27.28 Product Class 28: β-Diketimines (1,3-Diimines)
Book
Editors: Fernández, E.; Huang, Z.; Jiang, X.; Koch, G.; Marschner, C.; Wang, M.
Title: Knowledge Updates 2021/2
Print ISBN: 9783132442061; Online ISBN: 9783132442085; Book DOI: 10.1055/b000000477
1st edition © 2021 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract

β-Diketimines, encountered frequently as “nacnac” ligands, have emerged as popular motifs among other ancillary supports. There has been a great deal of interest in these compounds as supporting ligands because of their strong binding to metal ions, their tunable steric and electronic effects, and their diversity in terms of bonding modes. A classical synthetic approach towards β-diketimines is direct condensation of pentane-2,4-diones (and 1,3-diketone analogues) with suitable amines in the presence of an acid source. Recent developments involve the use of molecular sieves to avoid purification problems and to improve yields. Herein, a thorough survey of the synthetic approaches to β-diketimine ligands and their metal complexes, and applications in coordination chemistry, has been compiled.
Key words
β-diketimines - 1,3-diimines - nacnac ligands - β-diketiminate ligands - condensation reactions - 1,3-diketones - amines - coordination chemistry- 6 Feldman J, McLain SJ, Parthasarathy A, Marshall WJ, Calabrese JC, Arthur SD. Organometallics 1997; 16: 1514
- 13 Arthur SD, Bennett MA, Brookhart MS, Coughlin EB, Feldman J, Ittel SD, Johnson LK, Killian CM, Kreutzer KA, McCord EF, McLain SJ, Parthasarathy A, Tempel DJ. WO 9 623 010A2, 1996
- 17 Morozova NB, Gelfond NV, Liskovskaya TI, Stabnikov PA, Semyannikov PP, Trubin SV, Mischenko AV, Igumenov IK, Norman JA. Proc.–Electrochem. Soc. 2005; 2005–09: 667
- 23 Chuang W.-J, Chen H.-Y, Chen W.-T, Chang H.-Y, Chiang MY, Chen H.-Y, Hsu SCN. RSC Adv. 2016; 6: 36 705
- 26 Chuang W.-J, Hsu S.-P, Chand K, Yu F.-L, Tsai C.-L, Tseng Y.-H, Lu Y.-H, Kuo J.-Y, Carey JR, Chen H.-Y, Chen H.-Y, Chiang MY, Hsu SCN. Inorg. Chem. 2017; 56: 2722
- 31 Morris WD, Wolczanski PT, Sutter J, Meyer K, Cundari TR, Lobkovsky EB. Inorg. Chem. 2014; 53: 7467
- 32 Chand K, Tsai C.-L, Chen H.-Y, Ching W.-M, Hsu S.-P, Carey JR, Hsu SCN. Eur. J. Inorg. Chem. 2018; 1093
- 39 Oskam JH, Fox HH, Yap KB, McConville DH, O’Dell R, Lichtenstein BJ, Schrock RR. J. Organomet. Chem. 1993; 459: 185
- 42 Carey DT, Cope-Eatough EK, Vilaplana-Mafé E, Mair FS, Pritchard RG, Warren JE, Woods RJ. Dalton Trans. 2003; 1083
- 45 Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2006; 128: 3445
- 51 Barnes D, Brown GL, Brownhill M, German I, Herbert CJ, Jolleys A, Kennedy AR, Liu B, McBride K, Mair FS, Pritchard RG, Sanders A, Warren JE. Eur. J. Inorg. Chem. 2009; 1219
- 53 Hamedani NG, Arabi H, Zohuri GH, Mair FS, Jolleys A. J. Polym. Sci., Part A: Polym. Chem. 2013; 51: 1520
- 57 Gibson VC, Newton C, Redshaw C, Solan GA, White AJP, Williams DJ, Maddox PJ. Chem. Commun. (Cambridge) 1998; 1651
- 60 Klementyeva SV, Afonin MY, Bogomyakov AS, Gamer MT, Roesky PW, Konchenko SN. Eur. J. Inorg. Chem. 2016; 3666
- 62 Bambirra S, Perazzolo F, Boot SJ, Sciarone TJJ, Meetsma A, Hessen B. Organometallics 2008; 27: 704
- 64 Yao Y, Xue M, Luo Y, Zhang Z, Jiao R, Zhang Y, Shen Q, Wong W, Yu K, Sun J. J. Organomet. Chem. 2003; 678: 108
- 66 Neculai D, Roesky HW, Neculai AM, Magull J, Herbst-Irmer R, Walfort B, Stalke D. Organometallics 2003; 22: 2279
- 67 Neculai D, Roesky HW, Neculai AM, Magull J, Schmidt H.-G, Noltemeyer M. J. Organomet. Chem. 2002; 643: 47
- 76 Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT. Nat. Chem. Biol. 2006; 2: 486
- 77 Sakhaei Z, Kundu S, Donnelly JM, Bertke JA, Kim WY, Warren TH. Chem. Commun. (Cambridge) 2017; 53: 549
- 79 Spencer DJE, Reynolds AM, Holland PL, Jazdzewski BA, Duboc-Toia C, Le Pape L, Yokota S, Tachi Y, Itoh S, Tolman WB. Inorg. Chem. 2002; 41: 6307
- 83 Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2002; 124: 10 660
- 84 Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2004; 126: 16 896
- 90 Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2001; 123: 3229
- 92 Phanopoulos A, Leung AHM, Yow S, Palomas D, White AJP, Hellgardt K, Horton A, Crimmin MR. Dalton Trans. 2017; 46: 2081
- 93 Karlin KD, Zubieta J. Copper Coordination Chemistry: Biochemical and Inorganic Perspectives. Adenine; Guilderland, NY 1983
- 94 Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; Mill Valley, CA 1994
- 97 Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS. Faraday Discuss. 2011; 148: 11
- 103 Vela J, Zhu L, Flaschenriem CJ, Brennessel WW, Lachicotte RJ, Holland PL. Organometallics 2007; 26: 3416
- 107 Williams VA, Wolczanski PT, Sutter J, Meyer K, Lobkovsky EB, Cundari TR. Inorg. Chem. 2014; 53: 4459
- 114 Guillet GL, Sloane FT, Ermert DM, Calkins MW, Peprah MK, Knowles ES, Čižmár E, Abboud KA, Meisel MW, Murray LJ. Chem. Commun. (Cambridge) 2013; 49: 6635
- 118 Baidina IA, Stabnikov PA, Vasiliev AD, Gromilov SA, Igumenov IK. J. Struct. Chem. (Engl. Transl.) 2004; 45: 671
- 122 Khusniyarov MM, Bill E, Weyhermüller T, Bothe E, Wieghardt K. Angew. Chem. Int. Ed. 2011; 50: 1652
- 124 Andersen RA, Faegri Jr K, Green JC, Haaland A, Lappert MF, Leung WP, Rypdal K. Inorg. Chem. 1988; 27: 1782
- 126 Figgis BN, Hitchman MA. Ligand Field Theory and Its Applications. Wiley-VCH; Weinheim, Germany 2000
- 127 Drouin F, Oguadinma PO, Whitehorne TJJ, Prud’homme RE, Schaper F. Organometallics 2010; 29: 2139
- 129 Xia Z, Fang H, Zhang X, Molokeev MS, Gautier R, Yan Q, Wei S.-H, Poeppelmeier KR. Chem. Mater. 2018; 30: 1121
- 131 Llorente VB, Dzhagan VM, Gaponik N, Iglesias RA, Zahn DRT, Lesnyak V. J. Phys. Chem. 2017; 121: 18 244
- 134 Kriegel I, Jiang C, Rodríguez-Fernaëndez J, Schaller RD, Talapin DV, Da Como E, Feldmann J. J. Am. Chem. Soc. 2012; 134: 1583
- 136 Cook BJ, Di Francesco GN, Ferreira RB, Lukens JT, Silberstein KE, Keegan BC, Catalano VJ, Lancaster KM, Shearer J, Murray LJ. Inorg. Chem. 2018; 57: 11 382
- 138 Asano E, Hatayama Y, Kurisu N, Ohtani A, Hashimoto T, Kurihara Y, Ueda K, Ishihara S, Nagao H, Yamaguchi Y. Dalton Trans. 2018; 47: 8003
- 150 Pietrzak T, Korzyński MD, Justyniak I, Zelga K, Kornowicz A, Ochal Z, Lewiński J. Chem.–Eur. J. 2017; 23: 7997
- 152 Louloudi M, Mitopoulou K, Evaggelou E, Deligiannakis Y, Hadjiliadis N. J. Mol. Catal. A: Chem. 2003; 198: 231
- 154 Hitchcock PB, Lappert MF, Linnolahti M, Sablong R, Severn JR. J. Organomet. Chem. 2009; 694: 667
- 160 Al-Afyouni MH, Suturina E, Pathak S, Atanasov M, Bill E, DeRosha DE, Brennessel WW, Neese F, Holland PL. J. Am. Chem. Soc. 2015; 137: 10 689
- 170 Hao H, Cui C, Roesky HW, Bai G, Schmidt H.-G, Noltemeyer M. Chem. Commun. (Cambridge) 2001; 1118