_1 C16_1</td>
<td>1.448 (12)</td>
<td>C15_2 C16_2</td>
<td>1.445 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C16_1 C17_1</td>
<td>1.508 (12)</td>
<td>C16_2 C17_2</td>
<td>1.516 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17_1 C18_1</td>
<td>1.550 (10)</td>
<td>C17_2 C18_2</td>
<td>1.552 (10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C17_1 C22_1</td>
<td>1.499 (11)</td>
<td>C17_2 C22_2</td>
<td>1.519 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18_1 C19_1</td>
<td>1.519 (11)</td>
<td>C18_2 C19_2</td>
<td>1.518 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C19_1 C20_1</td>
<td>1.511 (11)</td>
<td>C19_2 C20_2</td>
<td>1.514 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20_1 C21_1</td>
<td>1.535 (11)</td>
<td>C20_2 C21_2</td>
<td>1.544 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20_1 C27_1</td>
<td>1.521 (12)</td>
<td>C20_2 C27_2</td>
<td>1.532 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C20_1 C28_1</td>
<td>1.530 (12)</td>
<td>C20_2 C28_2</td>
<td>1.519 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21_1 C22_1</td>
<td>1.523 (13)</td>
<td>C21_2 C22_2</td>
<td>1.509 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29_1 C30_1</td>
<td>1.448 (13)</td>
<td>C29_2 C30_2</td>
<td>1.449 (13)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 Bond Angles for jl1301m.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
<th>Atom</th>
<th>Atom</th>
<th>Atom</th>
<th>Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3_1</td>
<td>O3A_1</td>
<td>C29_1</td>
<td>108.4 (6)</td>
<td>C29_2</td>
<td>O3A_2</td>
<td>C3_2</td>
<td>110.0 (6)</td>
</tr>
<tr>
<td>C30_1</td>
<td>O3B_1</td>
<td>C3_1</td>
<td>107.9 (6)</td>
<td>C30_2</td>
<td>O3B_2</td>
<td>C3_2</td>
<td>107.7 (7)</td>
</tr>
<tr>
<td>C2_1</td>
<td>C1_1</td>
<td>C10_1</td>
<td>111.4 (7)</td>
<td>C2_2</td>
<td>C1_2</td>
<td>C10_2</td>
<td>112.2 (7)</td>
</tr>
<tr>
<td>C3_1</td>
<td>C2_1</td>
<td>C1_1</td>
<td>115.1 (7)</td>
<td>C3_2</td>
<td>C2_2</td>
<td>C1_2</td>
<td>114.1 (7)</td>
</tr>
<tr>
<td>O3A_1</td>
<td>C3_1</td>
<td>O3B_1</td>
<td>106.9 (6)</td>
<td>O3A_2</td>
<td>C3_2</td>
<td>O3B_2</td>
<td>106.6 (6)</td>
</tr>
<tr>
<td>O3A_1</td>
<td>C3_1</td>
<td>C2_1</td>
<td>111.5 (7)</td>
<td>O3A_2</td>
<td>C3_2</td>
<td>C2_2</td>
<td>110.8 (6)</td>
</tr>
<tr>
<td>O3A_1</td>
<td>C3_1</td>
<td>C4_1</td>
<td>109.7 (6)</td>
<td>O3A_2</td>
<td>C3_2</td>
<td>C4_2</td>
<td>109.7 (6)</td>
</tr>
<tr>
<td>C2_1</td>
<td>C3_1</td>
<td>C4_1</td>
<td>111.2 (7)</td>
<td>C2_2</td>
<td>C3_2</td>
<td>C4_2</td>
<td>112.7 (7)</td>
</tr>
<tr>
<td>C3_1</td>
<td>C4_1</td>
<td>C23_1</td>
<td>107.5 (6)</td>
<td>C5_2</td>
<td>C4_2</td>
<td>C3_2</td>
<td>108.2 (6)</td>
</tr>
<tr>
<td>C5_1</td>
<td>C4_1</td>
<td>C3_1</td>
<td>108.9 (6)</td>
<td>C5_2</td>
<td>C4_2</td>
<td>C23_2</td>
<td>109.8 (6)</td>
</tr>
<tr>
<td>C5_1</td>
<td>C4_1</td>
<td>C23_1</td>
<td>110.3 (7)</td>
<td>C5_2</td>
<td>C4_2</td>
<td>C24_2</td>
<td>113.9 (6)</td>
</tr>
<tr>
<td>C24_1</td>
<td>C4_1</td>
<td>C3_1</td>
<td>109.8 (7)</td>
<td>C23_2</td>
<td>C4_2</td>
<td>C3_2</td>
<td>108.2 (6)</td>
</tr>
<tr>
<td>C24_1</td>
<td>C4_1</td>
<td>C5_1</td>
<td>114.7 (7)</td>
<td>C24_2</td>
<td>C4_2</td>
<td>C3_2</td>
<td>109.6 (6)</td>
</tr>
<tr>
<td>C24_1</td>
<td>C4_1</td>
<td>C23_1</td>
<td>105.4 (7)</td>
<td>C24_2</td>
<td>C4_2</td>
<td>C23_2</td>
<td>107.0 (7)</td>
</tr>
<tr>
<td>C4_1</td>
<td>C5_1</td>
<td>C10_1</td>
<td>118.0 (6)</td>
<td>C4_2</td>
<td>C5_2</td>
<td>C6_2</td>
<td>113.4 (6)</td>
</tr>
<tr>
<td>C6_1</td>
<td>C5_1</td>
<td>C4_1</td>
<td>113.6 (6)</td>
<td>C4_2</td>
<td>C5_2</td>
<td>C10_2</td>
<td>118.0 (6)</td>
</tr>
<tr>
<td>C6_1</td>
<td>C5_1</td>
<td>C10_1</td>
<td>109.8 (6)</td>
<td>C6_2</td>
<td>C5_2</td>
<td>C10_2</td>
<td>109.8 (6)</td>
</tr>
<tr>
<td>C7_1</td>
<td>C6_1</td>
<td>C5_1</td>
<td>111.7 (7)</td>
<td>C5_2</td>
<td>C6_2</td>
<td>C7_2</td>
<td>111.6 (6)</td>
</tr>
<tr>
<td>C6_1</td>
<td>C7_1</td>
<td>C8_1</td>
<td>113.8 (7)</td>
<td>C8_2</td>
<td>C7_2</td>
<td>C6_2</td>
<td>113.6 (7)</td>
</tr>
<tr>
<td>C7_1</td>
<td>C8_1</td>
<td>C9_1</td>
<td>107.3 (6)</td>
<td>C7_2</td>
<td>C8_2</td>
<td>C9_2</td>
<td>107.7 (6)</td>
</tr>
<tr>
<td>C7_1</td>
<td>C8_1</td>
<td>C26_1</td>
<td>107.5 (6)</td>
<td>C7_2</td>
<td>C8_2</td>
<td>C26_2</td>
<td>109.0 (6)</td>
</tr>
<tr>
<td>C14_1</td>
<td>C8_1</td>
<td>C7_1</td>
<td>111.4 (6)</td>
<td>C14_2</td>
<td>C8_2</td>
<td>C7_2</td>
<td>112.7 (7)</td>
</tr>
<tr>
<td>C14_1</td>
<td>C8_1</td>
<td>C9_1</td>
<td>108.2 (6)</td>
<td>C14_2</td>
<td>C8_2</td>
<td>C9_2</td>
<td>106.8 (6)</td>
</tr>
<tr>
<td>C14_1</td>
<td>C8_1</td>
<td>C26_1</td>
<td>107.3 (6)</td>
<td>C14_2</td>
<td>C8_2</td>
<td>C26_2</td>
<td>106.5 (6)</td>
</tr>
<tr>
<td>C26_1</td>
<td>C8_1</td>
<td>C9_1</td>
<td>115.2 (6)</td>
<td>C26_2</td>
<td>C8_2</td>
<td>C9_2</td>
<td>114.3 (6)</td>
</tr>
<tr>
<td>C10_1</td>
<td>C9_1</td>
<td>C8_1</td>
<td>115.4 (6)</td>
<td>C10_2</td>
<td>C9_2</td>
<td>C8_2</td>
<td>115.2 (6)</td>
</tr>
<tr>
<td>C11_1</td>
<td>C9_1</td>
<td>C8_1</td>
<td>109.9 (6)</td>
<td>C11_2</td>
<td>C9_2</td>
<td>C8_2</td>
<td>111.6 (7)</td>
</tr>
<tr>
<td>C11_1</td>
<td>C9_1</td>
<td>C10_1</td>
<td>115.8 (7)</td>
<td>C11_2</td>
<td>C9_2</td>
<td>C10_2</td>
<td>115.1 (7)</td>
</tr>
<tr>
<td>C5_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>106.0 (6)</td>
<td>C1_2</td>
<td>C10_2</td>
<td>C5_2</td>
<td>105.9 (6)</td>
</tr>
<tr>
<td>C5_1</td>
<td>C10_1</td>
<td>C9_1</td>
<td>107.5 (6)</td>
<td>C9_2</td>
<td>C10_2</td>
<td>C1_2</td>
<td>108.7 (6)</td>
</tr>
<tr>
<td>C5_1</td>
<td>C10_1</td>
<td>C25_1</td>
<td>115.8 (7)</td>
<td>C9_2</td>
<td>C10_2</td>
<td>C5_2</td>
<td>108.0 (6)</td>
</tr>
<tr>
<td>C9_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>108.4 (6)</td>
<td>C25_2</td>
<td>C10_2</td>
<td>C1_2</td>
<td>108.0 (6)</td>
</tr>
<tr>
<td>C9_1</td>
<td>C10_1</td>
<td>C25_1</td>
<td>111.6 (6)</td>
<td>C25_2</td>
<td>C10_2</td>
<td>C5_2</td>
<td>113.9 (7)</td>
</tr>
<tr>
<td>C25_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>107.3 (7)</td>
<td>C25_2</td>
<td>C10_2</td>
<td>C9_2</td>
<td>112.2 (6)</td>
</tr>
<tr>
<td>C12_1</td>
<td>C11_1</td>
<td>C9_1</td>
<td>113.5 (7)</td>
<td>C9_2</td>
<td>C11_2</td>
<td>C12_2</td>
<td>113.3 (7)</td>
</tr>
<tr>
<td>C11_1</td>
<td>C12_1</td>
<td>C13_1</td>
<td>110.5 (7)</td>
<td>C13_2</td>
<td>C12_2</td>
<td>C11_2</td>
<td>111.2 (7)</td>
</tr>
</tbody>
</table>
Table 6 Torsion Angles for j1l301m.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>Angle/°</td>
<td>A</td>
</tr>
<tr>
<td>O3A_1C3_1</td>
<td>C4_1</td>
<td>C5_1</td>
<td>-172.3(6)</td>
<td>O3A_2C3_2</td>
<td>C4_2</td>
<td>C5_2</td>
</tr>
<tr>
<td>O3A_1C3_1</td>
<td>C4_1</td>
<td>C23_1</td>
<td>68.3(8)</td>
<td>O3A_2C3_2</td>
<td>C4_2</td>
<td>C23_2</td>
</tr>
<tr>
<td>O3A_1C3_1</td>
<td>C4_1</td>
<td>C24_1</td>
<td>-45.9(9)</td>
<td>O3A_2C3_2</td>
<td>C4_2</td>
<td>C24_2</td>
</tr>
<tr>
<td>O3A_1C29_1</td>
<td>C30_1</td>
<td>O3B_1</td>
<td>-20.7(12)</td>
<td>O3A_2C29_2</td>
<td>C30_2</td>
<td>O3B_2</td>
</tr>
<tr>
<td>O3B_1C3_1</td>
<td>C4_1</td>
<td>C5_1</td>
<td>70.5(7)</td>
<td>O3B_2C3_2</td>
<td>C4_2</td>
<td>C5_2</td>
</tr>
<tr>
<td>O3B_1C3_1</td>
<td>C4_1</td>
<td>C23_1</td>
<td>-49.0(8)</td>
<td>O3B_2C3_2</td>
<td>C4_2</td>
<td>C23_2</td>
</tr>
<tr>
<td>O3B_1C3_1</td>
<td>C4_1</td>
<td>C24_1</td>
<td>-163.1(7)</td>
<td>O3B_2C3_2</td>
<td>C4_2</td>
<td>C24_2</td>
</tr>
<tr>
<td>O16_1C16_1</td>
<td>C17_1</td>
<td>C18_1</td>
<td>-139.1(8)</td>
<td>O16_2C16_2</td>
<td>C17_2</td>
<td>C18_2</td>
</tr>
<tr>
<td>O16_1C16_1</td>
<td>C17_1</td>
<td>C22_1</td>
<td>-13.5(11)</td>
<td>O16_2C16_2</td>
<td>C17_2</td>
<td>C22_2</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C3_1</td>
<td>O3A_1</td>
<td>178.1(7)</td>
<td>C1_2</td>
<td>C2_2</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C3_1</td>
<td>O3B_1</td>
<td>C1_2</td>
<td>C2_2</td>
<td>C3_2</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>-65.1(9)</td>
<td>-55.3(9)</td>
<td>-53.9(8)</td>
<td>-169.0(8)</td>
<td>-70.4(8)</td>
<td>-66.3(8)</td>
<td>-54.2(9)</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C4_1</td>
<td>C5_1</td>
<td>C2_2</td>
<td>C3_2</td>
<td>C4_2</td>
</tr>
<tr>
<td>55.3(9)</td>
<td>165.6(6)</td>
<td>-169.9(6)</td>
<td>64.7(9)</td>
<td>-67.8(8)</td>
<td>57.6(9)</td>
<td>173.4(6)</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C7_1</td>
<td>C8_1</td>
<td>C10_1</td>
<td>C11_1</td>
<td>C12_1</td>
</tr>
<tr>
<td>-57.4(8)</td>
<td>70.5(8)</td>
<td>55.8(9)</td>
<td>70.4(8)</td>
<td>-121.0(8)</td>
<td>-171.6(6)</td>
<td>-171.2(6)</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>C10_1</td>
<td>C11_1</td>
<td>C12_1</td>
</tr>
<tr>
<td>-59.1(9)</td>
<td>-59.7(8)</td>
<td>-171.6(6)</td>
<td>-58.1(9)</td>
<td>-58.9(8)</td>
<td>-171.2(6)</td>
<td>-58.9(8)</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>C10_1</td>
<td>C11_1</td>
<td>C12_1</td>
</tr>
<tr>
<td>-58.1(9)</td>
<td>-59.1(9)</td>
<td>-171.2(6)</td>
<td>-58.1(9)</td>
<td>-59.1(9)</td>
<td>-171.2(6)</td>
<td>-59.7(8)</td>
</tr>
<tr>
<td>C1_1</td>
<td>C2_1</td>
<td>C10_1</td>
<td>C1_1</td>
<td>C10_1</td>
<td>C11_1</td>
<td>C12_1</td>
</tr>
<tr>
<td>-59.1(9)</td>
<td>-59.7(8)</td>
<td>-171.2(6)</td>
<td>-58.1(9)</td>
<td>-59.1(9)</td>
<td>-171.2(6)</td>
<td>-59.7(8)</td>
</tr>
</tbody>
</table>

S90
<table>
<thead>
<tr>
<th>C11_1 C12_1 C13_1 C18_1</th>
<th>-175.3(6)</th>
<th>C11_2 C12_2 C13_2 C18_2</th>
<th>-176.0(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12_1 C13_1 C14_1 C8_1</td>
<td>-59.4(8)</td>
<td>C12_2 C13_2 C14_2 C8_2</td>
<td>-61.1(8)</td>
</tr>
<tr>
<td>C12_1 C13_1 C14_1 C15_1</td>
<td>119.8(8)</td>
<td>C12_2 C13_2 C14_2 C15_2</td>
<td>118.7(8)</td>
</tr>
<tr>
<td>C12_1 C13_1 C18_1 C17_1</td>
<td>-84.5(8)</td>
<td>C12_2 C13_2 C18_2 C17_2</td>
<td>-81.4(8)</td>
</tr>
<tr>
<td>C12_1 C13_1 C18_1 C19_1</td>
<td>41.5(9)</td>
<td>C12_2 C13_2 C18_2 C19_2</td>
<td>43.4(9)</td>
</tr>
<tr>
<td>C13_1 C14_1 C15_1 C16_1</td>
<td>-4.8(12)</td>
<td>C13_2 C14_2 C15_2 C16_2</td>
<td>-6.4(12)</td>
</tr>
<tr>
<td>C14_1 C13_1 C18_1 C17_1</td>
<td>166.9(6)</td>
<td>C14_2 C13_2 C18_2 C17_2</td>
<td>169.0(6)</td>
</tr>
<tr>
<td>C14_1 C13_1 C18_1 C19_1</td>
<td>167.8(8)</td>
<td>C14_2 C13_2 C18_2 C19_2</td>
<td>174.0(8)</td>
</tr>
<tr>
<td>C14_1 C15_1 C16_1 C17_1</td>
<td>-12.2(12)</td>
<td>C14_2 C15_2 C16_2 C17_2</td>
<td>-9.7(12)</td>
</tr>
<tr>
<td>C15_1 C16_1 C17_1 C18_1</td>
<td>40.9(10)</td>
<td>C15_2 C16_2 C17_2 C18_2</td>
<td>40.5(10)</td>
</tr>
<tr>
<td>C15_1 C16_1 C17_1 C22_1</td>
<td>166.5(7)</td>
<td>C15_2 C16_2 C17_2 C22_2</td>
<td>165.1(7)</td>
</tr>
<tr>
<td>C16_1 C17_1 C18_1 C13_1</td>
<td>-54.7(9)</td>
<td>C16_2 C17_2 C18_2 C13_2</td>
<td>-56.9(9)</td>
</tr>
<tr>
<td>C16_1 C17_1 C18_1 C19_1</td>
<td>176.3(7)</td>
<td>C16_2 C17_2 C18_2 C19_2</td>
<td>176.3(7)</td>
</tr>
<tr>
<td>C16_1 C17_1 C22_1 C21_1</td>
<td>-176.6(7)</td>
<td>C16_2 C17_2 C22_2 C21_2</td>
<td>-174.8(7)</td>
</tr>
<tr>
<td>C17_1 C18_1 C19_1 C20_1</td>
<td>-52.0(10)</td>
<td>C17_2 C18_2 C19_2 C20_2</td>
<td>-53.5(10)</td>
</tr>
<tr>
<td>C18_1 C13_1 C14_1 C8_1</td>
<td>170.4(6)</td>
<td>C18_2 C13_2 C14_2 C8_2</td>
<td>168.7(6)</td>
</tr>
<tr>
<td>C18_1 C13_1 C14_1 C15_1</td>
<td>-10.3(10)</td>
<td>C18_2 C13_2 C14_2 C15_2</td>
<td>-11.5(10)</td>
</tr>
<tr>
<td>C18_1 C17_1 C22_1 C21_1</td>
<td>-53.5(9)</td>
<td>C18_2 C17_2 C22_2 C21_2</td>
<td>-53.1(10)</td>
</tr>
<tr>
<td>C18_1 C19_1 C20_1 C21_1</td>
<td>52.6(9)</td>
<td>C18_2 C19_2 C20_2 C21_2</td>
<td>53.8(10)</td>
</tr>
<tr>
<td>C18_1 C19_1 C20_1 C27_1</td>
<td>-68.8(10)</td>
<td>C18_2 C19_2 C20_2 C27_2</td>
<td>-67.4(10)</td>
</tr>
<tr>
<td>C18_1 C19_1 C20_1 C28_1</td>
<td>171.2(7)</td>
<td>C18_2 C19_2 C20_2 C28_2</td>
<td>173.1(7)</td>
</tr>
<tr>
<td>C19_1 C20_1 C21_1 C22_1</td>
<td>-51.7(10)</td>
<td>C19_2 C20_2 C21_2 C22_2</td>
<td>-53.0(10)</td>
</tr>
<tr>
<td>C20_1 C21_1 C22_1 C17_1</td>
<td>54.8(10)</td>
<td>C20_2 C21_2 C22_2 C17_2</td>
<td>54.6(10)</td>
</tr>
<tr>
<td>C22_1 C17_1 C18_1 C13_1</td>
<td>179.3(7)</td>
<td>C22_2 C17_2 C18_2 C13_2</td>
<td>177.9(7)</td>
</tr>
<tr>
<td>C22_1 C17_1 C18_1 C19_1</td>
<td>50.2(9)</td>
<td>C22_2 C17_2 C18_2 C19_2</td>
<td>51.0(10)</td>
</tr>
<tr>
<td>C23_1 C4_1 C5_1 C6_1</td>
<td>-59.5(8)</td>
<td>C23_2 C4_2 C5_2 C6_2</td>
<td>-59.0(8)</td>
</tr>
<tr>
<td>C23_1 C4_1 C5_1 C10_1</td>
<td>169.8(6)</td>
<td>C23_2 C4_2 C5_2 C10_2</td>
<td>170.7(6)</td>
</tr>
<tr>
<td>C24_1 C4_1 C5_1 C6_1</td>
<td>59.4(9)</td>
<td>C24_2 C4_2 C5_2 C6_2</td>
<td>61.0(9)</td>
</tr>
<tr>
<td>C24_1 C4_1 C5_1 C10_1</td>
<td>-71.3(9)</td>
<td>C24_2 C4_2 C5_2 C10_2</td>
<td>-69.3(9)</td>
</tr>
<tr>
<td>C26_1 C8_1 C9_1 C10_1</td>
<td>-66.5(9)</td>
<td>C26_2 C8_2 C9_2 C10_2</td>
<td>-67.5(9)</td>
</tr>
<tr>
<td>C26_1 C8_1 C9_1 C11_1</td>
<td>66.7(9)</td>
<td>C26_2 C8_2 C9_2 C11_2</td>
<td>66.2(9)</td>
</tr>
<tr>
<td>C26_1 C8_1 C14_1 C13_1</td>
<td>-66.7(8)</td>
<td>C26_2 C8_2 C14_2 C13_2</td>
<td>-64.2(8)</td>
</tr>
<tr>
<td>C26_1 C8_1 C14_1 C15_1</td>
<td>114.1(8)</td>
<td>C26_2 C8_2 C14_2 C15_2</td>
<td>116.0(8)</td>
</tr>
<tr>
<td>C27_1 C20_1 C21_1 C22_1</td>
<td>71.1(10)</td>
<td>C27_2 C20_2 C21_2 C22_2</td>
<td>69.1(10)</td>
</tr>
<tr>
<td>C28_1 C20_1 C21_1 C22_1</td>
<td>-170.9(8)</td>
<td>C28_2 C20_2 C21_2 C22_2</td>
<td>-172.8(8)</td>
</tr>
<tr>
<td>C29_1 O3A_1 C3_1 O3B_1</td>
<td>-13.0(9)</td>
<td>C29_2 O3A_2 C3_2 O3B_2</td>
<td>-10.2(9)</td>
</tr>
<tr>
<td>C29_1 O3A_1 C3_1 C2_1</td>
<td>104.2(8)</td>
<td>C29_2 O3A_2 C3_2 C2_2</td>
<td>106.4(8)</td>
</tr>
<tr>
<td>C29_1 O3A_1 C3_1 C4_1</td>
<td>-132.1(7)</td>
<td>C29_2 O3A_2 C3_2 C4_2</td>
<td>-128.4(7)</td>
</tr>
<tr>
<td>Atom</td>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H1A_1</td>
<td>9326</td>
<td>4840</td>
<td>7685</td>
</tr>
<tr>
<td>H1B_1</td>
<td>7098</td>
<td>4609</td>
<td>7920</td>
</tr>
<tr>
<td>H2A_1</td>
<td>11237</td>
<td>4666</td>
<td>9021</td>
</tr>
<tr>
<td>H2B_1</td>
<td>9184</td>
<td>5047</td>
<td>9061</td>
</tr>
<tr>
<td>H5_1</td>
<td>6917</td>
<td>3663</td>
<td>8293</td>
</tr>
<tr>
<td>H6A_1</td>
<td>10449</td>
<td>2962</td>
<td>8130</td>
</tr>
<tr>
<td>H6B_1</td>
<td>8361</td>
<td>2784</td>
<td>8520</td>
</tr>
<tr>
<td>H7A_1</td>
<td>5994</td>
<td>2955</td>
<td>7272</td>
</tr>
<tr>
<td>H7B_1</td>
<td>7858</td>
<td>2543</td>
<td>7117</td>
</tr>
<tr>
<td>H9_1</td>
<td>6447</td>
<td>3921</td>
<td>6948</td>
</tr>
<tr>
<td>H11A_1</td>
<td>8169</td>
<td>4635</td>
<td>6405</td>
</tr>
<tr>
<td>H11B_1</td>
<td>9885</td>
<td>4231</td>
<td>6111</td>
</tr>
<tr>
<td>H12A_1</td>
<td>7088</td>
<td>4436</td>
<td>4984</td>
</tr>
<tr>
<td>H12B_1</td>
<td>5240</td>
<td>4237</td>
<td>5488</td>
</tr>
<tr>
<td>H13_1</td>
<td>8573</td>
<td>3564</td>
<td>5030</td>
</tr>
<tr>
<td>H15_1</td>
<td>4850</td>
<td>2626</td>
<td>6072</td>
</tr>
<tr>
<td>H17_1</td>
<td>2512</td>
<td>3612</td>
<td>4520</td>
</tr>
<tr>
<td>H18_1</td>
<td>6341</td>
<td>3157</td>
<td>4028</td>
</tr>
<tr>
<td>H19A_1</td>
<td>4980</td>
<td>4238</td>
<td>3808</td>
</tr>
<tr>
<td>H19B_1</td>
<td>7105</td>
<td>3986</td>
<td>3530</td>
</tr>
<tr>
<td>H21A_1</td>
<td>1130</td>
<td>3947</td>
<td>3014</td>
</tr>
<tr>
<td>H21B_1</td>
<td>1078</td>
<td>3521</td>
<td>2284</td>
</tr>
<tr>
<td>H22A_1</td>
<td>347</td>
<td>3109</td>
<td>3511</td>
</tr>
<tr>
<td>H22B_1</td>
<td>2474</td>
<td>2855</td>
<td>3229</td>
</tr>
<tr>
<td>H23A_1</td>
<td>8497</td>
<td>2973</td>
<td>9803</td>
</tr>
<tr>
<td>H23B_1</td>
<td>6436</td>
<td>3371</td>
<td>9615</td>
</tr>
<tr>
<td>H23C_1</td>
<td>8303</td>
<td>3459</td>
<td>10420</td>
</tr>
<tr>
<td>H24A_1</td>
<td>12679</td>
<td>3845</td>
<td>9413</td>
</tr>
<tr>
<td>H24B_1</td>
<td>12098</td>
<td>3226</td>
<td>9478</td>
</tr>
<tr>
<td>H24C_1</td>
<td>12068</td>
<td>3613</td>
<td>10252</td>
</tr>
<tr>
<td>H25A_1</td>
<td>12468</td>
<td>3638</td>
<td>7885</td>
</tr>
<tr>
<td>H25B_1</td>
<td>12622</td>
<td>4240</td>
<td>8216</td>
</tr>
<tr>
<td>H25C_1</td>
<td>12170</td>
<td>4124</td>
<td>7241</td>
</tr>
<tr>
<td>Identifier</td>
<td>Column1</td>
<td>Column2</td>
<td>Column3</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>H26A_1</td>
<td>10386</td>
<td>2803</td>
<td>6076</td>
</tr>
<tr>
<td>H26B_1</td>
<td>11474</td>
<td>3034</td>
<td>6966</td>
</tr>
<tr>
<td>H26C_1</td>
<td>11183</td>
<td>3412</td>
<td>6167</td>
</tr>
<tr>
<td>H27A_1</td>
<td>6691</td>
<td>3501</td>
<td>2161</td>
</tr>
<tr>
<td>H27B_1</td>
<td>4288</td>
<td>3287</td>
<td>1758</td>
</tr>
<tr>
<td>H27C_1</td>
<td>5528</td>
<td>3052</td>
<td>2626</td>
</tr>
<tr>
<td>H28A_1</td>
<td>5530</td>
<td>4396</td>
<td>2081</td>
</tr>
<tr>
<td>H28B_1</td>
<td>3608</td>
<td>4610</td>
<td>2533</td>
</tr>
<tr>
<td>H28C_1</td>
<td>3008</td>
<td>4263</td>
<td>1704</td>
</tr>
<tr>
<td>H29A_1</td>
<td>8361</td>
<td>5072</td>
<td>10748</td>
</tr>
<tr>
<td>H29B_1</td>
<td>8237</td>
<td>4553</td>
<td>11318</td>
</tr>
<tr>
<td>H30A_1</td>
<td>5376</td>
<td>4238</td>
<td>10494</td>
</tr>
<tr>
<td>H30B_1</td>
<td>5042</td>
<td>4843</td>
<td>10171</td>
</tr>
<tr>
<td>H1A_2</td>
<td>3497</td>
<td>5047</td>
<td>6099</td>
</tr>
<tr>
<td>H1B_2</td>
<td>1063</td>
<td>5288</td>
<td>5843</td>
</tr>
<tr>
<td>H2A_2</td>
<td>4190</td>
<td>5191</td>
<td>4757</td>
</tr>
<tr>
<td>H2B_2</td>
<td>2019</td>
<td>4835</td>
<td>4707</td>
</tr>
<tr>
<td>H5_2</td>
<td>581</td>
<td>6230</td>
<td>5432</td>
</tr>
<tr>
<td>H6A_2</td>
<td>1862</td>
<td>7098</td>
<td>5218</td>
</tr>
<tr>
<td>H6B_2</td>
<td>4307</td>
<td>6915</td>
<td>5626</td>
</tr>
<tr>
<td>H7A_2</td>
<td>2617</td>
<td>7344</td>
<td>6634</td>
</tr>
<tr>
<td>H7B_2</td>
<td>618</td>
<td>6928</td>
<td>6472</td>
</tr>
<tr>
<td>H9_2</td>
<td>1351</td>
<td>5974</td>
<td>6802</td>
</tr>
<tr>
<td>H11A_2</td>
<td>5535</td>
<td>5632</td>
<td>7639</td>
</tr>
<tr>
<td>H11B_2</td>
<td>3440</td>
<td>5254</td>
<td>7359</td>
</tr>
<tr>
<td>H12A_2</td>
<td>1529</td>
<td>5672</td>
<td>8300</td>
</tr>
<tr>
<td>H12B_2</td>
<td>3877</td>
<td>5478</td>
<td>8797</td>
</tr>
<tr>
<td>H13_2</td>
<td>5312</td>
<td>6339</td>
<td>8711</td>
</tr>
<tr>
<td>H15_2</td>
<td>577</td>
<td>7279</td>
<td>7669</td>
</tr>
<tr>
<td>H17_2</td>
<td>-234</td>
<td>6281</td>
<td>9241</td>
</tr>
<tr>
<td>H18_2</td>
<td>4009</td>
<td>6781</td>
<td>9711</td>
</tr>
<tr>
<td>H19A_2</td>
<td>3029</td>
<td>5692</td>
<td>9979</td>
</tr>
<tr>
<td>H19B_2</td>
<td>5397</td>
<td>5964</td>
<td>10234</td>
</tr>
<tr>
<td>H21A_2</td>
<td>-64</td>
<td>5970</td>
<td>10769</td>
</tr>
<tr>
<td>H21B_2</td>
<td>521</td>
<td>6409</td>
<td>11482</td>
</tr>
<tr>
<td>H22A_2</td>
<td>839</td>
<td>7067</td>
<td>10514</td>
</tr>
<tr>
<td>H22B_2</td>
<td>-1506</td>
<td>6781</td>
<td>10250</td>
</tr>
<tr>
<td>H23A_2</td>
<td>1040</td>
<td>6902</td>
<td>3900</td>
</tr>
<tr>
<td>H23B_2</td>
<td>-919</td>
<td>6563</td>
<td>4166</td>
</tr>
<tr>
<td>H23C_2</td>
<td>22</td>
<td>6403</td>
<td>3352</td>
</tr>
<tr>
<td>H24A_2</td>
<td>5369</td>
<td>5996</td>
<td>4395</td>
</tr>
<tr>
<td>H24B_2</td>
<td>4895</td>
<td>6625</td>
<td>4373</td>
</tr>
</tbody>
</table>
Experimental

Single crystals of C$_{30}$H$_{46}$O$_3$ [jl1301m] were [1]. A suitable crystal was selected and [1] on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 119.99 K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation.

Crystal structure determination of [jl1301m]

Crystal Data for C$_{30}$H$_{46}$O$_3$ (M = 454.67 g/mol): monoclinic, space group P2$_1$ (no. 4), a = 6.1638(15) Å, b = 25.051(6) Å, c = 16.398(4) Å, β = 100.462(14)°, V = 2489.9(11) Å3, Z = 4, T = 119.99 K, μ(MoKα) = 0.076 mm$^{-1}$, Dcalc = 1.213 g/cm3, 22871 reflections measured (2.526° ≤ 2θ ≤ 60.284°), 12175 unique ($R_{int} = 0.1037$, $R_{sigma} = 0.2181$) which were used in all calculations. The final R_1 was 0.0949 (I > 2σ(I)) and wR_2 was 0.2716 (all data).

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:
1. Twinned data refinement
 Scales: 0.918(3)
 0.082(3)
2. Fixed Uiso
 At 1.2 times of:
 All C(H) groups, All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
3.a Ternary CH refined with riding coordinates:
 C5(H5), C9(H9), C13(H13), C17(H17), C18(H18), C5(H5), C9(H9),
 C13(H13),
 C17(H17), C18(H18)
3.b Secondary CH2 refined with riding coordinates:
 C1(H1A,H1B), C2(H2A,H2B), C6(H6A,H6B), C7(H7A,H7B), C11(H11A,H11B),
 C12(H12A,
 H12B), C19(H19A,H19B), C21(H21A,H21B), C22(H22A,H22B),
 C29(H29A,H29B),
 C30(H30A,H30B), C1(H1A,H1B), C2(H2A,H2B), C6(H6A,H6B), C7(H7A,H7B),
 C11(H11A,
 H11B), C12(H12A,H12B), C19(H19A,H19B), C21(H21A,H21B),
 C22(H22A,H22B),
 C29(H29A,H29B), C30(H30A,H30B)
3.c Aromatic/amide H refined with riding coordinates:
 C15(H15), C15(H15)
3.d Idealised Me refined as rotating group:
 C26(H26A,H26B,
 H26C), C27(H27A,H27B,H27C), C28(H28A,H28B,H28C), C23(H23A,H23B,H23C),
 C24(H24A,
 C27(H27A,H27B,H27C),
 C28(H28A,H28B,H28C)

Single-crystal X-ray data for compound (+)-5:
Table 1. Crystal data and structure refinement for jl1202m.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>jl1202m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C33 H50 O5</td>
</tr>
<tr>
<td>Formula weight</td>
<td>526.73</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 6.9861(6)$ Å, $\alpha = 90^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$b = 18.3571(16)$ Å, $\beta = 100.925(4)^\circ$.</td>
</tr>
<tr>
<td></td>
<td>$c = 11.4738(10)$ Å, $\gamma = 90^\circ$.</td>
</tr>
<tr>
<td>Volume</td>
<td>1444.8(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.211 g/cm³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.079 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>576</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.40 x 0.32 x 0.18 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.12 to 30.99°.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-9<=h<=10, -25<=k<=25, -16<=l<=15</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>12501</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4320 [R(int) = 0.0213]</td>
</tr>
<tr>
<td>Completeness to theta = 25.00°</td>
<td>98.1 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9859 and 0.9690</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4320 / 1 / 361</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.025</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0392, wR2 = 0.0996</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0432, wR2 = 0.1048</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-1.3(9)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.274 and -0.171 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for j1l202m. $U(eq)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-232(2)</td>
<td>2118(1)</td>
<td>3100(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>85(3)</td>
<td>1373(1)</td>
<td>3687(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2234(3)</td>
<td>1178(1)</td>
<td>3972(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2516(2)</td>
<td>465(1)</td>
<td>4459(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>O(3B)</td>
<td>2930(2)</td>
<td>1159(1)</td>
<td>2870(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>3437(2)</td>
<td>1730(1)</td>
<td>4822(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>3048(2)</td>
<td>2492(1)</td>
<td>4236(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>4245(3)</td>
<td>3112(1)</td>
<td>4910(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>4257(2)</td>
<td>3767(1)</td>
<td>4098(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2210(2)</td>
<td>4065(1)</td>
<td>3598(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>907(2)</td>
<td>3415(1)</td>
<td>3036(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>879(2)</td>
<td>2736(1)</td>
<td>3850(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>-1120(2)</td>
<td>3679(1)</td>
<td>2404(2)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>-946(3)</td>
<td>4227(1)</td>
<td>1443(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>306(2)</td>
<td>4879(1)</td>
<td>1962(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2272(2)</td>
<td>4618(1)</td>
<td>2612(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>3938(2)</td>
<td>4872(1)</td>
<td>2349(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>4032(2)</td>
<td>5374(1)</td>
<td>1373(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>O(16)</td>
<td>5547(2)</td>
<td>5676(1)</td>
<td>1274(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>2145(3)</td>
<td>5473(1)</td>
<td>456(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>390(2)</td>
<td>5512(1)</td>
<td>1097(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>421(3)</td>
<td>6232(1)</td>
<td>1766(2)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>484(3)</td>
<td>6918(1)</td>
<td>1018(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>2224(3)</td>
<td>6859(1)</td>
<td>381(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>2240(3)</td>
<td>6158(1)</td>
<td>-310(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>5599(3)</td>
<td>1539(1)</td>
<td>4929(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>2948(3)</td>
<td>1666(1)</td>
<td>6059(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>-167(3)</td>
<td>2895(1)</td>
<td>4886(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>1442(3)</td>
<td>4481(1)</td>
<td>4594(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>-1446(3)</td>
<td>7011(1)</td>
<td>129(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>752(3)</td>
<td>7577(1)</td>
<td>1843(2)</td>
<td>34(1)</td>
</tr>
<tr>
<td>Atom</td>
<td>U<sub>11</sub></td>
<td>U<sub>22</sub></td>
<td>U<sub>33</sub></td>
<td>U<sub>12</sub></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>C(29)</td>
<td>1891(3)</td>
<td>4838(1)</td>
<td>-411(2)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(29)</td>
<td>368(3)</td>
<td>4666(1)</td>
<td>-1026(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(30A)</td>
<td>3490(3)</td>
<td>4552(1)</td>
<td>-563(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>3361(4)</td>
<td>3994(2)</td>
<td>-1470(3)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(31A)</td>
<td>5286(5)</td>
<td>3621(2)</td>
<td>-1309(4)</td>
<td>44(1)</td>
</tr>
<tr>
<td>O(30B)</td>
<td>3840(8)</td>
<td>4378(3)</td>
<td>-37(5)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(30B)</td>
<td>3893(10)</td>
<td>3691(4)</td>
<td>-691(7)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(31B)</td>
<td>4443(14)</td>
<td>3808(5)</td>
<td>-1838(9)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>3558(4)</td>
<td>437(1)</td>
<td>2683(2)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>2531(4)</td>
<td>-15(1)</td>
<td>3478(2)</td>
<td>46(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for jl1202m.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-C(2)</td>
<td>1.523(2)</td>
</tr>
<tr>
<td>C(1)-C(10)</td>
<td>1.542(2)</td>
</tr>
<tr>
<td>C(1)-H(1A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(1)-H(1B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.518(2)</td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(2)-H(2B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3)-O(3)</td>
<td>1.422(2)</td>
</tr>
<tr>
<td>C(3)-O(3B)</td>
<td>1.439(2)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.541(3)</td>
</tr>
<tr>
<td>O(3)-C(33)</td>
<td>1.430(3)</td>
</tr>
<tr>
<td>O(3B)-C(32)</td>
<td>1.426(3)</td>
</tr>
<tr>
<td>C(4)-C(24)</td>
<td>1.526(3)</td>
</tr>
<tr>
<td>C(4)-C(23)</td>
<td>1.533(2)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.552(2)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.532(3)</td>
</tr>
<tr>
<td>C(5)-C(10)</td>
<td>1.562(2)</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.523(3)</td>
</tr>
<tr>
<td>C(6)-H(6A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(6)-H(6B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.537(2)</td>
</tr>
<tr>
<td>C(7)-H(7A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(7)-H(7B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(8)-C(14)</td>
<td>1.528(2)</td>
</tr>
<tr>
<td>C(8)-C(26)</td>
<td>1.553(3)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.564(2)</td>
</tr>
<tr>
<td>C(9)-C(11)</td>
<td>1.541(2)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.560(2)</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(10)-C(25)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.515(3)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.534(3)</td>
</tr>
<tr>
<td>C(12)-H(12A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(12)-H(12B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.511(2)</td>
</tr>
<tr>
<td>C(13)-C(18)</td>
<td>1.537(2)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.340(2)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.462(3)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(16)-O(16)</td>
<td>1.219(2)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.534(2)</td>
</tr>
<tr>
<td>C(17)-C(19)</td>
<td>1.526(2)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.530(3)</td>
</tr>
<tr>
<td>C(19)-H(19A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(19)-H(19B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(20)-C(19)</td>
<td>1.525(3)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.537(3)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.512(3)</td>
</tr>
<tr>
<td>C(21)-H(21A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(21)-H(21B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22)-H(22A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(22)-H(22B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(23)-H(23A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(23)-H(23B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(23)-H(23C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24)-H(24A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24)-H(24B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(24)-H(24C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25)-H(25A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25)-H(25B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(25)-H(25C)</td>
<td>0.9800</td>
</tr>
</tbody>
</table>
C(26)-H(26A) 0.9800
C(26)-H(26B) 0.9800
C(26)-H(26C) 0.9800
C(27)-H(27A) 0.9800
C(27)-H(27B) 0.9800
C(27)-H(27C) 0.9800
C(28)-H(28A) 0.9800
C(28)-H(28B) 0.9800
C(28)-H(28C) 0.9800
C(29)-O(29) 1.202(3)
C(29)-O(30A) 1.276(3)
C(29)-O(30B) 1.591(6)
O(30A)-C(30A) 1.450(3)
C(30A)-C(31A) 1.490(4)
C(30A)-H(30A) 0.9900
C(30A)-H(30B) 0.9900
C(31A)-H(31A) 0.9800
C(31A)-H(31B) 0.9800
C(31A)-H(31C) 0.9800
O(30B)-C(30B) 1.471(8)
C(30B)-C(31B) 1.455(13)
C(30B)-H(30C) 0.9900
C(30B)-H(30D) 0.9900
C(31B)-H(31D) 0.9800
C(31B)-H(31E) 0.9800
C(31B)-H(31F) 0.9800
C(32)-C(33) 1.511(4)
C(32)-H(32A) 0.9900
C(32)-H(32B) 0.9900
C(33)-H(33A) 0.9900
C(33)-H(33B) 0.9900
C(2)-C(1)-C(10) 113.47(14)
C(2)-C(1)-H(1A) 108.9
C(10)-C(1)-H(1A) 108.9
C(2)-C(1)-H(1B) 108.9
C(10)-C(1)-H(1B) 108.9
H(1A)-C(1)-H(1B) 107.7
C(3)-C(2)-C(1) 111.24(15)
C(3)-C(2)-H(2A) 109.4
C(1)-C(2)-H(2A) 109.4
C(3)-C(2)-H(2B) 109.4
C(1)-C(2)-H(2B) 109.4
H(2A)-C(2)-H(2B) 108.0
O(3)-C(3)-O(3B) 106.19(15)
O(3)-C(3)-C(2) 111.06(15)
O(3B)-C(3)-C(2) 107.54(14)
O(3)-C(3)-C(4) 109.82(15)
O(3B)-C(3)-C(4) 109.68(15)
C(2)-C(3)-C(4) 112.34(15)
C(3)-O(3)-C(33) 106.17(15)
C(32)-O(3B)-C(3) 108.63(16)
C(24)-C(4)-C(23) 107.36(15)
C(24)-C(4)-C(3) 110.27(15)
C(23)-C(4)-C(3) 108.15(16)
C(24)-C(4)-C(5) 114.86(16)
C(23)-C(4)-C(5) 109.24(15)
C(3)-C(4)-C(5) 106.80(13)
C(6)-C(5)-C(4) 114.63(14)
C(6)-C(5)-C(10) 109.70(15)
C(4)-C(5)-C(10) 117.51(14)
C(6)-C(5)-H(5) 104.5
C(4)-C(5)-H(5) 104.5
C(10)-C(5)-H(5) 104.5
C(7)-C(6)-C(5) 110.13(15)
C(7)-C(6)-H(6A) 109.6
C(5)-C(6)-H(6A) 109.6
C(7)-C(6)-H(6B) 109.6
C(5)-C(6)-H(6B) 109.6
H(6A)-C(6)-H(6B) 108.1
C(6)-C(7)-C(8) 113.36(14)
C(6)-C(7)-H(7A) 108.9
C(8)-C(7)-H(7A) 108.9
C(6)-C(7)-H(7B) 108.9
C(8)-C(7)-H(7B) 108.9
H(7A)-C(7)-H(7B) 107.7
C(14)-C(8)-C(7) 110.99(14)
C(14)-C(8)-C(26) 106.25(14)
C(7)-C(8)-C(26) 109.11(15)
C(14)-C(8)-C(9) 107.34(13)
C(7)-C(8)-C(9) 108.10(14)
C(26)-C(8)-C(9) 115.05(14)
C(11)-C(9)-C(10) 114.74(13)
C(11)-C(9)-C(8) 111.43(14)
C(10)-C(9)-C(8) 115.77(13)
C(11)-C(9)-H(9) 104.5
C(10)-C(9)-H(9) 104.5
C(8)-C(9)-H(9) 104.5
C(25)-C(10)-C(1) 107.98(14)
C(25)-C(10)-C(9) 111.91(14)
C(1)-C(10)-C(9) 108.38(13)
C(25)-C(10)-C(5) 114.43(14)
C(1)-C(10)-C(5) 107.82(14)
C(9)-C(10)-C(5) 106.12(12)
C(12)-C(11)-C(9) 111.00(14)
C(12)-C(11)-H(11A) 109.4
C(9)-C(11)-H(11A) 109.4
C(12)-C(11)-H(11B) 109.4
C(9)-C(11)-H(11B) 109.4
H(11A)-C(11)-H(11B) 108.0
C(11)-C(12)-C(13) 110.73(15)
C(11)-C(12)-H(12A) 109.5
C(13)-C(12)-H(12A) 109.5
C(11)-C(12)-H(12B) 109.5
C(13)-C(12)-H(12B) 109.5
H(12A)-C(12)-H(12B) 108.1
C(14)-C(13)-C(12) 110.08(14)
C(14)-C(13)-C(18) 114.58(14)
C(12)-C(13)-C(18) 115.35(15)
C(14)-C(13)-H(13) 105.2
C(12)-C(13)-H(13) 105.2
C(18)-C(13)-H(13) 105.2
C(15)-C(14)-C(13) 121.70(16)
C(15)-C(14)-C(8) 123.07(15)
C(13)-C(14)-C(8) 115.21(14)
C(14)-C(15)-C(16) 124.00(16)
C(14)-C(15)-H(15) 118.0
C(16)-C(15)-H(15) 118.0
O(16)-C(16)-C(15) 121.59(16)
O(16)-C(16)-C(17) 122.11(17)
C(15)-C(16)-C(17) 116.24(14)
C(29)-C(17)-C(16) 109.66(15)
C(29)-C(17)-C(22) 105.39(15)
C(16)-C(17)-C(22) 111.24(15)
C(29)-C(17)-C(18) 110.03(15)
C(16)-C(17)-C(18) 109.57(14)
C(22)-C(17)-C(18) 110.87(14)
C(19)-C(18)-C(13) 109.22(14)
C(19)-C(18)-C(17) 110.04(14)
C(13)-C(18)-C(17) 113.72(14)
C(19)-C(18)-H(18) 107.9
C(13)-C(18)-H(18) 107.9
C(17)-C(18)-H(18) 107.9
C(18)-C(19)-C(20) 115.46(14)
C(18)-C(19)-H(19A) 108.4
C(20)-C(19)-H(19A) 108.4
C(18)-C(19)-H(19B) 108.4
C(20)-C(19)-H(19B) 108.4
H(19A)-C(19)-H(19B) 107.5
C(28)-C(20)-C(19) 108.50(16)
C(28)-C(20)-C(21) 109.64(17)
C(19)-C(20)-C(21) 108.50(15)
C(28)-C(20)-C(27) 108.24(17)
C(19)-C(20)-C(27) 110.42(16)
C(21)-C(20)-C(27) 111.49(17)
C(22)-C(21)-C(20) 113.24(16)
C(22)-C(21)-H(21A) 108.9
C(20)-C(21)-H(21A) 108.9
C(22)-C(21)-H(21B) 108.9
C(20)-C(21)-H(21B) 108.9
H(21A)-C(21)-H(21B) 107.7
C(21)-C(22)-C(17) 112.96(14)
C(21)-C(22)-H(22A) 109.0
C(17)-C(22)-H(22A) 109.0
C(21)-C(22)-H(22B) 109.0
C(17)-C(22)-H(22B) 109.0
H(22A)-C(22)-H(22B) 107.8
C(4)-C(23)-H(23A) 109.5
C(4)-C(23)-H(23B) 109.5
H(23A)-C(23)-H(23B) 109.5
C(4)-C(23)-H(23C) 109.5
H(23A)-C(23)-H(23C) 109.5
H(23B)-C(23)-H(23C) 109.5
C(10)-C(25)-H(25A) 109.5
C(10)-C(25)-H(25B) 109.5
H(25A)-C(25)-H(25B) 109.5
C(8)-C(26)-H(26A) 109.5
C(8)-C(26)-H(26B) 109.5
H(26A)-C(26)-H(26B) 109.5
C(8)-C(26)-H(26C) 109.5
H(26A)-C(26)-H(26C) 109.5
H(26B)-C(26)-H(26C) 109.5
C(20)-C(27)-H(27A) 109.5
C(20)-C(27)-H(27B) 109.5
H(27A)-C(27)-H(27B) 109.5
C(20)-C(27)-H(27C) 109.5
H(27A)-C(27)-H(27C) 109.5
H(27B)-C(27)-H(27C) 109.5
C(20)-C(28)-H(28A) 109.5
C(20)-C(28)-H(28B) 109.5
H(28A)-C(28)-H(28B) 109.5
C(20)-C(28)-H(28C) 109.5
H(28A)-C(28)-H(28C) 109.5
H(28B)-C(28)-H(28C) 109.5
O(29)-C(29)-O(30A) 120.8(2)
O(29)-C(29)-C(17) 124.4(2)
O(30A)-C(29)-C(17) 114.11(18)
O(29)-C(29)-O(30B) 129.5(3)
O(30A)-C(29)-O(30B) 24.7(2)
C(17)-C(29)-O(30B) 104.1(2)
C(29)-O(30A)-C(30A) 116.9(2)
O(30A)-C(30A)-C(31A) 107.7(2)
O(30A)-C(30A)-H(30A) 110.2
C(31A)-C(30A)-H(30A) 110.2
O(30A)-C(30A)-H(30B) 110.2
C(31A)-C(30A)-H(30B) 110.2
H(30A)-C(30A)-H(30B) 108.5
C(30B)-O(30B)-C(29) 114.8(5)
C(31B)-C(30B)-O(30B) 111.8(7)
C(31B)-C(30B)-H(30C) 109.3
O(30B)-C(30B)-H(30C) 109.3
C(31B)-C(30B)-H(30D) 109.3
O(30B)-C(30B)-H(30D) 109.3
H(30C)-C(30B)-H(30D) 107.9
C(30B)-C(31B)-H(31D) 109.5
C(30B)-C(31B)-H(31E) 109.5
H(31D)-C(31B)-H(31E) 109.5
C(30B)-C(31B)-H(31F) 109.5
H(31D)-C(31B)-H(31F) 109.5
H(31E)-C(31B)-H(31F) 109.5
O(3B)-C(32)-C(33) 102.94(18)
O(3B)-C(32)-H(32A) 111.2
C(33)-C(32)-H(32A) 111.2
O(3B)-C(32)-H(32B) 111.2
C(33)-C(32)-H(32B) 111.2
H(32A)-C(32)-H(32B) 109.1
O(3)-C(33)-C(32) 102.29(19)
O(3)-C(33)-H(33A) 111.3
C(32)-C(33)-H(33A) 111.3
O(3)-C(33)-H(33B) 111.3
C(32)-C(33)-H(33B) 111.3
H(33A)-C(33)-H(33B) 109.2

Symmetry transformations used to generate equivalent atoms:
Table 4. Anisotropic displacement parameters (Å² x 10³) for jil1202m. The anisotropic displacement factor exponent takes the form: -2π²[h² a*2 U^11 + ... + 2 h k a* b* U^12]

<table>
<thead>
<tr>
<th></th>
<th>U^11</th>
<th>U^22</th>
<th>U^33</th>
<th>U^23</th>
<th>U^13</th>
<th>U^12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>23(1)</td>
<td>23(1)</td>
<td>26(1)</td>
<td>2(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>28(1)</td>
<td>24(1)</td>
<td>29(1)</td>
<td>5(1)</td>
<td>0(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>31(1)</td>
<td>24(1)</td>
<td>23(1)</td>
<td>6(1)</td>
<td>4(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>46(1)</td>
<td>24(1)</td>
<td>30(1)</td>
<td>8(1)</td>
<td>2(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>O(3B)</td>
<td>47(1)</td>
<td>31(1)</td>
<td>26(1)</td>
<td>5(1)</td>
<td>11(1)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>22(1)</td>
<td>28(1)</td>
<td>24(1)</td>
<td>8(1)</td>
<td>3(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>18(1)</td>
<td>26(1)</td>
<td>21(1)</td>
<td>5(1)</td>
<td>3(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>23(1)</td>
<td>31(1)</td>
<td>28(1)</td>
<td>6(1)</td>
<td>-1(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>20(1)</td>
<td>29(1)</td>
<td>31(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
<td>-5(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>20(1)</td>
<td>23(1)</td>
<td>23(1)</td>
<td>0(1)</td>
<td>5(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>17(1)</td>
<td>20(1)</td>
<td>22(1)</td>
<td>0(1)</td>
<td>4(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>18(1)</td>
<td>23(1)</td>
<td>22(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>18(1)</td>
<td>23(1)</td>
<td>36(1)</td>
<td>4(1)</td>
<td>1(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>23(1)</td>
<td>24(1)</td>
<td>33(1)</td>
<td>4(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>21(1)</td>
<td>22(1)</td>
<td>25(1)</td>
<td>1(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>21(1)</td>
<td>20(1)</td>
<td>23(1)</td>
<td>-3(1)</td>
<td>4(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>22(1)</td>
<td>22(1)</td>
<td>31(1)</td>
<td>3(1)</td>
<td>5(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>24(1)</td>
<td>19(1)</td>
<td>31(1)</td>
<td>-2(1)</td>
<td>11(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(16)</td>
<td>28(1)</td>
<td>26(1)</td>
<td>40(1)</td>
<td>1(1)</td>
<td>12(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>29(1)</td>
<td>22(1)</td>
<td>22(1)</td>
<td>-1(1)</td>
<td>8(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>24(1)</td>
<td>23(1)</td>
<td>22(1)</td>
<td>2(1)</td>
<td>6(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>31(1)</td>
<td>22(1)</td>
<td>23(1)</td>
<td>2(1)</td>
<td>9(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>34(1)</td>
<td>23(1)</td>
<td>25(1)</td>
<td>4(1)</td>
<td>9(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>36(1)</td>
<td>24(1)</td>
<td>29(1)</td>
<td>4(1)</td>
<td>12(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>36(1)</td>
<td>27(1)</td>
<td>24(1)</td>
<td>2(1)</td>
<td>12(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>24(1)</td>
<td>35(1)</td>
<td>42(1)</td>
<td>15(1)</td>
<td>3(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>34(1)</td>
<td>36(1)</td>
<td>21(1)</td>
<td>8(1)</td>
<td>2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>27(1)</td>
<td>31(1)</td>
<td>29(1)</td>
<td>2(1)</td>
<td>13(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>44(1)</td>
<td>26(1)</td>
<td>25(1)</td>
<td>-5(1)</td>
<td>10(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>39(1)</td>
<td>36(1)</td>
<td>34(1)</td>
<td>14(1)</td>
<td>9(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>48(1)</td>
<td>23(1)</td>
<td>35(1)</td>
<td>1(1)</td>
<td>14(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>C(29)</td>
<td>42(1)</td>
<td>30(1)</td>
<td>30(1)</td>
<td>-8(1)</td>
<td>18(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>O(29)</td>
<td>58(1)</td>
<td>54(1)</td>
<td>33(1)</td>
<td>-17(1)</td>
<td>3(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>O(30A)</td>
<td>27(1)</td>
<td>26(1)</td>
<td>31(1)</td>
<td>-10(1)</td>
<td>6(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(30A)</td>
<td>34(1)</td>
<td>28(1)</td>
<td>36(1)</td>
<td>-14(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(31A)</td>
<td>44(2)</td>
<td>31(2)</td>
<td>59(2)</td>
<td>-13(1)</td>
<td>12(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>O(30B)</td>
<td>27(1)</td>
<td>26(1)</td>
<td>31(1)</td>
<td>-10(1)</td>
<td>6(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(30B)</td>
<td>34(1)</td>
<td>28(1)</td>
<td>36(1)</td>
<td>-14(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(31B)</td>
<td>44(2)</td>
<td>31(2)</td>
<td>59(2)</td>
<td>-13(1)</td>
<td>12(1)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>65(2)</td>
<td>37(1)</td>
<td>35(1)</td>
<td>0(1)</td>
<td>9(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>71(2)</td>
<td>26(1)</td>
<td>36(1)</td>
<td>4(1)</td>
<td>-2(1)</td>
<td>12(1)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$) for j11202m.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>-1643</td>
<td>2231</td>
<td>2947</td>
<td>30</td>
</tr>
<tr>
<td>H(1B)</td>
<td>190</td>
<td>2099</td>
<td>2324</td>
<td>30</td>
</tr>
<tr>
<td>H(2A)</td>
<td>-447</td>
<td>1373</td>
<td>4428</td>
<td>33</td>
</tr>
<tr>
<td>H(2B)</td>
<td>-628</td>
<td>1000</td>
<td>3150</td>
<td>33</td>
</tr>
<tr>
<td>H(5)</td>
<td>3541</td>
<td>2451</td>
<td>3476</td>
<td>26</td>
</tr>
<tr>
<td>H(6A)</td>
<td>3676</td>
<td>3252</td>
<td>5605</td>
<td>34</td>
</tr>
<tr>
<td>H(6B)</td>
<td>5598</td>
<td>2945</td>
<td>5203</td>
<td>34</td>
</tr>
<tr>
<td>H(7A)</td>
<td>4890</td>
<td>3627</td>
<td>3429</td>
<td>33</td>
</tr>
<tr>
<td>H(7B)</td>
<td>5049</td>
<td>4159</td>
<td>4546</td>
<td>33</td>
</tr>
<tr>
<td>H(9)</td>
<td>1547</td>
<td>3238</td>
<td>2380</td>
<td>24</td>
</tr>
<tr>
<td>H(11A)</td>
<td>-1900</td>
<td>3257</td>
<td>2047</td>
<td>31</td>
</tr>
<tr>
<td>H(11B)</td>
<td>-1808</td>
<td>3905</td>
<td>2991</td>
<td>31</td>
</tr>
<tr>
<td>H(12A)</td>
<td>-2261</td>
<td>4400</td>
<td>1067</td>
<td>33</td>
</tr>
<tr>
<td>H(12B)</td>
<td>-349</td>
<td>3991</td>
<td>824</td>
<td>33</td>
</tr>
<tr>
<td>H(13)</td>
<td>-356</td>
<td>5082</td>
<td>2591</td>
<td>27</td>
</tr>
<tr>
<td>H(15)</td>
<td>5130</td>
<td>4716</td>
<td>2825</td>
<td>30</td>
</tr>
<tr>
<td>H(18)</td>
<td>-830</td>
<td>5499</td>
<td>479</td>
<td>27</td>
</tr>
<tr>
<td>H(19A)</td>
<td>1574</td>
<td>6234</td>
<td>2419</td>
<td>30</td>
</tr>
<tr>
<td>H(19B)</td>
<td>-753</td>
<td>6255</td>
<td>2131</td>
<td>30</td>
</tr>
<tr>
<td>H(21A)</td>
<td>2192</td>
<td>7276</td>
<td>-170</td>
<td>35</td>
</tr>
<tr>
<td>H(21B)</td>
<td>3447</td>
<td>6893</td>
<td>977</td>
<td>35</td>
</tr>
<tr>
<td>H(22A)</td>
<td>3443</td>
<td>6139</td>
<td>-647</td>
<td>34</td>
</tr>
<tr>
<td>H(22B)</td>
<td>1113</td>
<td>6156</td>
<td>-979</td>
<td>34</td>
</tr>
<tr>
<td>H(23A)</td>
<td>5804</td>
<td>1026</td>
<td>5153</td>
<td>51</td>
</tr>
<tr>
<td>H(23B)</td>
<td>6381</td>
<td>1846</td>
<td>5538</td>
<td>51</td>
</tr>
<tr>
<td>H(23C)</td>
<td>5996</td>
<td>1623</td>
<td>4166</td>
<td>51</td>
</tr>
<tr>
<td>H(24A)</td>
<td>3299</td>
<td>1179</td>
<td>6378</td>
<td>46</td>
</tr>
<tr>
<td>H(24B)</td>
<td>1548</td>
<td>1746</td>
<td>6012</td>
<td>46</td>
</tr>
<tr>
<td>H(24C)</td>
<td>3683</td>
<td>2033</td>
<td>6583</td>
<td>46</td>
</tr>
<tr>
<td>H(25A)</td>
<td>-1274</td>
<td>3220</td>
<td>4615</td>
<td>42</td>
</tr>
</tbody>
</table>

S110
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H(25B)</td>
<td>743</td>
<td>3128</td>
<td>5533</td>
<td>42</td>
</tr>
<tr>
<td>H(25C)</td>
<td>-638</td>
<td>2437</td>
<td>5170</td>
<td>42</td>
</tr>
<tr>
<td>H(26A)</td>
<td>2127</td>
<td>4947</td>
<td>4744</td>
<td>47</td>
</tr>
<tr>
<td>H(26B)</td>
<td>1674</td>
<td>4188</td>
<td>5322</td>
<td>47</td>
</tr>
<tr>
<td>H(26C)</td>
<td>41</td>
<td>4570</td>
<td>4346</td>
<td>47</td>
</tr>
<tr>
<td>H(27A)</td>
<td>-2530</td>
<td>7025</td>
<td>560</td>
<td>55</td>
</tr>
<tr>
<td>H(27B)</td>
<td>-1623</td>
<td>6601</td>
<td>-427</td>
<td>55</td>
</tr>
<tr>
<td>H(27C)</td>
<td>-1414</td>
<td>7467</td>
<td>-310</td>
<td>55</td>
</tr>
<tr>
<td>H(28A)</td>
<td>1952</td>
<td>7519</td>
<td>2436</td>
<td>52</td>
</tr>
<tr>
<td>H(28B)</td>
<td>-364</td>
<td>7615</td>
<td>2244</td>
<td>52</td>
</tr>
<tr>
<td>H(28C)</td>
<td>842</td>
<td>8020</td>
<td>1379</td>
<td>52</td>
</tr>
<tr>
<td>H(30A)</td>
<td>3041</td>
<td>4217</td>
<td>-2269</td>
<td>39</td>
</tr>
<tr>
<td>H(30B)</td>
<td>2325</td>
<td>3640</td>
<td>-1390</td>
<td>39</td>
</tr>
<tr>
<td>H(31A)</td>
<td>5268</td>
<td>3262</td>
<td>-1944</td>
<td>67</td>
</tr>
<tr>
<td>H(31B)</td>
<td>5547</td>
<td>3374</td>
<td>-538</td>
<td>67</td>
</tr>
<tr>
<td>H(31C)</td>
<td>6311</td>
<td>3981</td>
<td>-1341</td>
<td>67</td>
</tr>
<tr>
<td>H(30C)</td>
<td>4839</td>
<td>3355</td>
<td>-214</td>
<td>39</td>
</tr>
<tr>
<td>H(30D)</td>
<td>2592</td>
<td>3459</td>
<td>-812</td>
<td>39</td>
</tr>
<tr>
<td>H(31D)</td>
<td>4342</td>
<td>3348</td>
<td>-2279</td>
<td>67</td>
</tr>
<tr>
<td>H(31E)</td>
<td>5789</td>
<td>3986</td>
<td>-1718</td>
<td>67</td>
</tr>
<tr>
<td>H(31F)</td>
<td>3569</td>
<td>4170</td>
<td>-2289</td>
<td>67</td>
</tr>
<tr>
<td>H(32A)</td>
<td>4992</td>
<td>392</td>
<td>2918</td>
<td>55</td>
</tr>
<tr>
<td>H(32B)</td>
<td>3158</td>
<td>291</td>
<td>1842</td>
<td>55</td>
</tr>
<tr>
<td>H(33A)</td>
<td>1190</td>
<td>-141</td>
<td>3076</td>
<td>55</td>
</tr>
<tr>
<td>H(33B)</td>
<td>3259</td>
<td>-468</td>
<td>3734</td>
<td>55</td>
</tr>
</tbody>
</table>
Table 6. Torsion angles [°] for jl1202m.

<table>
<thead>
<tr>
<th>Bond Sequence</th>
<th>Torsion Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-C(1)-C(2)-C(3)</td>
<td>-57.1(2)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-O(3)</td>
<td>-176.72(15)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)-O(3B)</td>
<td>-60.9(2)</td>
</tr>
<tr>
<td>O(3B)-C(3)-O(3)-C(33)</td>
<td>59.9(2)</td>
</tr>
<tr>
<td>O(3B)-C(3)-O(3)-C(33)</td>
<td>91.9(2)</td>
</tr>
<tr>
<td>C(4)-C(3)-O(3)-C(33)</td>
<td>-143.24(17)</td>
</tr>
<tr>
<td>O(3)-C(3)-O(3B)-C(32)</td>
<td>1.9(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-O(3B)-C(32)</td>
<td>-117.02(19)</td>
</tr>
<tr>
<td>C(4)-C(3)-O(3B)-C(32)</td>
<td>120.53(19)</td>
</tr>
<tr>
<td>O(3)-C(3)-C(4)-C(24)</td>
<td>-53.31(19)</td>
</tr>
<tr>
<td>O(3B)-C(3)-C(4)-C(24)</td>
<td>-170.64(15)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(24)</td>
<td>69.81(19)</td>
</tr>
<tr>
<td>O(3)-C(3)-C(4)-C(23)</td>
<td>62.81(19)</td>
</tr>
<tr>
<td>O(3B)-C(3)-C(4)-C(23)</td>
<td>-53.53(18)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(23)</td>
<td>-173.07(15)</td>
</tr>
<tr>
<td>O(3)-C(3)-C(4)-C(5)</td>
<td>-179.73(14)</td>
</tr>
<tr>
<td>O(3B)-C(3)-C(4)-C(5)</td>
<td>63.94(17)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(4)-C(5)</td>
<td>-55.61(18)</td>
</tr>
<tr>
<td>C(24)-C(4)-C(5)-C(6)</td>
<td>61.8(2)</td>
</tr>
<tr>
<td>C(23)-C(4)-C(5)-C(6)</td>
<td>-58.9(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(6)</td>
<td>-175.65(15)</td>
</tr>
<tr>
<td>C(24)-C(4)-C(5)-C(10)</td>
<td>-69.3(2)</td>
</tr>
<tr>
<td>C(23)-C(4)-C(5)-C(10)</td>
<td>170.03(16)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)-C(10)</td>
<td>53.29(19)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(6)-C(7)</td>
<td>162.07(15)</td>
</tr>
<tr>
<td>C(10)-C(5)-C(6)-C(7)</td>
<td>63.19(19)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)-C(8)</td>
<td>59.2(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(14)</td>
<td>-168.91(16)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(26)</td>
<td>74.3(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)-C(9)</td>
<td>-51.4(2)</td>
</tr>
<tr>
<td>C(14)-C(8)-C(9)-C(11)</td>
<td>-54.62(17)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)-C(11)</td>
<td>-174.41(15)</td>
</tr>
<tr>
<td>C(26)-C(8)-C(9)-C(11)</td>
<td>63.4(2)</td>
</tr>
</tbody>
</table>
S113

C(14)-C(8)-C(9)-C(10) 171.85(13)
C(7)-C(8)-C(9)-C(10) 52.05(18)
C(26)-C(8)-C(9)-C(10) -70.15(19)
C(2)-C(1)-C(10)-C(25) -73.78(19)
C(2)-C(1)-C(10)-C(9) 164.81(14)
C(2)-C(1)-C(10)-C(5) 50.34(19)
C(11)-C(9)-C(10)-C(25) -63.11(19)
C(8)-C(9)-C(10)-C(25) 68.90(18)
C(11)-C(9)-C(10)-C(1) 55.84(19)
C(8)-C(9)-C(10)-C(1) -172.15(14)
C(11)-C(9)-C(10)-C(5) 171.42(15)
C(8)-C(9)-C(10)-C(5) -56.57(18)
C(6)-C(5)-C(10)-C(25) -63.93(19)
C(4)-C(5)-C(10)-C(25) 69.3(2)
C(6)-C(5)-C(10)-C(1) 175.93(14)
C(4)-C(5)-C(10)-C(1) -50.79(19)
C(6)-C(5)-C(10)-C(9) 59.97(18)
C(4)-C(5)-C(10)-C(9) -166.75(14)
C(10)-C(9)-C(11)-C(12) -167.78(15)
C(8)-C(9)-C(11)-C(12) 58.2(2)
C(9)-C(11)-C(12)-C(13) -57.5(2)
C(11)-C(12)-C(13)-C(14) 55.3(2)
C(11)-C(12)-C(13)-C(18) -173.19(14)
C(12)-C(13)-C(14)-C(15) 125.02(18)
C(18)-C(13)-C(14)-C(15) -6.9(2)
C(12)-C(13)-C(14)-C(8) -56.3(2)
C(18)-C(13)-C(14)-C(8) 171.76(14)
C(7)-C(8)-C(14)-C(15) -8.2(2)
C(26)-C(8)-C(14)-C(15) 110.28(19)
C(9)-C(8)-C(14)-C(15) -126.15(17)
C(7)-C(8)-C(14)-C(13) 173.11(15)
C(26)-C(8)-C(14)-C(13) -68.40(18)
C(9)-C(8)-C(14)-C(13) 55.17(18)
C(13)-C(14)-C(15)-C(16) -4.5(3)
C(8)-C(14)-C(15)-C(16) 176.89(16)
C(14)-C(15)-C(16)-O(16) 168.68(18)
C(14)-C(15)-C(16)-C(17) -13.9(3)
O(16)-C(16)-C(17)-C(29) 97.5(2)
C(15)-C(16)-C(17)-C(29) -79.89(19)
O(16)-C(16)-C(17)-C(22) -18.6(2)
C(15)-C(16)-C(17)-C(22) 163.92(15)
O(16)-C(16)-C(17)-C(18) -141.59(17)
C(15)-C(16)-C(17)-C(18) 41.0(2)
C(14)-C(13)-C(18)-C(19) -87.54(17)
C(12)-C(13)-C(18)-C(19) 143.07(15)
C(14)-C(13)-C(18)-C(17) 35.8(2)
C(12)-C(13)-C(18)-C(17) -93.58(18)
C(29)-C(17)-C(18)-C(19) -168.23(15)
C(16)-C(17)-C(18)-C(19) 71.12(17)
C(22)-C(17)-C(18)-C(19) -52.04(19)
C(29)-C(17)-C(18)-C(13) 68.9(2)
C(16)-C(17)-C(18)-C(13) -51.77(19)
C(22)-C(17)-C(18)-C(13) -174.94(14)
C(13)-C(18)-C(19)-C(20) -179.40(15)
C(17)-C(18)-C(19)-C(20) 55.11(19)
C(18)-C(19)-C(20)-C(28) -173.35(16)
C(18)-C(19)-C(20)-C(21) -54.3(2)
C(18)-C(19)-C(20)-C(27) 68.2(2)
C(28)-C(20)-C(21)-C(22) 171.05(16)
C(19)-C(20)-C(21)-C(22) 52.7(2)
C(27)-C(20)-C(21)-C(22) -69.1(2)
C(20)-C(21)-C(22)-C(17) 54.6(2)
C(16)-C(17)-C(22)-C(21) 172.38(17)
C(16)-C(17)-C(22)-C(21) -68.84(19)
C(18)-C(17)-C(22)-C(21) 53.4(2)
C(16)-C(17)-C(29)-O(29) 160.4(2)
C(22)-C(17)-C(29)-O(29) -79.8(2)
C(18)-C(17)-C(29)-O(29) 39.8(3)
C(16)-C(17)-C(29)-O(30A) -28.8(2)
C(22)-C(17)-C(29)-O(30A) 91.0(2)
C(18)-C(17)-C(29)-O(30A) -149.42(19)
C(16)-C(17)-C(29)-O(30B) -4.9(3)
C(22)-C(17)-C(29)-O(30B) 115.0(3)
C(18)-C(17)-C(29)-O(30B) -125.5(3)
O(29)-C(29)-O(30A)-C(30A) -2.6(4)
C(17)-C(29)-O(30A)-C(30A) -173.7(2)
O(30B)-C(29)-O(30A)-C(30A) 115.8(6)
C(29)-O(30A)-C(30A)-C(31A) -167.1(3)
O(29)-C(29)-O(30B)-C(30B) 11.2(7)
O(30A)-C(29)-O(30B)-C(30B) -67.0(6)
C(17)-C(29)-O(30B)-C(30B) 175.4(5)
C(29)-O(30B)-C(30B)-C(31B) 81.9(7)
C(3)-O(3B)-C(32)-C(33) 20.0(2)
C(3)-O(3)-C(33)-C(32) 36.4(2)
O(3B)-C(32)-C(33)-O(3) -34.3(2)

References

[S1] Data Collection: SMART Software in APEX2 v2014.11-0 Suite. Bruker-AXS, 5465 E. Cheryl Parkway, Madison, WI 53711-5373 USA.
[S2] Data Reduction: SAINT Software in APEX2 v2014.11-0 Suite. Bruker-AXS, 5465 E. Cheryl Parkway, Madison, WI 53711-5373 USA.