Supporting Information
for DOI: 10.1055/s-0039-1690180
© 2019. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany
SUPPORTING INFORMATION

Alkene Ozonolysis in the Presence of Diazо Functionality: Accessing an Intermediate for Squalestatin Synthesis

Hasanain A. A. Almohseni, Younes Fegheh-Hassanpour, Tanzeel Arif
and David M. Hodgson*

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
david.hodgson@chem.ox.ac.uk
Model study ozonolysis of alkene 14 in the presence of α-diazoester 13a

\[
\begin{align*}
\text{O}_3/\text{O}_2 \\
\text{CH}_2\text{Cl}_2 \\
-78 \degree\text{C}, \sim5 \text{ min}
\end{align*}
\]

then Et$_3$N

\[
\text{14} \quad \text{13a} \quad \text{15}
\]

\[\text{1H NMR of the crude mixture from ozonolysis of 14 and 13a}\]

\[\text{Figure S1} \text{ Comparison of } \text{1H NMR Spectra of 14 and 13a with the crude reaction mixture from their ozonolysis.}\]
$^1$H NMR study of the rates of the intramolecular cycloaddition of silyl ethers 22a,b to cycloadducts 23a,b

Figure S2 Comparison of rates of intramolecular cycloaddition of silyl ethers 22a and 22b.
$^1\text{H}$ and $^{13}\text{C}$ NMR Spectra

$^1\text{H}$ (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
$^1$H (500 MHz, CDCl$_3$)

= EtOAc
$^{13}$C (125 MHz, CDCl$_3$)

10b and 11b

• = EtOAc
$^{1}$H (400 MHz, CDCl$_3$)
$^{13}$C (100 MHz, CDCl$_3$)
$1^H$ (400 MHz, CDCl$_3$)
$^{13}$C (100 MHz, CDCl3)
$^{1}H$ (400 MHz, CDCl$_3$)
$^{13}$C (100 MHz, CDCl$_3$)

**13b**

![Chemical Structure](image)
$\text{EtO}_2\text{C} + \text{EtO}_2\text{C}_\text{Bu}$

$\text{EtO}_2\text{C}_\text{Bu} \xrightarrow{400 \text{ MHz, CDCl}_3} 17b$
$^{13}$C (100 MHz, CDCl$_3$)
$^1$H (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl₃)
$^{1}H$ (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
$^{13}$C (100 MHz, CDCl$_3$)

18a
$^{1}{H}$ (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
^{1}H (400 MHz, CDCl$_3$)
$^{13}$C (100 MHz, CDCl$_3$)
$^{1}H$ (500 MHz, CDCl$_3$)
$\text{C} \ (125 \text{ MHz, CDCl}_3)$
$^1$H (400 MHz, CDCl$_3$)
$^1$H (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
$^1$H (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)
$^{1}H$ (500 MHz, CDCl$_3$)
$^{13}$C (125 MHz, CDCl$_3$)