Abstract
A preparatively straightforward methodology has been developed which allows the assembly
of silicon-containing carbocycles as mixtures of diastereomers with silicon as the
sole center of stereogenic information. One-step construction of the chiral cyclic
silanes is realized by reaction of equimolar amounts of a dibromide and a chirally
modified dichlorosilane under Barbier conditions giving access to several monofunctionalized
1-sila-1,2,3,4-tetrahydronaphthalenes and a corresponding phenanthrene derivative.
Facile large scale syntheses of 3-(2-bromoaryl)propyl bromides as well as dichlorosilanes
have been elaborated. This highly convergent methodology relies on the novel (-)-menthyl-oxy-substituted
dichlorosilanes, which have the chiral auxiliary for the subsequent optical resolution
installed. These enantiopure dichlorosilanes are useful building blocks for a general
and modular one-step approach to silanes with silicon-centered chirality since this
strategy avoids the linear sequences reported in literature. The optical resolution
has been exemplarily optimized for the 1-phenyl-1-sila-1,2,3,4-tetrahydronaphthalene
derivative and the absolute configuration has been established by X-ray crystallography.
The chiral auxiliary is stereospecifically displaced by simple reduction providing
the highly enantioenriched silane (er = 98:2) which is enantiospecifically chlorinated
as verified by a Walden inversion at silicon.
Key words
Grignard reactions - cyclizations - enantiomeric resolution - heterocycles - silicon
References
<A NAME="RZ10903SS-1">1</A>
To whom inquiries about the reported crystal structure analyses should be addressed.
<A NAME="RZ10903SS-2">2</A> For a general reference see:
Brook MA.
Silicon in Organic Organometallic and Polymer Chemistry
Wiley-Interscience;
New York:
2000.
For reviews including the utilization of compounds with chiral silicon centers see:
<A NAME="RZ10903SS-3A">3a</A>
Maryanoff CA.
Maryanoff BE. In Asymmetric Synthesis
Vol. 4:
Morrison JD.
Scott JW.
Academic Press;
Orlando:
1984.
p.355-374
<A NAME="RZ10903SS-3B">3b</A>
Fleming I.
Barbero A.
Walter D.
Chem. Rev.
1997,
97:
2063
<A NAME="RZ10903SS-4A">4a</A> For an excellent monograph see:
Sommer LH.
Stereochemistry Mechanism and Silicon
McGraw-Hill;
New York:
1965.
<A NAME="RZ10903SS-4B">4b</A>
Sommer LH.
Intra-Sci. Chem. Rep.
1973,
7:
1
For comprehensive reviews see:
<A NAME="RZ10903SS-5A">5a</A>
Corriu RJP.
Guerin C.
Moreau JJE. In Topics in Stereochemistry
Vol. 15:
Eliel EL.
Wiley;
New York:
1984.
p.43-198
<A NAME="RZ10903SS-5B">5b</A>
Corriu RJP.
Guerin C.
Adv. Organomet. Chem.
1982,
20:
265
<A NAME="RZ10903SS-6">6</A>
Sommer LH.
Frye CL.
Parker GA.
Michael KW.
J. Am. Chem. Soc.
1964,
86:
3271
<A NAME="RZ10903SS-7A">7a</A> Cyclic substrate 2 (Figure 1) with the stereogenic silicon being incorporated into a carbocycle was
also successfully resolved by an analogous procedure:
Corriu RJP.
Masse J.
Bull. Soc. Chim. Fr.
1969,
3491
<A NAME="RZ10903SS-7B">7b</A> The achiral 2-sila-1,2,3,4-tetrahydronaphthalene unit is easily assembled in
high yield:
Vdovin VM.
Nametkin NS.
Finkel’shtein ES.
Oppengeim VD.
Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Trans.)
1964,
429
In principle transformations involving reagents with a stereogenic silicon should
be sharply distincted into two classes:
<A NAME="RZ10903SS-8A">8a</A>
silicon functions as the reaction center with bonds being formed and broken at silicon
whereby any induced stereoselectivity stems from the stereogenic silicon (formal silicon
to carbon chirality transfer) and
<A NAME="RZ10903SS-8B">8b</A>
an asymmetrically substituted silicon induces chirality within a molecule corresponding
to chiral auxiliary.
<A NAME="RZ10903SS-9A">9a</A>
Brook AG.
Duff JM.
Anderson DG.
J. Am. Chem. Soc.
1970,
92:
7567
<A NAME="RZ10903SS-9B">9b</A>
Bonini BF.
Mazzanti G.
Zani P.
Maccagnani G.
J. Chem. Soc., Chem. Commun.
1988,
365
<A NAME="RZ10903SS-9C">9c</A>
Larson GL.
Cruz de Maldonado V.
Fuentes LM.
Torres LE.
J. Org. Chem.
1988,
53:
633
<A NAME="RZ10903SS-10A">10a</A>
Hathaway SJ.
Paquette LA.
J. Org. Chem.
1983,
48:
3351
<A NAME="RZ10903SS-10B">10b</A>
Fry JL.
McAdam MA.
Tetrahedron Lett.
1984,
25:
5859
See also:
<A NAME="RZ10903SS-11A">11a</A>
Daniels RG.
Paquette LA.
Organometallics
1982,
1:
1449
<A NAME="RZ10903SS-11B">11b</A>
Larson GL.
Sandoval S.
Cartledge F.
Fronczek FR.
Organometallics
1983,
2:
810
<A NAME="RZ10903SS-11C">11c</A>
Larson GL.
Torres E.
J. Organomet. Chem.
1985,
293:
19
Other chiral auxiliaries have been employed as a subsitute for (-)-menthol [(-)-8]:
<A NAME="RZ10903SS-12A">12a</A> (+)-tartrate:
Dang H.-S.
Roberts BP.
Tocher DA.
J. Chem. Soc., Perkin Trans 1
1995,
117
<A NAME="RZ10903SS-12B">12b</A> (-)-2-Amino-1-butanol:
Jankowski P.
Schaumann E.
Wicha J.
Zarecki A.
Adiwidjaja G.
Tetrahedron: Asymmetry
1999,
10:
519-526
<A NAME="RZ10903SS-12C">12c</A> (-)-Man-delic acid:
Strohmann C.
Hörnig J.
Auer D.
J. Chem. Soc., Chem. Commun.
2002,
766
<A NAME="RZ10903SS-13A">13a</A>
Djerourou A.-H.
Blanco L.
Tetrahedron Lett.
1991,
32:
6325
<A NAME="RZ10903SS-13B">13b</A>
Fukui T.
Kawamoto T.
Tanaka A.
Tetrahedron: Asymmetry
1994,
5:
73
<A NAME="RZ10903SS-13C">13c</A>
Huber P.
Bratovanov S.
Bienz S.
Syldatk C.
Pietzsch M.
Tetrahedron: Asymmetry
1996,
7:
69-78 ; and references cited therein
<A NAME="RZ10903SS-14A">14a</A> For an account see:
Bienz S.
Chimia
1997,
51:
131
<A NAME="RZ10903SS-14B">14b</A> For a recent application see:
Trzoss M.
Shao J.
Bienz S.
Tetrahedron
2002,
58:
5885
<A NAME="RZ10903SS-15">15</A>
Jung ME.
Hogan KT.
Tetrahedron Lett.
1988,
29:
6199
<A NAME="RZ10903SS-16">16</A>
So far very few enantiomerically enriched cyclic silanes have been reported
[7]
[17]
with only 2 (Figure
[1]
) being accessible in reasonable amounts; however the benzylic position has been shown
to be a reactive site.
[18]
<A NAME="RZ10903SS-17A">17a</A>
Roark DN.
Sommer LH.
J. Am. Chem. Soc.
1973,
95:
969
<A NAME="RZ10903SS-17B">17b</A>
Lefour JM.
Loupy A.
Tetrahedron
1978,
34:
2597
<A NAME="RZ10903SS-17C">17c</A> For related work see:
Dang H.-S.
Roberts BP.
Tocher DA.
J. Chem. Soc., Perkin Trans. 1
1995,
117
<A NAME="RZ10903SS-18">18</A>
Corriu RJP.
Henner BJL.
J. Organomet. Chem.
1976,
105:
303
For intramolecular Friedel-Crafts acylations see:
<A NAME="RZ10903SS-19A">19a</A>
Barcza S.
Hoffmann CW.
Tetrahedron
1975,
31:
2363
<A NAME="RZ10903SS-19B">19b</A>
Pitt CG.
Friedman AE.
Rector D.
Wani MC.
Tetrahedron
1975,
31:
2369
<A NAME="RZ10903SS-20">20</A>For an example of a failed intramolecular Friedel-Crafts alkylation (compare ref.7b) see:
<A NAME="RZ10903SS-20">20</A>
Corriu R.
Henner B.
Masse J.
Bull. Soc. Chim. Fr.
1968,
3013
<A NAME="RZ10903SS-21A">21a</A>
Gilman H.
Marrs OL.
J. Org. Chem.
1964,
29:
3175
<A NAME="RZ10903SS-21B">21b</A>
Gilman H.
Marrs OL.
J. Org. Chem.
1965,
30:
325
<A NAME="RZ10903SS-22A">22a</A>
Bickelhaupt F. In
Grignard Reagents: New Developments
Richey HG.
Wiley-Interscience;
New York:
1999.
p.367-393
<A NAME="RZ10903SS-22B">22b</A>
Cannon KC.
Krow GR. In
Handbook of Grignard Reagents
Silverman GS.
Rakita PE.
Marcel Dekker;
New York:
1996.
p.497-526
<A NAME="RZ10903SS-23">23</A> For a very recent example of formation of cyclic silanes via di-Grignard reagents
see:
Tacke R.
Handmann VI.
Bertermann R.
Burschka C.
Penka M.
Seyfried C.
Organometallics
2003,
22:
916-924
<A NAME="RZ10903SS-24A">24a</A> This particular Grignard reagent has been thoroughly examined:
Freijee FJM.
Schat G.
Akkerman OS.
Bickelhaupt F.
J. Organomet. Chem.
1982,
240:
217
<A NAME="RZ10903SS-24B">24b</A> For a detailed review see:
Bickelhaupt F.
Angew. Chem., Int. Ed. Engl.
1987,
26:
990
<A NAME="RZ10903SS-25">25</A>
Pitt CG.
Friedman AE.
Rector DH.
Wani MC.
J. Organomet. Chem.
1976,
121:
37
<A NAME="RZ10903SS-26">26</A>
Meyers AI.
Temple DL.
Nolen RL.
Mihelich ED.
J. Org. Chem.
1974,
39:
2778
<A NAME="RZ10903SS-27">27</A> Alternatively we accessed 3 from expensive 2-bromo-iodobenzene in a three-step sequence consisting of Heck reaction
with methyl acrylate under Jeffrey conditions (81% yield using 18 mol% catalyst) followed
by standard reduction and bromination. For the Heck arylation see:
Vallgårda J.
Appelberg U.
Arvidsson L.-E.
Hjorth S.
Svensson BE.
Hacksell U.
J. Med. Chem.
1996,
39:
1485-1493
<A NAME="RZ10903SS-28">28</A>
Lambert JB.
Fabricius DM.
Hoard JA.
J. Org. Chem.
1979,
44:
1480
<A NAME="RZ10903SS-29">29</A>
Ort O.
Org. Synth.
1987,
65:
203
<A NAME="RZ10903SS-30">30</A> MeSiCl3(20a) and PhSiCl3(20b) are commercially available whereas α-NpSiCl3(20c) is prepared from SiCl4 and α-NpMgBr in 47% yield. See also:
Gilkey JW.
Tyler LJ.
J. Am. Chem. Soc.
1951,
73:
4982
<A NAME="RZ10903SS-31">31</A> For the synthesis of the methyl-substituted derivative
(-)-19a see:
Adrianov KA.
Mamedov AA.
Volkova LM.
Klabunovskii EI.
Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Trans.)
1967,
1432
<A NAME="RZ10903SS-32">32</A>
Russo DA. In
Handbook of Grignard Reagents
Silverman GS.
Rakita PE.
Marcel Dekker;
New York:
1996.
p.405-439 ; and references cited therein
<A NAME="RZ10903SS-33">33</A> Barbier conditions have also been successfully applied to the one-step synthesis
of silicon-containing rings. For an early example see:
Kiely JS.
Boudjouk P.
J. Organomet. Chem.
1979,
182:
173
<A NAME="RZ10903SS-34">34</A> As a matter of fact the phenomenon that silyl ethers are prone to cleavage when
maintained in a hydrocarbon solvent in the presence of deactivated alumina has been
reported and applied to selective deprotection of alcohols:
Feixas J.
Capdevilla A.
Camps F.
Guerrero A.
J. Chem. Soc., Chem. Commun.
1992,
1451
<A NAME="RZ10903SS-35">35</A>
The major shortcoming of preparative reversed phase flash chromatography is the exeptionally
costly reversed phase silica gel, which we found to be long-lasting with respect to
the number of chromatographies and the quality of the product separation. MeCN was
simply distilled at a rotary evaporator in a fume cupboard and re-used.
<A NAME="RZ10903SS-36">36</A>
Sommer LH.
McLick J.
Golino CJ.
J. Am. Chem. Soc.
1972,
94:
669
<A NAME="RZ10903SS-37">37</A>
Since (SiR)-25b is a light liquid wherefore the 1-sila-1,2,3,4-tetrahydronaphthalenes 25 needed to be structurally characterized with the (SiRS)-25c instead which is isolated as a highly viscous oil which solidified upon standing.
<A NAME="RZ10903SS-38">38</A>
Crystallographic data for the structures reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-208732(23a), CCDC-208733 [(SiRS)-25c], and CCDC-208734 [(SiS)-22b]. Copies of the data can be obtained free of charge on application to CCDC 12 Union
Road Cambridge CB21EZ UK [fax: +44(1223)336033; email: deposit@ccdc.cam.ac.uk].
<A NAME="RZ10903SS-39">39</A> For another synthesis of 1-bromo-2-(3-bromopropyl)-benzene(3), see:
Beeby MH.
Mann FG.
J. Chem. Soc. (B)
1951,
411
<A NAME="RZ10903SS-40">40</A> See also:
van der Winkel Y.
van Baar BLM.
Bastiaans HMM.
Bickelhaupt F.
Schenkel M.
Stegmann HB.
Tetrahedron
1990,
46:
1009