Abstract
Under microwave (MW) heating, 1-diethoxyphosphorylbuta-1,3-diene
cycloadds to diethyl, diisopropyl and di-tert -butyl azodicarboxylates
leading to the corresponding hetero Diels-Alder (HD-A)
cycloadducts in excellent yields. Cycloaddition to the di-tert -butyl derivative is conveniently
scaled up using a six-entry parallel synthesis rotor (>10
g scale). B3LYP/6-31G** calculations confirmed
the concerted, but highly asynchronous character of this reaction.
The di-tert -butyloxycarbonyl cycloadduct
is compatible with orthogonal deprotection (i.e., selective N-deprotection
without degradation of the phosphonate ester). Thus, reduction and
dihydroxylation of the C=C bond of this cycloadduct, followed
by TFA deprotection, gave 3-diethoxyphosphorylhexahydro-1,2-pyridazine and
3-diethoxyphosphoryl-4,5-dihydroxyhexahydro-1,2-pyridazine,
respectively. This HD-A strategy offers a convenient entry
towards phosphonate bioisosters of cyclic α-hydrazino acid
and azafagomine derivatives in racemic series.
Key words
azo compounds - cycloadditions - Diels-Alder
reactions - heterocycles - phosphorus
References
<A NAME="RZ00309SS-1A">1a </A>
Lewkowsi J.
Focus
on Organometallic Chemistry Research
Nova Science
Publishers;
New York:
2005.
<A NAME="RZ00309SS-1B">1b </A>
Kudzin Z.
H.
Depczynski R.
Kudzin M. H.
Drabowicz J.
Amino
Acids
2008,
34:
163
<A NAME="RZ00309SS-1C">1c </A>
Hu D.-Y.
Wan Q.-Q.
Yang S.
Song B.-A.
Bhadury PS.
Jin L.-H.
Yan K.
Liu F.
Chen Z.
Xue W.
J.
Agric. Food Chem.
2008,
56:
998
<A NAME="RZ00309SS-2">2 </A>
Kukhar V.
Hudson H.
Aminophosphonic
and Aminophosphinic Acids: Chemistry and Biological Activity
Wiley;
New
York:
2000.
<A NAME="RZ00309SS-3A">3a </A>
Berlicki L.
Rudzinska E.
Mlynarz P.
Kafarski P.
Curr.
Org. Chem.
2006,
10:
2285
<A NAME="RZ00309SS-3B">3b </A>
Bhadury PS.
Song B.-A.
Yang S.
Zhang Y.
Zhang S.
Curr.
Org. Synth.
2008,
5:
134
<A NAME="RZ00309SS-3C">3c </A>
Lesch B.
Thomson DW.
Lindell SD.
Comb. Chem. High Throughput Screening
2008,
11:
36
<A NAME="RZ00309SS-3D">3d </A>
Guliaiko IV.
Kolodiazhnyi OI.
Phosphorus,
Sulfur Silicon Relat. Elem.
2008,
183:
677
<A NAME="RZ00309SS-3E">3e </A>
Han L.
Hiratake J.
Kamiyama A.
Sakata K.
Biochemistry
2007,
46:
1432
<A NAME="RZ00309SS-3F">3f </A>
Wardle NJ.
Bligh SWA.
Hudson HR.
Curr. Org. Chem.
2007,
11:
1635
<A NAME="RZ00309SS-4A">4a </A>
Ogita T.
Gunji S.
Fukazawa Y.
Terahara A.
Kinoshita T.
Nagaki H.
Tetrahedron
Lett.
1983,
24:
2283
<A NAME="RZ00309SS-4B">4b </A>
Kang I.
Kim Y.
Bull. Korean Chem. Soc.
1994,
15:
595
<A NAME="RZ00309SS-4C">4c </A>
Paquette LA.
Duan M.
Konetzki I.
Kempmann C.
J. Am.
Chem. Soc.
2002,
124:
4257
<A NAME="RZ00309SS-5">5 </A>
Heydari A.
Mehrdad M.
Schaffie M.
Abdolrezaie MS.
Hajinassirei R.
Chem. Lett.
2002,
1146 ;
and references cited therein
<A NAME="RZ00309SS-6">6 </A>
Ciufolini MA.
Xi N.
Chem. Soc. Rev.
1998,
27:
437
<A NAME="RZ00309SS-7A">7a </A>
Liang X.
Bols M.
J.
Org. Chem.
1999,
64:
8485
<A NAME="RZ00309SS-7B">7b </A>
Sivertsen AC.
Gasior M.
Bjerring M.
Hansen SU.
Lopez OL.
Nielsen NC.
Bols M.
Eur. J. Org. Chem.
2007,
1735
<A NAME="RZ00309SS-7C">7c </A>
Helligs H.
Lyngbye JL.
Jensen A.
Bols M.
Chem. Eur. J.
2002,
8:
1218
<A NAME="RZ00309SS-8">8 </A>
Rachon J.
Wasielewski CR.
Rocz. Chem.
1976,
50:
477
<A NAME="RZ00309SS-9">9 </A>
Kang IJ.
Kim YJ.
Bull. Korean Chem. Soc.
1994,
15:
595
<A NAME="RZ00309SS-10">10 </A>
Yuan C.
Chen S.
Xie R.
Feng H.
Maier L.
Phosphorus, Sulfur
Silicon Relat. Elem.
1995,
106:
115
<A NAME="RZ00309SS-11">11 </A>
Yuan C.
Li C.
Synthesis
1996,
507
<A NAME="RZ00309SS-12">12 </A>
Heydari A.
Javidan A.
Schaffie M.
Tetrahedron
Lett.
2001,
42:
8071
<A NAME="RZ00309SS-13">13 </A>
Stevens CV.
Van Meener E.
Masschelein KG.
Moonen K.
De Blieck A.
Drabowicz J.
Synlett
2007,
2549
<A NAME="RZ00309SS-14A">14a </A>
Kaname M.
Yoshinaga K.
Arakawa Y.
Yoshifuji S.
Chem.
Pharm. Bull.
2004,
52:
160
<A NAME="RZ00309SS-14B">14b </A>
Kaname M.
Arakawa Y.
Yoshifuji S.
Tetrahedron
Lett.
2001,
42:
2713
<A NAME="RZ00309SS-14C">14c </A>
Kaname M.
Yoshinaga K.
Arakawa Y.
Yoshifuji S.
Tetrahedron Lett.
1999,
40:
7993
<A NAME="RZ00309SS-15A">15a </A>
Monbaliu J.-C.
Marchand-Brynaert J.
Tetrahedron Lett.
2008,
49:
1839
<A NAME="RZ00309SS-15B">15b </A>
Monbaliu J.-C.
Tinant B.
Marchand-Brynaert J.
J.
Mol. Struct.
2008,
879:
113
<A NAME="RZ00309SS-15C">15c </A>
Robiette R.
Defacqz N.
Peeters D.
Marchand-Brynaert J.
Curr. Org. Synth.
2005,
2:
453
<A NAME="RZ00309SS-15D">15d </A>
Robiette R.
Cheboub-Benchaba K.
Peeters D.
Marchand-Brynaert J.
J. Org. Chem.
2003,
68:
9809 ; and references cited therein
<A NAME="RZ00309SS-16A">16a </A>
Tietze LF.
Kettschau G.
Top.
Curr. Chem.
1997,
189:
1
<A NAME="RZ00309SS-16B">16b </A>
Fringuelli F.
Taticchi A.
The
Diels-Alder Reaction
Wiley;
New
York:
2002.
<A NAME="RZ00309SS-16C">16c </A>
Makino K.
Henmi Y.
Terasawa M.
Hara O.
Hamada Y.
Tetrahedron
Lett.
2005,
46:
555
<A NAME="RZ00309SS-17A">17a </A>
Streith J.
Defoin A.
Synthesis
1994,
1107
<A NAME="RZ00309SS-17B">17b </A>
Vogt PF.
Miller MJ.
Tetrahedron
1998,
54:
1317
<A NAME="RZ00309SS-17C">17c </A>
Yamamoto H.
Kawasaki M.
Bull. Chem. Soc. Jpn.
2007,
80:
595
<A NAME="RZ00309SS-17D">17d </A>
Comins DL.
Kuethe JT.
Miller TM.
Fevrier FC.
Brooks CA.
J. Org. Chem.
2005,
70:
5221
<A NAME="RZ00309SS-18A">18a </A>
Al Badri H.
About-Jaudet E.
Collignon N.
Tetrahedron Lett.
1996,
37:
2951
<A NAME="RZ00309SS-18B">18b </A>
Wyatt P.
Villalonga-Barber C.
Motevalli M.
Tetrahedron
Lett.
1999,
40:
149
<A NAME="RZ00309SS-19">19 </A>
Pudovik AN.
Konovalova IV.
Zh. Obshch. Khim.
1961,
31:
1693
<A NAME="RZ00309SS-20">20 </A>
Pudovik AN.
Konovalova IV.
Ishmaevan EA.
Zh. Obshch. Khim.
1963,
33:
2509
<A NAME="RZ00309SS-21A">21a </A>
Claibourne E.
Griffin C.
Daniewski W.
J. Org. Chem.
1970,
35:
1691
<A NAME="RZ00309SS-21B">21b </A>
Darling S.
Subramanian N.
J. Org. Chem.
1975,
40:
2851
<A NAME="RZ00309SS-21C">21c </A>
Darling S.
Muralidharan F.
Muralidaharan V.
Tetrahedron
Lett.
1979,
30:
2757
<A NAME="RZ00309SS-21D">21d </A>
Yamana K.
Nakano H.
Tetrahedron Lett.
1996,
37:
5963
<A NAME="RZ00309SS-21E">21e </A>
Evans D.
Johnson J.
Burgey C.
Campos K.
Tetrahedron Lett.
1999,
40:
2879
<A NAME="RZ00309SS-21F">21f </A>
Al-Badri H.
Maddaluno J.
Masson S.
Collignon N.
J. Chem. Soc., Perkin Trans.
1
1999,
2255
<A NAME="RZ00309SS-21G">21g </A>
Al-Badri H.
Collignon N.
Maddaluno J.
Masson S.
Tetrahedron
2000,
56:
3909
<A NAME="RZ00309SS-22A">22a </A>
Lidström P.
Tierney J.
Wathey B.
Westman J.
Tetrahedron
2001,
57:
9225
<A NAME="RZ00309SS-22B">22b </A>
Perreux L.
Loupy A.
Tetrahedron
2001,
57:
9199
<A NAME="RZ00309SS-23">23 </A>
In this case, we supposed that the
Lewis acids were quenched by the phosphonate moiety of diene 1 , preventing any activation of DTAD. Higher
conversion yields observed for the blank than for the Lewis acid
activated samples supported this hypothesis. Acids could also contribute
to the decomposition of 2c by Boc deprotection.
<A NAME="RZ00309SS-24">24 </A>
A few drops of toluene were added
to guarantee sufficient fluidity of the reaction mixture. Indeed,
the cycloadduct 3c is a viscous oil that
precludes stirring of the mixture.
<A NAME="RZ00309SS-25A">25a </A>
Langa F.
de la Cruz P.
de la Hoz A.
Espildora E.
Cossio F.
Lecea B.
J. Org. Chem.
2000,
65:
2499
<A NAME="RZ00309SS-25B">25b </A>
Diaz-Ortiz A.
Carrillo J.
Cossio F.
Gomez-Escalonilla M.
de la Hoz A.
Moreno A.
Prieto P.
Tetrahedron
2000,
56:
1569
<A NAME="RZ00309SS-25C">25c </A>
Loupy A.
Maurel F.
Sabatie-Gogova A.
Tetrahedron
2004,
60:
1683
<A NAME="RZ00309SS-26">26 </A>
Tang M.
Pyne SG.
J. Org. Chem.
2003,
68:
7818
<A NAME="RZ00309SS-27">27 </A>
Gorenstein D.
Phosphorus-31 NMR, Principles and Applications
Academic
Press;
New York:
1984.
<A NAME="RZ00309SS-28A">28a </A>
Perez P.
Garcia-Moreno M.
Mellet C.
Fernandez J.
Eur.
J. Org. Chem.
2005,
2903
<A NAME="RZ00309SS-28B">28b </A>
Grein F.
J.
Mol. Struct. (Theochem)
2001,
536:
87