Donohoe, T. J. et al.: 2022 Science of Synthesis, 2022/3: Knowledge Updates 2022/3 DOI: 10.1055/sos-SD-104-00807
Knowledge Updates 2022/3

4.4.38.14 Propargylsilanes (Update 2022)

More Information

Book

Editors: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.

Authors: Jackowski, O. ; Marschner, C. ; Ohmiya, H. ; Perez-Luna, A. ; Pinto, D. C. G. A. ; Rocha, D. H. A. ; dos Santos, C. M. M. ; Silva, V. L. M. ; Sumida, Y. ; Takeda, N. ; Tang, X.; Yoshida, H.

Title: Knowledge Updates 2022/3

Print ISBN: 9783132452848; Online ISBN: 9783132452862; Book DOI: 10.1055/b000000643

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This review is an update to the earlier Science of Synthesis coverage of the synthesis of propargylsilanes (Section 4.4.38). It covers the literature published between 2000 and 2021.

Propargylsilanes can be prepared by a rather large array of methods that rely either on reactions involving C–Si bond formation, or on the manipulation of organosilicon-containing precursors to install a C≡C triple bond. For the first strategy, electrophilic silylation of propargyl or allenyl metals by reaction with halosilanes is the most frequently encountered; however, approaches such as propargylic carbene insertions into hydrosilanes, nucleophilic substitution or addition reactions with silylboranes and other silylmetals, or the rearrangement of propargylic silyl ethers have been developed more recently to diversify the silicon source. For the second type of approach, in addition to established transformations such as alkynylation of silylmethyl halides, α-silyloxiranes, or acylsilanes, the allylic substitution of allylic phosphates or elimination reactions of heteroatom-substituted allylsilanes have also recently gained interest. Moreover, a large body of work has been devoted to accessing elaborated propargylsilanes from simple pre-existing propargylsilane units through functionalization at the acetylenic carbon. Given the relevance of propargylsilanes in the context of stereoselective synthesis, there is persistent interest in the preparation of chiral, nonracemic propargysilanes, and significant progress in this area has been achieved over the last two decades, notably through the implementation of asymmetric catalysis.

 
  • 1 Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
  • 2 Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
  • 3 Curtis-Long MJ, Aye Y. Chem.–Eur. J. 2009; 15: 5402
  • 4 Takeda T, Ozaki M, Kuroi S, Tsubouchi A. J. Org. Chem. 2005; 70: 4233
  • 5 Liu Z, Li Q, Yang Y, Bi X. Chem. Commun. (Cambridge) 2017; 53: 2503
  • 6 Liu Z, Huo J, Fu T, Tan H, Ye F, Hossain ML, Wang J. Chem. Commun. (Cambridge) 2018; 54: 11 419
  • 7 Yang L.-L, Ouyang J, Zou H.-N, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6401
  • 8 Courant T, Kumar R, Turcaud S, Micouin L. Org. Lett. 2016; 18: 4818
  • 9 Fleming I, Takaki K, Thomas AP. J. Chem. Soc., Perkin Trans. 1 1987; 2269
  • 10 Hazra CK, Oestreich M. Org. Lett. 2012; 14: 4010
  • 11 Vyas DJ, Hazra CK, Oestreich M. Org. Lett. 2011; 13: 4462
  • 12 Chen J, Gao S, Chen M. Org. Lett. 2019; 21: 8800
  • 13 Dambacher J, Bergdahl M. J. Org. Chem. 2005; 70: 580
  • 14 Mao W, Oestreich M. Org. Lett. 2020; 22: 8096
  • 15 Mechtler C, Zirngast M, Baumgartner J, Marschner C. Eur. J. Inorg. Chem. 2004; 3254
  • 16 Ramesh R, Reddy DS. Org. Biomol. Chem. 2014; 12: 4093
  • 17 Amakasu T, Sato K, Ohta Y, Kitazawa G, Sato H, Oumiya K, Kawakami Y, Takeuchi T, Kabe Y. J. Organomet. Chem. 2020; 905: 121 006
  • 18 Smirnov P, Katan E, Mathew J, Kostenko A, Karni M, Nijs A, Bolm C, Apeloig Y, Marek I. J. Org. Chem. 2014; 79: 12 122
  • 19 Takeda K, Yamawaki K, Hatakeyama N. J. Org. Chem. 2002; 67: 1786
  • 20 Pons A, Michalland J, Zawodny W, Chen Y, Tona V, Maulide N. Angew. Chem. Int. Ed. 2019; 58: 17 303
  • 21 Ihara E, Tanaka M, Yasuda H, Kanehisa N, Maruo T, Kai Y. J. Organomet. Chem. 2000; 613: 26
  • 22 Simon C, Amatore M, Aubert C, Petit M. Org. Lett. 2015; 17: 844
  • 23 Robertson J, Stafford PM, Bell SJ. J. Org. Chem. 2005; 70: 7133
  • 24 Klein S, Zhang JH, Holler M, Weibel J.-M, Pale P. Tetrahedron 2003; 59: 9793
  • 25 Biddle MM, Reich HJ. J. Org. Chem. 2006; 71: 4031
  • 26 Puriņš M, Mishnev A, Turks M. J. Org. Chem. 2019; 84: 3595
  • 27 Eberhart AJ, Shrives HJ, Álvarez E, Carrër A, Zhang Y, Procter DJ. Chem.–Eur. J. 2015; 21: 7428
  • 28 Schultz-Fademrecht C, Wibbeling B, Fröhlich R, Hoppe D. Org. Lett. 2001; 3: 1221
  • 29 Otte R, Fröhlich R, Wibbeling B, Hoppe D. Angew. Chem. Int. Ed. 2005; 44: 5492
  • 30 Cordes M. Synthesis 2001; 2470
  • 31 Oba G, Moreira G, Manuel G, Koenig M. J. Organomet. Chem. 2002; 643: 324
  • 32 Pape F, Teichert JF. Synthesis 2017; 49: 2470
  • 33 Hammond GB. J. Fluorine Chem. 2006; 127: 476
  • 34 Todo H, Terao J, Watanabe H, Kuniyasu H, Kambe N. Chem. Commun. (Cambridge) 2008; 1332
  • 35 Zhang T, Zheng S, Kobayashi T, Maekawa H. Org. Lett. 2021; 23: 7129
  • 36 Sakaguchi K, Fujita M, Suzuki H, Higashino M, Ohfune Y. Tetrahedron Lett. 2000; 41: 6589
  • 37 Wang X, Gao Q, Buevich AV, Yasuda N, Zhang Y, Yang R.-S, Zhang L.-K, Martin GE, Williamson RT. J. Org. Chem. 2019; 84: 10 024
  • 38 Sakaguchi K, Higashino M, Ohfune Y. Tetrahedron 2003; 59: 6647
  • 39 Denmark SE, Ambrosi A. Synlett 2017; 28: 2415
  • 40 Sakaguchi K, Kubota S, Akagi W, Ikeda N, Higashino M, Ariyoshi S, Shinada T, Ohfune Y, Nishimura T. Chem. Commun. (Cambridge) 2019; 55: 8635
  • 41 Mori-Quiroz LM, Maleczka Jr RE. J. Org. Chem. 2015; 80: 1163
  • 42 Adachi Y, Kamei N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 4446
  • 43 Affo W, Ohmiya H, Fujioka T, Ikeda Y, Nakamura T, Yorimitsu H, Oshima K, Imamura Y, Mizuta T, Miyoshi K. J. Am. Chem. Soc. 2006; 128: 8068
  • 44 Deng Y, Wei X.-J, Wang X, Sun Y, Noël T. Chem.–Eur. J. 2019; 25: 14 532
  • 45 Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
  • 46 Lehr K, Schulthoff S, Ueda Y, Mariz R, Leseurre L, Gabor B, Fürstner A. Chem.–Eur. J. 2015; 21: 219
  • 47 Malkov AV, Kysilka O, Edgar M, Kadlčíková A, Kotora M, Kočovský P. Chem.–Eur. J. 2011; 17: 7162
  • 48 Tsuna K, Noguchi N, Nakada M. Chem.–Eur. J. 2013; 19: 5476
  • 49 Mi X, Wang Y, Zhu L, Wang R, Hong R. Synthesis 2012; 44: 3432
  • 50 Wang L, Prabhudas B, Clive DLJ. J. Am. Chem. Soc. 2009; 131: 6003
  • 51 Suto T, Yanagita Y, Nagashima Y, Takikawa S, Kurosu Y, Matsuo N, Sato T, Chida N. J. Am. Chem. Soc. 2017; 139: 2952
  • 52 Reginato G, Mordini A, Meffre P, Tenti A, Valacchi M, Cariou K. Tetrahedron: Asymmetry 2006; 17: 922
  • 53 Tsubuki M, Takahashi K, Honda T. J. Org. Chem. 2009; 74: 1422
  • 54 Fager-Jokela E, Muuronen M, Khaizourane H, Vázquez-Romero A, Verdaguer X, Riera A, Helaja J. J. Org. Chem. 2014; 79: 10 999
  • 55 Wender PA, Inagaki F, Pfaffenbach M, Stevens MC. Org. Lett. 2014; 16: 2923
  • 56 Organ MG, Mallik D. Can. J. Chem. 2006; 84: 1259
  • 57 Dunn J, Dobbs AP. Tetrahedron 2015; 71: 7386
  • 58 Aikawa K, Maruyama K, Nitta J, Hashimoto R, Mikami K. Org. Lett. 2016; 18: 3354
  • 59 Dong X.-Y, Zhang Y.-F, Ma C.-L, Gu Q.-S, Wang F.-L, Li Z.-L, Jiang S.-P, Liu X.-Y. Nat. Chem. 2019; 11: 1158
  • 60 Fukuda K, Miyashita M, Tanino K. Tetrahedron Lett. 2010; 51: 4523
  • 61 Kim K, Okamoto S, Takayama Y, Sato F. Tetrahedron Lett. 2002; 43: 4237
  • 62 Allegretti PA, Ferreira EM. Org. Lett. 2011; 13: 5924
  • 63 Wienhold S, Fritz L, Judt T, Hackl S, Neubauer T, Sauerer B, Bach T. Synthesis 2021; 53: 4246
  • 64 Lowe JT, Panek JS. Org. Lett. 2005; 7: 3231
  • 65 Lowe JT, Youngsaye W, Panek JS. J. Org. Chem. 2006; 71: 3639
  • 66 Lee J, Panek JS. Org. Lett. 2011; 13: 502
  • 67 Wu J, Pu Y, Panek JS. J. Am. Chem. Soc. 2012; 134: 18 440
  • 68 Wrona IE, Lowe JT, Turbyville TJ, Johnson TR, Beignet J, Beutler JA, Panek JS. J. Org. Chem. 2009; 74: 1897
  • 69 Lee J, Panek JS. J. Org. Chem. 2015; 80: 2959
  • 70 Wang KK, Wang Z, Gu YG. Tetrahedron Lett. 1993; 34: 8391
  • 71 Canales E, Gonzalez AZ, Soderquist JA. Angew. Chem. Int. Ed. 2007; 46: 397
  • 72 Gonzalez AZ, Soderquist JA. Org. Lett. 2007; 9: 1081
  • 73 Li H, Müller D, Guénée L, Alexakis A. Org. Lett. 2012; 14: 5880
  • 74 Li H, Grassi D, Guénée L, Bürgi T, Alexakis A. Chem.–Eur. J. 2014; 20: 16 694
  • 75 Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
  • 76 Gong T.-J, Yu S.-H, Li K, Su W, Lu X, Xiao B, Fu Y. Chem.–Asian J. 2017; 12: 2884
  • 77 Lei G, Zhang H, Chen B, Xu M, Zhang G. Chem. Sci. 2020; 11: 1623
  • 78 Suzuki N, Shimura T, Sakaguchi Y, Masuyama Y. Pure Appl. Chem. 2011; 83: 1781
  • 79 Suzuki N, Hosoya M, Ono T, Mochizuki A, Masuyama Y. J. Organomet. Chem. 2020; 923: 121 410
  • 80 Wipf P, Soth MJ. Org. Lett. 2002; 4: 1787
  • 81 Cunico RF, Zaporowski LF, Rogers M. J. Org. Chem. 1999; 64: 9307
  • 82 Wipf P, Grenon M. Can. J. Chem. 2006; 84: 1226
  • 83 Guintchin BK, Bienz S. Organometallics 2004; 23: 4944
  • 84 Reynolds TE, Bharadwaj AR, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 15 382
  • 85 Reynolds TE, Stern CA, Scheidt KA. Org. Lett. 2007; 9: 2581
  • 86 Reynolds TE, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 7806
  • 87 Rooke DA, Ferreira EM. J. Am. Chem. Soc. 2010; 132: 11 926
  • 88 Barczak NT, Rooke DA, Menard ZA, Ferreira EM. Angew. Chem. Int. Ed. 2013; 52: 7579
  • 89 Unger R, Weisser F, Chinkov N, Stanger A, Cohen T, Marek I. Org. Lett. 2009; 11: 1853
  • 90 Unger R, Cohen T, Marek I. Tetrahedron 2010; 66: 4874
  • 91 Li F.-Q, Zhong S, Lu G, Chan ASC. Adv. Synth. Catal. 2009; 351: 1955
  • 92 Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I. Angew. Chem. Int. Ed. 2013; 52: 13 717
  • 93 Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Angew. Chem. Int. Ed. 2016; 55: 6057
  • 94 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shiada T, Ohfune Y. Org. Lett. 2008; 10: 5449
  • 95 Izzo I, Avallone E, Corte LD, Maulucci N, De Riccardis F. Tetrahedron: Asymmetry 2004; 15: 1181
  • 96 Perrone S, Knochel P. Org. Lett. 2007; 9: 1041
  • 97 Nagy A, Collard L, Indukuri K, Leyssens T, Riant O. Chem.–Eur. J. 2019; 25: 8705
  • 98 Sabbasani VR, Huang G, Xia Y, Lee D. Chem.–Eur. J. 2015; 21: 17 210
  • 99 Kondo Y, Sasaki M, Kawahata M, Yamaguchi K, Takeda K. J. Org. Chem. 2014; 79: 3601
  • 100 Kumar R, Turcaud S, Micouin L. Org. Lett. 2014; 16: 6192
  • 101 Zhao T, Piccardi R, Micouin L. Org. Lett. 2018; 20: 5015
  • 102 Fleming I, Mwaniki JM. J. Chem. Soc., Perkin Trans. 1 1998; 1237
  • 103 Buckle MJC, Fleming I, Gil S, Pang KLC. Org. Biomol. Chem. 2004; 2: 749
  • 104 Kamachi T, Kuno A, Matsuno C, Okamoto S. Tetrahedron Lett. 2004; 45: 4677
  • 105 Li Z, Zard SZ. Org. Lett. 2009; 11: 2868
  • 106 Shintani R, Takatsu K, Katoh T, Nishimura T, Hayashi T. Angew. Chem. Int. Ed. 2008; 47: 1447
  • 107 Karstens WFJ, Klomp D, Rutjes FPJT, Hiemstra H. Tetrahedron 2001; 57: 5123
  • 108 Yao T, Campo MA, Larock RC. J. Org. Chem. 2005; 70: 3511
  • 109 Sakaguchi K, Ayabe M, Watanabe Y, Okada T, Kawamura K, Shinada T, Ohfune Y. Tetrahedron 2009; 65: 10 355
  • 110 Karnezis A, O’Hair RAJ, White JM. Organometallics 2011; 30: 5665
  • 111 Liu H, Yu J, Li X, Yan R, Xiao J.-C, Hong R. Org. Lett. 2015; 17: 4444
  • 112 Izquierdo S, Bouvet S, Wu Y, Molina S, Shafir A. Chem.–Eur. J. 2018; 24: 15 517
  • 113 Cho C.-W, Skucas E, Krische MJ. Organometallics 2007; 26: 3860
  • 114 Yazaki R, Kumagai N, Shibasaki M. Chem.–Asian J. 2011; 6: 1778
  • 115 Ji J.-X, Au-Yeung TT.-L, Wu J, Yip CW, Chan ASC. Adv. Synth. Catal. 2004; 346: 42
  • 116 Ji J.-X, Wu J, Chan ASC. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 11 196
  • 117 Shao Z, Chan ASC. Synthesis 2008; 2868
  • 118 Shao Z, Pu X, Li X, Fan B, Chan ASC. Tetrahedron: Asymmetry 2009; 20: 225
  • 119 Wang J, Shao Z, Yu KDWY, Chan ASC. Adv. Synth. Catal. 2009; 351: 1250
  • 120 Xu Y, Dolbier WR. J. Org. Chem. 2000; 65: 2134
  • 121 Fischer C, Carreira EM. Org. Lett. 2004; 6: 1497
  • 122 Ramalho R, Beignet J, Humphries AC, Cox LR. Synthesis 2005; 3389
  • 123 Beignet J, Jervis PJ, Cox LR. J. Org. Chem. 2008; 73: 5462
  • 124 Song L, Feng Q, Wang Y, Ding S, Wu Y.-D, Zhang X, Chung LW, Sun J. J. Am. Chem. Soc. 2019; 141: 17 441
  • 125 Feng Q, Wu H, Li X, Song L, Chung LW, Wu Y.-D, Sun J. J. Am. Chem. Soc. 2020; 142: 13 867
  • 126 Kirkham JD, Leach AG, Row EC, Harrity JPA. Synthesis 2012; 44: 1964
  • 127 Macé A, Tripoteau F, Zhao Q, Gayon E, Vrancken E, Campagne J.-M, Carboni B. Org. Lett. 2013; 15: 906
  • 128 Betson MS, Fleming I. Org. Biomol. Chem. 2003; 1: 4005
  • 129 Blum A, Hess W, Studer A. Synthesis 2004; 2226
  • 130 Wang Y, Zhu L, Zhang Y, Hong R. Angew. Chem. Int. Ed. 2011; 50: 2787
  • 131 Wang S, Zhang L. Org. Lett. 2006; 8: 4585
  • 132 Jervis PJ, Kariuki BM, Cox LR. Org. Lett. 2006; 8: 4649
  • 133 Nelson B, Hiller W, Pollex A, Hiersemann M. Org. Lett. 2011; 13: 4438
  • 134 Ezcurra JE, Karabelas K, Moore HW. Tetrahedron 2005; 61: 275
  • 135 Oppermann G, Stranberg M, Moore HW, Schaumann E, Adiwidjaja G. Synthesis 2010; 2027
  • 136 Tietze LF, Völkel L, Wulff C, Weigand B, Bittner C, McGrath P, Johnson K, Schäfer M. Chem.–Eur. J. 2001; 7: 1304
  • 137 Breman AC, Dijkink J, van Maaseveen JH, Kinderman SS, Hiemstra H. J. Org. Chem. 2009; 74: 6327
  • 138 Miyawaki A, Kikuchi D, Niki M, Manabe Y, Kanematsu M, Yokoe H, Yoshida M, Shishido K. J. Org. Chem. 2012; 77: 8231
  • 139 Mohr P, Imhoff M.-P, Reggiani F. Tetrahedron Lett. 2015; 56: 2262
  • 140 Dabrowski JA, Haeffner F, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 7694
  • 141 Isobe M, Phoosaha W, Saeeng R, Kira K, Yenjai C. Org. Lett. 2003; 5: 4883
  • 142 Saeeng R, Sirion U, Sahakitpichan P, Isobe M. Tetrahedron Lett. 2003; 44: 6211
  • 143 Karmakar R, Lee D. Org. Lett. 2016; 18: 6105
  • 144 Karstens WFJ, Moolenaar MJ, Rutjes FPJT, Grabowska U, Speckamp WN, Hiemstra H. Tetrahedron Lett. 1999; 40: 8629
  • 145 Durán-Galván M, Connell BT. Tetrahedron 2011; 67: 7901
  • 146 Kwon S, Myers AG. J. Am. Chem. Soc. 2005; 127: 16 796
  • 147 Yoshida A, Akaiwa M, Asakawa T, Hamashima Y, Yokoshima S, Fukuyama T, Kan T. Chem.–Eur. J. 2012; 18: 11 192
  • 148 Tong R, Valentine JC, McDonald FE, Cao R, Fang X, Hardcastle KI. J. Am. Chem. Soc. 2007; 129: 1050
  • 149 Wang Y, Ready JM. Org. Lett. 2012; 14: 2308
  • 150 He W, Hu J, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. Int. Ed. 2018; 57: 3806
  • 151 Hong AY, Vanderwal CD. Tetrahedron 2017; 73: 4160
  • 152 Strom KR, Impastato AC, Moy KJ, Landreth AJ, Snyder JK. Org. Lett. 2015; 17: 2126
  • 153 Qi X, Montgomery J. J. Org. Chem. 1999; 64: 9310
  • 154 Martin DBC, Nguyen LQ, Vanderwal CD. J. Org. Chem. 2012; 77: 17