Abstract
Antibodies, due to their high specificities and retention, represent potential beta
cell imaging agents, however their slow clearance from the blood may preclude their
use. Antibody fragments (Fabs) have much higher clearance and if they can be made
with similar binding characteristics, would be more efficacious agents. An existing
beta cell specific antibody (K14D10) and its Fab were evaluated with a previously
developed screening assay. The Fab and the intact immunoglobulin (IgG) had similar
affinities (6 - 20 nM), binding sites (300 000 - 700 000 sites/cell), and binding
kinetics (t1/2 = 8 - 18 minutes) for beta cells. However, the cellular specificity was far below
the estimated requisite values needed to overcome the very low beta cell mass in the
pancreas. The Fab cleared the blood twice as fast as the IgG, but did not preferentially
accumulate into pancreas. Thus, generation of Fabs from IgGs with high beta cell binding
and blood clearance appears feasible, but in order for molecules to be useful for
tracking beta cell mass, antibodies of greater cellular specificity will have to be
used.
Key words
Beta cell mass - monoclonal antibodies - Fab - PET
References
- 1
Adams G P, Schier R.
Generating improved single-chain Fv molecules for tumor targeting.
J Immunol Methods.
1999;
231
249-260
- 2
Asfari M, Janjic D, Meda P, Li G, Halban P A, Wollheim C B.
Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell
lines.
Endocrinology.
1992;
130
167-178
- 3
Bazin-Redureau M I, Renard C B, Scherrmann J M.
Pharmacokinetics of heterologous and homologous immunoglobulin G, F(ab')2 and Fab
after intravenous administration in the rat.
J Pharm Pharmacol.
1997;
49
277-281
- 4
Boyle C C, Paine A J, Mather S J.
The mechanism of hepatic uptake of a radiolabelled monoclonal antibody.
Int J Cancer.
1992;
50
912-917
- 5
Brinkmann U, Webber K, Di Carlo A, Beers R, Chowdhury P, Chang K, Chaudhary V, Gallo M,
Pastan I.
Cloning and expression of the recombinant FAb fragment of monoclonal antibody K1 that
reacts with mesothelin present on mesotheliomas and ovarian cancers.
Int J Cancer.
1997;
71
638-644
- 6
Buschard K, Brogren C H, Ropke C, Rygaard J.
Antigen expression of the pancreatic beta-cells is dependent on their functional state,
as shown by a specific, BB rat monoclonal autoantibody IC2.
Apmis.
1988;
96
342-346
- 7
Camera L, Kinuya S, Garmestani K, Pai L H, Brechbiel M W, Gansow O A, Paik C H, Pastan I,
Carrasquillo J A.
Evaluation of a new DTPA-derivative chelator: comparative biodistribution and imaging
studies of 111In-labeled B3 monoclonal antibody in athymic mice bearing human epidermoid
carcinoma xenografts.
Nucl Med Biol.
1993;
20
955-962
- 8
Carter P, Kelley R F, Rodrigues M L, Snedecor B, Covarrubias M, Velligan M D, Wong W L,
Rowland A M, Kotts C E, Carver M E. et al .
High level Escherichia coli expression and production of a bivalent humanized antibody
fragment.
Biotechnology (NY).
1992;
10
163-167
- 9
Casey J L, Napier M P, King D J, Pedley R B, Chaplin L C, Weir N, Skelton L, Green A J,
Hope-Stone L D, Yarranton G T, Begent R H.
Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical
phase I/II study.
Br J Cancer.
2002;
86
1401-1410
- 10
Colcher D, Bird R, Roselli M, Hardman K D, Johnson S, Pope S, Dodd S W, Pantoliano M W,
Milenic D E, Schlom J.
In vivo tumor targeting of a recombinant single-chain antigen-binding protein.
J Natl Cancer Inst.
1990;
82
1191-1197
- 11
Colcher D, Pavlinkova G, Beresford G, Booth B J, Choudhury A, Batra S K.
Pharmacokinetics and biodistribution of genetically-engineered antibodies.
Q J Nucl Med.
1998;
42
225-241
- 12
Covell D G, Barbet J, Holton O D, Black C D, Parker R J, Weinstein J N.
Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice.
Cancer Res.
1986;
46
3969-3978
- 13
DeNardo S J, Peng J S, DeNardo G L, Mills S L, Epstein A L.
Immunochemical aspects of monoclonal antibodies important for radiopharmaceutical
development.
Int J Rad Appl Instrum B.
1986;
13
303-310
- 14
Garnuszek P, Licinska I, Fiedor P, Mazurek A P.
The synthesis, radioiodination and preliminary biological study of the new carboxylic
derivatives of dithizone.
Appl Radiat Isot.
1998;
49
1563-1571
- 15
Hampe C S, Lundgren P, Daniels T L, Hammerle L P, Marcovina S M, Lernmark A.
A novel monoclonal antibody specific for the N-terminal end of GAD65.
J Neuroimmunol.
2001;
113
63-71
- 16
Izard M E, Boniface G R, Hardiman K L, Brechbiel M W, Gansow O A, Walkers K Z.
An improved method for labeling monoclonal antibodies with samarium-153: use of the
bifunctional chelate 2-(p-isothiocyanatobenzyl)-6- methyldiethylenetriaminepentaacetic
acid.
Bioconjug Chem.
1992;
3
346-350
- 17 Kabat E A, Wu T T, Perry H M, Gottesman K, Foeller C. Sequences of Proteins of
Immunological Interest. Washington, DC; Services US DoHaH 1991
- 18
Konidaris C, Simonson W, Michelsen B, Papadopoulos G K.
Specific monoclonal antibodies against the surface of rat islet beta cells.
Cell Biol Int.
2002;
26
817-828
- 19
Logsdon C D, Moessner J, Williams J A, Goldfine I D.
Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion
in pancreatic acinar AR42J cells.
J Cell Biol.
1985;
100
1200-1208
- 20
Malaisse W J.
On the track to the beta-cell.
Diabetologia.
2001;
44
393-406
- 21
Milenic D E, Yokota T, Filpula D R, Finkelman M A, Dodd S W, Wood J F, Whitlow M,
Snoy P, Schlom J.
Construction, binding properties, metabolism, and tumor targeting of a single-chain
Fv derived from the pancarcinoma monoclonal antibody CC49.
Cancer Res.
1991;
51
6363-6371
- 22
Moore A, Bonner-Weir S, Weissleder R.
Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes.
Diabetes.
2001;
50
2231-2236
- 23
Mossner J, Logsdon C D, Williams J A, Goldfine I D.
Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic
acinar AR42J cells.
Diabetes.
1985;
34
891-897
- 24
Neidhardt F C, Bloch P L, Smith D F.
Culture medium for enterobacteria.
J Bacteriol.
1974;
119
736-747
- 25
Padoa C J, Banga J P, Madec A M, Ziegler M, Schlosser M, Ortqvist E, Kockum I, Palmer J,
Rolandsson O, Binder K A, Foote J, Luo D, Hampe C S.
Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of
GAD65 inhibit type 1 diabetes-specific GAD65Abs.
Diabetes.
2003;
52
2689-2695
- 26
Sweet I R, Cook D L, Lernmark A, Greenbaum C J, Krohn K A.
Non-invasive imaging of beta cell mass: a quantitative analysis.
Diabetes Technol Ther.
2004 b;
6
652-659
- 27
Sweet I R, Cook D L, Lernmark A, Greenbaum C J, Wallen A R, Marcum E S, Stekhova S A,
Krohn K A.
Systematic screening of potential beta-cell imaging agents.
Biochem Biophys Res Commun.
2004 a;
314
976-983
- 28
Viti F, Tarli L, Giovannoni L, Zardi L, Neri D.
Increased binding affinity and valence of recombinant antibody fragments lead to improved
targeting of tumoral angiogenesis.
Cancer Res.
1999;
59
347-352
- 29
Yokota T, Milenic D E, Whitlow M, Wood J F, Hubert S L, Schlom J.
Microautoradiographic analysis of the normal organ distribution of radioiodinated
single-chain Fv and other immunoglobulin forms.
Cancer Res.
1993;
53
3776-3783
- 30
Ziegler B, Lucke S, Kohler E, Hehmke B, Schlosser M, Witt S, Besch W, Ziegler M.
Monoclonal antibody-mediated cytotoxicity against rat beta cells detected in vitro
does not cause beta-cell destruction in vivo.
Diabetologia.
1992;
35
608-613
Ian R. Sweet
University of Washington
1959 Pacific Street NE
K-165 Health Sciences Building
Seattle, WA 98195
USA
Telefon: + 2066854775
Fax: + 20 65 43 31 69
eMail: isweet@u.washington.edu