Ackermann, L. : 2022 Science of Synthesis, 2021/5: Electrochemistry in Organic Synthesis DOI: 10.1055/sos-SD-236-00280
Electrochemistry in Organic Synthesis

14 Electrochemistry in Natural Product Synthesis

More Information

Book

Editor: Ackermann, L.

Authors: Brown, R. C. D. ; Enders, P.; Fang, P.; Folgueiras-Amador, A. A. ; Francke, R. ; Galczynski, J.; Gosmini, C. ; Hodgson, J. W.; Hou, Z.-W.; Huang, H.; Huang, Z.; Inagi, S. ; Kuciński, K. ; Kuriyama, M. ; Lam, K. ; Lambert, T. H.; Leech, M. C. ; Lennox, A. J. J. ; Lin, Z.; Little, R. D.; Massignan, L.; Mei, T.-S.; Meyer, T. H.; Moeller, K. D. ; Onomura, O. ; Prudlik, A.; Ruan, Z. ; Scheremetjew, A. ; Schiltz, P.; Selt, M.; Villani, E. ; Waldvogel, S. R. ; Wang, Z.-H.; Wu, T.; Xing, Y.-K.; Xu, H.-C. ; Yamamoto, K.

Title: Electrochemistry in Organic Synthesis

Print ISBN: 9783132442122; Online ISBN: 9783132442146; Book DOI: 10.1055/b000000126

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The multistep synthesis of natural products has historically served as a useful and informative platform for showcasing the best, state-of-the-art synthetic methodologies and technologies. Over the last several decades, electrochemistry has proved itself to be a useful tool for conducting redox reactions. This is primarily due to its unique ability to selectively apply any oxidizing or reducing potential to a sufficiently conductive reaction solution. Electrochemical redox reactions are readily scaled and can be more sustainable than competing strategies based on conventional redox reagents. In this chapter, we summarize the examples where electrochemistry has been used in the synthesis of natural products. The chapter is organized by the reaction type of the electrochemical step and covers both oxidative and reductive reaction modes.

 
  • 1 Pollok D, Waldvogel SR. Chem. Sci 2020; 11: 12386
  • 2 Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed 2018; 57: 6018
  • 3 Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed 2018; 57: 5594
  • 4 Yan M, Kawamata Y, Baran PS. Chem. Rev 2017; 117: 13230
  • 5 Kärkäs MD. Chem. Soc. Rev 2018; 47: 5786
  • 6 Heard DM, Lennox AJJ. Angew. Chem. Int. Ed 2020; 59: 18866
  • 7 Leech MC, Lam K. Acc. Chem. Res 2020; 53: 121
  • 8 Hayrapetyan D, Shkepu V, Seilkhanov OT, Zhanabil Z, Lam K. Chem. Commun. (Cambridge) 2017; 53: 8451
  • 9 Zhang S, Li L, Wang H, Li Q, Liu W, Xu K, Zeng C. Org. Lett 2018; 20: 252
  • 10 Schäfer HJ. Top. Curr. Chem 1990; 152: 91
  • 11 Corey EJ, Sauers RR. J. Am. Chem. Soc 1959; 81: 1739
  • 12 Shono T, Hamaguchi H, Matsumura Y. J. Am. Chem. Soc 1975; 97: 4264
  • 13 Jones AM, Banks CE. Beilstein J. Org. Chem 2014; 10: 3056
  • 14 Shankaraiah N, da Silva WA, Andrade CKZ, Silva Santos L. Tetrahedron Lett 2008; 49: 4289
  • 15 Mirabal-Gallardo Y, Piérola J, Shankaraiah N, Silva Santos L. Tetrahedron Lett 2012; 53: 3672
  • 16 Kam T.-S, Lim T.-M, Tan G.-H. J. Chem. Soc., Perkin Trans. 1 2001; 1594
  • 17 Shankaraiah N, Pilli RA, Silva Santos L. Tetrahedron Lett 2008; 49: 5098
  • 18 Takahashi S, Kakinuma N, Iwai H, Yanagisawa T, Nagai K, Suzuki K, Tokunaga T, Nakagawa A. J. Antibiot 2000; 53: 1252
  • 19 Yoshida J.-i, Suga S. Chem.–Eur. J 2002; 8: 2650
  • 20 Ruetsch Y, Boni T, Borgeat A. Curr. Top. Med. Chem 2005; 1: 175
  • 21 Subramaniam G, Kam T.-S. Helv. Chim. Acta 2008; 91: 930
  • 22 Quirion JC, Husson HP. Nat. Prod. Lett 1993; 3: 291
  • 23 Masui M, Hara S, Ueshima T, Kawaguchi T, Ozaki S. Chem. Pharm. Bull 1983; 31: 4209
  • 24 Horn EJ, Rosen BR, Chen Y, Tang J, Chen K, Eastgate MD, Baran PS. Nature (London) 2016; 533: 77
  • 25 Dixon DD, Lockner JW, Zhou Q, Baran PS. J. Am. Chem. Soc 2012; 134: 8432
  • 26 Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc 2017; 139: 7448
  • 27 Tokuda M, Fujita H, Miyamoto T, Suginome H. Tetrahedron 1993; 49: 2413
  • 28 Sobin BA, Tanner FW. J. Am. Chem. Soc 1954; 76: 4053
  • 29 Oida S, Ohki E. Chem. Pharm. Bull 1969; 17: 1405
  • 30 Takahata H, Banba Y, Tajima M, Momose T. J. Org. Chem 1991; 56: 240
  • 31 Shono T, Kise N. Chem. Lett 1987; 697
  • 32 Felner I, Schenker K. Helv. Chim. Acta 1970; 53: 754
  • 33 Wong CM, Buccini J, Chang I, Te Raa J, Schwenk R. Can. J. Chem 1969; 47: 2421
  • 34 Blackman AJ, Hambley TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett 1987; 28: 5561
  • 35 Higuchi K, Sato Y, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Org. Lett 2009; 11: 197
  • 36 Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem 2018; 36: 909
  • 37 Liu B, Duan S, Sutterer AC, Moeller KD. J. Am. Chem. Soc 2002; 124: 10101
  • 38 Mihelcic J, Moeller KD. J. Am. Chem. Soc 2004; 126: 9106
  • 39 King TJ, Farrell IW, Halsall TG, Thaller V. J. Chem. Soc., Chem. Commun 1977; 727
  • 40 Lansbury PT, Zhi B.-x. Tetrahedron Lett 1988; 29: 5735
  • 41 Röder E, Wiedenfeld H, Frisse M. Phytochemistry 1980; 19: 1275
  • 42 Donohoe TJ, Guillermin JB, Frampton C, Walter DS. Chem. Commun. (Cambridge) 2000; 465
  • 43 Wu H, Moeller KD. Org. Lett 2007; 9: 4599
  • 44 Brady SF, Singh MP, Janso JE, Clardy J. J. Am. Chem. Soc 2000; 122: 2116
  • 45 Maifeld SV, Lee D. Synlett 2006; 1623
  • 46 Valdivia C, Kettering M, Anke H, Thines E, Sterner O. Tetrahedron 2005; 61: 9527
  • 47 Miller AK, Hughes CC, Kennedy-Smith JJ, Gradl SN, Trauner D. J. Am. Chem. Soc 2006; 128: 17057
  • 48 Black DStC, Keller PA, Kumar N. Tetrahedron Lett 1989; 30: 5807
  • 49 Boger DL, Wolkenberg SE. J. Org. Chem 2000; 65: 9120
  • 50 Ganton MD, Kerr MA. Org. Lett 2005; 7: 4777
  • 51 Okamoto K, Chiba K. Org. Lett 2020; 22: 3613
  • 52 Yamamura S, Shizuri Y, Shigemori H, Okuno Y, Ohkubo M. Tetrahedron 1991; 47: 635
  • 53 Takakura H, Yamamura S. Tetrahedron Lett 1999; 40: 299
  • 54 Doi F, Ogamino T, Sugai T, Nishiyama S. Tetrahedron Lett 2003; 44: 4877
  • 55 Ogamino T, Ohnishi S, Ishikawa Y, Sugai T, Obata R, Nishiyama S. Sci. Technol. Adv. Mater 2006; 7: 175
  • 56 Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett 2019; 21: 1828
  • 57 Lipp A, Ferenc D, Gütz C, Geffe M, Vierengel N, Schollmeyer D, Schäfer HJ, Waldvogel SR, Opatz T. Angew. Chem. Int. Ed 2018; 57: 11055
  • 58 Lips S, Waldvogel SR. ChemElectroChem 2019; 6: 1649
  • 59 Ogamino T, Ishikawa Y, Nishiyama S. Heterocycles 2003; 61: 73
  • 60 Ogamino T, Obata R, Nishiyama S. Tetrahedron Lett 2006; 47: 727
  • 61 Rosen BR, Werner EW, OʼBrien AG, Baran PS. J. Am. Chem. Soc 2014; 136: 5571
  • 62 Romero KJ, Galliher MS, Raycroft MAR, Chauvin JPR, Bosque I, Pratt DA, Stephenson CRJ. Angew. Chem. Int. Ed 2018; 57: 17125
  • 63 Romero KJ, Keylor MH, Griesser M, Zhu X, Strobel EJ, Pratt DA, Stephenson CRJ. J. Am. Chem. Soc 2020; 142: 6499
  • 64 Naito Y, Tanabe T, Kawabata Y, Ishikawa Y, Nishiyama S. Tetrahedron Lett 2010; 51: 4776
  • 65 Park YS, Little RD. J. Org. Chem 2008; 73: 6807
  • 66 Chiba K, Arakawa T, Tada M. J. Chem. Soc., Perkin Trans. 1 1998; 2939
  • 67 Elsherbini M, Wirth T. Chem.–Eur. J 2018; 24: 13399
  • 68 Inoue K, Ishikawa Y, Nishiyama S. Org. Lett 2010; 12: 436
  • 69 Moore JC, Davies ES, Walsh DA, Sharma P, Moses JE. Chem. Commun. (Cambridge) 2014; 50: 12523
  • 70 Nakamura H, Yasui K, Kanda Y, Baran PS. J. Am. Chem. Soc 2019; 141: 1494
  • 71 Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc 2019; 141: 6392
  • 72 Nugent ST, Baizer MM, Little RD. Tetrahedron Lett 1982; 23: 1339
  • 73 Fox DP, Little RD, Baizer MM. J. Org. Chem 1985; 50: 2202
  • 74 Amputch MA, Little RD. Tetrahedron 1991; 47: 383
  • 75 Harmata M, Bohnert GJ. Org. Lett 2003; 5: 59
  • 76 Ayer WA, Saeedi-Ghomi MH. Can. J. Chem 1981; 59: 2536
  • 77 Murata Y, Ohtsuka T, Shirahama H, Matsumoto T. Tetrahedron Lett 1981; 22: 4313
  • 78 Moens L, Baizer MM, Little RD. J. Org. Chem 1986; 51: 4497
  • 79 Sowell CG, Wolin RL, Little RD. Tetrahedron Lett 1990; 31: 485
  • 80 Kende AS, Roth B, Sanfilippo PJ, Blacklock TJ. J. Am. Chem. Soc 1982; 104: 5808
  • 81 Shono T, Kise N, Fujimoto T, Tominaga N, Morita H. J. Org. Chem 1992; 57: 7175
  • 82 Kise N, Sakurai T. Tetrahedron Lett 2010; 51: 70
  • 83 Kise N, Isemoto S, Sakurai T. Org. Lett 2009; 11: 4902
  • 84 Kise N, Isemoto S, Sakurai T. J. Org. Chem 2011; 76: 9856
  • 85 Shono T, Yoshida K, Ando K, Usui Y, Hamaguchi H. Tetrahedron Lett 1978; 4819
  • 86 Shono T, Usui Y, Hamaguchi H. Tetrahedron Lett 1980; 21: 1351
  • 87 Francke R, Little RD. Chem. Soc. Rev 2014; 43: 2492
  • 88 Auer L, Weymuth C, Scheffold R. Helv. Chim. Acta 1993; 76: 810