Fernández, E. et al.: 2021 Science of Synthesis, 2021/2: Knowledge Updates 2021/2 DOI: 10.1055/sos-SD-127-00466
Knowledge Updates 2021/2

27.28 Product Class 28: β-Diketimines (1,3-Diimines)

More Information

Book

Editors: Fernández, E.; Huang, Z.; Jiang, X.; Koch, G.; Marschner, C.; Wang, M.

Authors: Chand, K. ; Davies, G. H. M.; Dorairaj, D. P.; Guo, R.; Hsu, S. C. N. ; Isovitsch, R.; Jiang, X.; Růžička, A.; Sirvinskas, M.; Takeda, N.; Trofimova, A.; Umesh; Vrána, J.; Wang, M.; Wisniewski, S. R.; Xiong, Y.; Ye, Z.-S.; Yudin, A. K.; Zhang, G. Z.

Title: Knowledge Updates 2021/2

Print ISBN: 9783132442061; Online ISBN: 9783132442085; Book DOI: 10.1055/b000000477

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

β-Diketimines, encountered frequently as “nacnac” ligands, have emerged as popular motifs among other ancillary supports. There has been a great deal of interest in these compounds as supporting ligands because of their strong binding to metal ions, their tunable steric and electronic effects, and their diversity in terms of bonding modes. A classical synthetic approach towards β-diketimines is direct condensation of pentane-2,4-diones (and 1,3-diketone analogues) with suitable amines in the presence of an acid source. Recent developments involve the use of molecular sieves to avoid purification problems and to improve yields. Herein, a thorough survey of the synthetic approaches to β-diketimine ligands and their metal complexes, and applications in coordination chemistry, has been compiled.

 
  • 13 Arthur SD, Bennett MA, Brookhart MS, Coughlin EB, Feldman J, Ittel SD, Johnson LK, Killian CM, Kreutzer KA, McCord EF, McLain SJ, Parthasarathy A, Tempel DJ. WO 9 623 010A2, 1996
  • 17 Morozova NB, Gelfond NV, Liskovskaya TI, Stabnikov PA, Semyannikov PP, Trubin SV, Mischenko AV, Igumenov IK, Norman JA. Proc.–Electrochem. Soc. 2005; 2005–09: 667
  • 24 Hill LMR, Gherman BF, Aboelella NW, Cramer CJ, Tolman WB. Dalton Trans. 2006; 4944
  • 26 Chuang W.-J, Hsu S.-P, Chand K, Yu F.-L, Tsai C.-L, Tseng Y.-H, Lu Y.-H, Kuo J.-Y, Carey JR, Chen H.-Y, Chen H.-Y, Chiang MY, Hsu SCN. Inorg. Chem. 2017; 56: 2722
  • 32 Chand K, Tsai C.-L, Chen H.-Y, Ching W.-M, Hsu S.-P, Carey JR, Hsu SCN. Eur. J. Inorg. Chem. 2018; 1093
  • 34 Budzelaar PHM, Moonen NNP, de Gelder R, Smits JMM, Gal AW. Eur. J. Inorg. Chem. 2000; 753
  • 35 Tang Y, Chen Z, Ji G, Sun X, Xu C, Li J. EP 3 037 409A1, 2016
  • 42 Carey DT, Cope-Eatough EK, Vilaplana-Mafé E, Mair FS, Pritchard RG, Warren JE, Woods RJ. Dalton Trans. 2003; 1083
  • 47 Takamura S, Yoshimiya T, Kameyama S, Nishida A, Yamamoto H, Noguchi M. Synthesis 2000; 637
  • 51 Barnes D, Brown GL, Brownhill M, German I, Herbert CJ, Jolleys A, Kennedy AR, Liu B, McBride K, Mair FS, Pritchard RG, Sanders A, Warren JE. Eur. J. Inorg. Chem. 2009; 1219
  • 54 Holm RH, O’Connor M. Prog. Inorg. Chem. 1971; 241
  • 57 Gibson VC, Newton C, Redshaw C, Solan GA, White AJP, Williams DJ, Maddox PJ. Chem. Commun. (Cambridge) 1998; 1651
  • 60 Klementyeva SV, Afonin MY, Bogomyakov AS, Gamer MT, Roesky PW, Konchenko SN. Eur. J. Inorg. Chem. 2016; 3666
  • 80 Lappert MF, Pearce R. J. Chem. Soc., Chem. Commun. 1973; 24
  • 81 Jarvis JAJ, Kilbourn BT, Pearce R, Lappert MF. J. Chem. Soc., Chem. Commun. 1973; 475
  • 82 Jarvis JAJ, Pearce R, Lappert MF. J. Chem. Soc., Dalton Trans. 1977; 999
  • 84 Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2004; 126: 16 896
  • 93 Karlin KD, Zubieta J. Copper Coordination Chemistry: Biochemical and Inorganic Perspectives. Adenine; Guilderland, NY 1983
  • 94 Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; Mill Valley, CA 1994
  • 113 Wallace KJ, Hanes R, Anslyn E, Morey J, Kilway KV, Siegel J. Synthesis 2005; 2080
  • 114 Guillet GL, Sloane FT, Ermert DM, Calkins MW, Peprah MK, Knowles ES, Čižmár E, Abboud KA, Meisel MW, Murray LJ. Chem. Commun. (Cambridge) 2013; 49: 6635
  • 126 Figgis BN, Hitchman MA. Ligand Field Theory and Its Applications. Wiley-VCH; Weinheim, Germany 2000
  • 131 Llorente VB, Dzhagan VM, Gaponik N, Iglesias RA, Zahn DRT, Lesnyak V. J. Phys. Chem. 2017; 121: 18 244
  • 136 Cook BJ, Di Francesco GN, Ferreira RB, Lukens JT, Silberstein KE, Keegan BC, Catalano VJ, Lancaster KM, Shearer J, Murray LJ. Inorg. Chem. 2018; 57: 11 382
  • 137 Chen Y, Lu E, Gan W. CN 101 492 390, 2009
  • 146 Vitanova DV, Hampel F, Hultzsch KC. Dalton Trans. 2005; 1565
  • 149 Meerwein H. Org. Synth., Coll. Vol. V 1973; 1080
  • 156 Bernskoetter WH, Lobkovsky E, Chirik PJ. Chem. Commun. (Cambridge) 2004; 764
  • 157 Nikiforov GB, Roesky HW, Labahn T, Vidovic D, Neculai D. Eur. J. Inorg. Chem. 2003; 433
  • 170 Hao H, Cui C, Roesky HW, Bai G, Schmidt H.-G, Noltemeyer M. Chem. Commun. (Cambridge) 2001; 1118
  • 171 Spielmann J, Piesik D, Wittkamp B, Jansen G, Harder S. Chem. Commun. (Cambridge) 2009; 3455
  • 177 Peppe C, Tuck DG, Victoriano L. J. Chem. Soc., Dalton Trans. 1982; 2165