Zusammenfassung
Hintergrund: Die von VEGF abhängigen Signaltransduktionswege sind bei der diabetischen Retinopathie
dereguliert. Daher werden VEGF-Inhibitoren, wie das modifizierte RNA-Oligonukleotid
Pegaptanib (VEGF-Aptamer, Macugen®), das die Interaktion von VEGF165 mit seinem Rezeptor beeinflusst, derzeit als Therapeutika für die Behandlung der
diabetischen Retinopathie diskutiert. VEGF165 stimuliert nicht nur Proliferation und Migration von Endothelzellen, sondern kann
auch die Lokalisation des an der Bildung von Tight Junctions in retinalen Endothelzellen
beteiligten Proteins Occludin verändern, wodurch es zum Zusammenbruch der Blut-Retina-Schranke
kommen könnte. Material und Methoden: Um den Wirkungsmechanismus von VEGF165 und dem VEGF-Aptamer Pegaptanib besser verstehen zu können, haben wir den Einfluss
von VEGF165 und/oder Pegaptanib auf die Proteinzusammensetzung der Tight Junctions in immortalisierten
Endothelzellen aus der Rinderretina (iBREC) durch spezifische Immunfluoreszenzfärbungen
untersucht. Ergebnisse: Die Tight-Junction-Proteine ZO-1, Occludin und Claudin-5 werden in konfluenten iBREC
stark in der Plasmamembran exprimiert, während sie in subkonfluenten Zellen intrazellulär
vorkommen. Nach 1- bis 2-tägiger Inkubation mit VEGF165 (50 ng/ml), war Occludin nicht mehr in der Plasmamembran, sondern intrazellulär lokalisiert.
Dagegen wurden Claudin-5 nicht und ZO-1 nur schwach beeinflusst. Durch Zugabe von
33 μg/ml Pegaptanib waren alle untersuchten Tight-Junction-Proteine nach ca. 24 h
wieder an der Plasmamembran lokalisiert. Schlussfolgerungen: Diese In-vitro-Untersuchungen bestätigen eine wichtige Rolle von Tight-Junction-Proteinen
für den Wirkungsmechanismus von VEGF165 und Pegaptanib in retinalen Endothelzellen.
Abstract
Background: VEGF signalling is deregulated in diabetic retinopathy. Therefore, VEGF inhibitors
like the modified RNA-oligonucleotide pegaptanib (VEGF aptamer, Macugen®) which inhibits
the interaction of VEGF165 with its receptors, are currently being discussed as therapeutic options in the treatment
of diabetic retinopathy. VEGF165 does not only stimulate the proliferation and migration of endothelial cells but
also induces delocalization of occludin which is part of the so-called tight junctions
of endothelial cells likely associated with the breakdown of the blood-retina barrier.
Methods and Material: To further investigate the mechanisms of action of VEGF and its inhibitor, we studied
the influence of VEGF165 and/or pegaptanib on the protein composition of tight junctions in immortalised endothelial
cells of the bovine retina (iBREC) by immunofluorescence staining. Results: The tight junction proteins ZO-1, occludin and claudin-5 are strongly expressed at
the plasma membrane in confluent iBREC, but are located in the cytoplasm in non-confluent
cells. In the presence of 50 ng/ml VEGF165 , occludin was found in the cytoplasm after 1 to 2 days, whereas claudin-5 was not
and ZO-1 was only weakly influenced. However, after addition of 33 μg/ml pegaptanib
for 24 h to VEGF165 -treated iBREC, all tight junction proteins tested were again strongly expressed in
the plasma membrane. Conclusion: These results confirm an important role of tight junction proteins in the mechanisms
of action of VEGF and pegaptanib on endothelial cells.
Schlüsselwörter
diabetische Retinopathie - retinale mikrovaskuläre Endothelzellen - VEGF - VEGF-Inhibitoren
- Pegaptanib
Key words
diabetic retinopathy - retinal microvascular endothelial cells - VEGF - VEGF inhibitors
- pegaptanib
Literatur
1
Aiello L P, Avery R L, Arrigg P G. et al .
Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy
and other retinal disorders.
N Engl J Med.
1994;
331
1480-1487
2
Antonetti D A, Barber A J, Hollinger L A. et al .
Vascular endothelial growth factor induces rapid phosphorylation of tight junction
proteins occludin and zonula occludens 1.
J Biol Chem.
1999;
274
23463-23467
3
Bazzoni G.
Endothelial tight junctions: permeable barriers of the vessel wall.
Thromb Haemost.
2006;
95
36-42
4
Behzadian M A, Windsor L J, Ghaly N. et al .
VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase
and its receptor.
FASEB J.
2003;
17
752-754
5
Boulton M, Foreman D, Williams G. et al .
VEGF localisation in diabetic retinopathy.
Br J Ophthalmol.
1998;
82
561-568
6
Caldwell R B, Bartoli M, Behzadian M A. et al .
Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms
and treatment perspectives.
Diabetes Metab Res Rev.
2003;
19
442-455
7
Caldwell R B, Bartoli M, Behzadian M A. et al .
Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress.
Curr Drug Targets.
2005;
6
511-524
8
Deissler H, Deissler H, Lang G K. et al .
Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal
endothelial cells.
Int J Mol Med.
2005;
16
65-70
9
Deissler H, Deissler H, Lang G K. et al .
TGFβ induces transdifferentiation of iBREC to &alphaSMA-expressing cells.
Int J Mol Med.
2006;
18
577-582
10
Deissler H, Kuhn E M, Lang G E. et al .
Tetraspanin CD 9 is involved in the migration of retinal microvascular endothelial
cells.
Int J Mol Med.
2007;
20
643-652
11
Deissler H, Deissler H, Lang S. et al .
VEGF-induced effects on proliferation, migration and tight junctions are restored
by ranibizumab (Lucentis®) in microvascular retinal endothelial cells.
Br J Ophthalmol.
2008;
92
839-843
12
Ferrara N.
Vascular endothelial growth factor: basic science and clinical progress.
Endocr Rev.
2004;
25
581-611
13
Ferrara N, Damico L, Shams N. et al .
Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding
fragment, as therapy for neovascular age-related macular degeneration.
Retina.
2006;
26
859-870
14
Harhaj N S, Felinski E A, Wolpert E B. et al .
VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes
to endothelial permeability.
Invest Ophthalmol Vis Sci.
2006;
47
5106-5115
15
Kowanetz M, Ferrara N.
Vascular endothelial growth factor signaling pathways: therapeutic perspective.
Clin Cancer Res.
2006;
12
5018-5022
16
Lowe J, Araujo J, Yang J. et al .
Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth
factor in vitro and in vivo.
Exp Eye Res.
2007;
85
425-430
17
Lutty G A, Mathews M K, Merges C. et al .
Adenosine stimulates canine retinal microvascular endothelial cell migration and tube
formation.
Curr Eye Res.
1998;
17
594-607
18
Malik R A, Li C, Aziz W. et al .
Elevated plasma CD 105 and vitreous VEGF levels in diabetic retinopathy.
J Cell Mol Med.
2005;
9
692-697
19
Pan Q, Chathery Y, Wu Y. et al .
Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting.
J Biol Chem.
2007;
282
24049-24056
20
Peters S, Julien S, Heiduschka P. et al .
Antipermeability and antiproliferative effects of standard and frozen bevacizumab
on choroidal endothelial cells.
Br J Ophthalmol.
2007;
91
827-831
21
Qaum T, Xu Q, Joussen A M. et al .
VEGF-initiated blood-retinal barrier breakdown in early diabetes.
Invest Ophthalmol Vis Sci.
2001;
42
2408-2413
22
Raja T T, Grammas P.
VEGF and VEGF receptor levels in retinal and brain-derived endlthelial cells.
Bioch Biophys Res Commun.
2002;
293
710-713
23
Sakakibara A, Furuse M, Saitou M. et al .
Possible involvement of phosphorylation of occludin in tight junction formation.
J Cell Biol.
1997;
137
1393-1401
24
Spitzer M S, Wallenfels-Thilo B, Sierra A. et al .
Antiproliferative and cytotoxic properties of bevacizumab on different ocular cells.
Br J Ophthalmol.
2006;
90
1316-1321
25
Spitzer M S, Yoeruek E, Sierra A. et al .
Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib
(Macugen) and ranibizumab (Lucentis) on different ocular cells.
Graefe’s Arch Clin Exp Ophthalmol.
2007;
245
1837-1842
26
Suzuma K, Takagi H, Otani A. et al .
Increased expression of KDR/Flk-1 (REGFR-2) in murine model of ischemia-induced retinal
neovascularization.
Microvasc Res.
1998;
56
183-191
27
Tsukita S, Furuse M, Itoh M.
Multifunctional strands in tight junctions.
Nat Rev Mol Cell Biol.
2001;
2
285-293
28
Vinores S A.
Technology evaluation: pegaptanib, Eyetech/Pfizer.
Curr Opin Mol Ther.
2003;
5
673-679
29
Watanabe D, Suzuma K, Suzuma I. et al .
Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients
with proliferative diabetic retinopathy.
Am J Ophthalmol.
2005;
139
476-481
30
Witmer A N, Blaauwgeers H G, Weich H A. et al .
Altered expression patterns of VEGF receptors in human diabetic retina and in experimental
VEGF induced retinopathy in monkey.
Invest Ophthalmol Vis Sci.
2002;
43
849-857
31
Wong V.
Phosphorylation of occludin correlates with occludin localization and function at
the tight junction.
Am J Physiol.
1997;
273
C1859-C1867
32
Wu L W, Mayo L D, Dunbar J D. et al .
Utilization of distinct signaling pathways by receptor for vascular endothelial cell
growth factor and other mitogens in the induction of endothelial cell proliferation.
J Biol Chem.
2000;
275
5096-5103
33
Xia P, Aiello L P, Ishii H. et al .
Characterization of vascular endothelial growth factor’s effect on the activation
of Protein Kinase C, its isoforms and endothelial cell growth.
J Clin Invest.
1996;
98
2018-2026
Dr. Heidrun L. Deissler
Augenklinik-Forschungslabor, Universitätsklinikum Ulm
Prittwitzstraße 43
89075 Ulm
Telefon: ++ 49/7 31/50 05 91 55
Fax: ++ 49/7 31/50 04 29 60
eMail: heidrun.deissler@uniklinik-ulm.de