Bäckvall, J.-E. : 2023 Science of Synthesis, 2022/4: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT) DOI: 10.1055/sos-SD-237-00162
Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

12 Dynamic Kinetic Resolution and Dynamic Kinetic Asymmetric Transformation of Atropisomers

More Information

Book

Editor: Bäckvall, J.-E.

Authors: Adriaensen, K. ; Akai, S. ; Berreur, J. ; Bhat, V. ; Clayden, J. ; Collins, B. S. L. ; Córdova, A. ; De Vos, D. ; Deiana, L.; Faber, K. ; Fletcher, S. P. ; Goetzke, F. W. ; González-Granda, S. ; Gotor-Fernández, V. ; Hafeman, N. J. ; Jin, Z. ; Kanomata, K. ; Kroutil, W. ; Liu, Y.; Modicom, F.; Pàmies, O. ; Sardini, Jr., S. R.; Stoltz, B. M. ; Winkler, C. K. ; Wu, X. ; Xie, J.-H. ; Zhang, K.; Zhou, Q.-L.

Title: Dynamic Kinetic Resolution (DKR) and Dynamic Kinetic Asymmetric Transformations (DYKAT)

Print ISBN: 9783132453777; Online ISBN: 9783132453791; Book DOI: 10.1055/b000000439

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Stereoenriched atropisomeric compounds find important applications in various areas of chemistry and their synthesis is therefore a critical research target. This chapter presents a selection of the best methods available to date for the asymmetric preparation of atropisomeric compounds using dynamic stereoselective techniques. For the more common (hetero)biaryls, the selected reactions are classified according to the conformational stability of the substrates, i.e. whether they are freely rotating or are configurationally stable and require a chemically induced, temporary lowering of their rotation barrier before an asymmetric transformation can lock the axial chirality again. Strategies towards the stereoselective synthesis of non-biaryl atropisomers using dynamic resolution techniques are also covered.

 
  • 1 Ōki M, Topics in Stereochemistry. Allinger NL, Eliel EL, Wilen SH. Wiley; New York 1983. 14.
  • 2 Clayden J, Moran WJ, Edwards PJ, LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
  • 3 LaPlante SR, Edwards PJ, Fader LD, Jakalian A, Hucke O. ChemMedChem 2011; 6: 505
  • 4 LaPlante SR, Fader LD, Fandrick KR, Fandrick DR, Hucke O, Kemper R, Miller SPF, Edwards PJ. J. Med. Chem. 2011; 54: 7005
  • 5 Li Y.-M, Kwong F.-Y, Yu W.-Y, Chan ASC. Coord. Chem. Rev. 2007; 251: 2119
  • 6 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 7 Cheng JK, Xiang S.-H, Li S, Ye L, Tan B. Chem. Rev. 2021; 121: 4805
  • 8 Erbas-Cakmak S, Leigh DA, McTernan CT, Nussbaumer AL. Chem. Rev. 2015; 115: 10081
  • 9 Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Chem. Soc. Rev. 2017; 46: 2592
  • 10 Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
  • 11 Shimizu M, Hiyama T. Science of Synthesis: Stereoselective Synthesis 2011; 3: 605
  • 12 Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 13 Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem. Rev. 2015; 115: 11239
  • 14 Lloyd-Williams P, Giralt E. Chem. Soc. Rev. 2001; 30: 145
  • 15 Bringmann G, Reuscher H. Angew. Chem. Int. Ed. Engl. 1989; 28: 1672
  • 16 Bringmann G, Hartung T. Angew. Chem. Int. Ed. Engl. 1992; 31: 761
  • 17 Bringmann G, Gulder T, Gulder TAM, Breuning M. Chem. Rev. 2011; 111: 563
  • 18 Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Chem. Soc. Rev. 2021; 50: 2968
  • 19 Bringmann G, Scharl H, Maksimenka K, Radacki K, Braunschweig H, Wich P, Schmuck C. Eur. J. Org. Chem. 2006; 4349
  • 20 Yu C, Huang H, Li X, Zhang Y, Wang W. J. Am. Chem. Soc. 2016; 138: 6956
  • 21 Beleh OM, Miller E, Toste FD, Miller SJ. J. Am. Chem. Soc. 2020; 142: 16461
  • 22 Deng R, Xi J, Li Q, Gu Z. Chem 2019; 5: 1834
  • 23 Shimada T, Cho Y.-H, Hayashi T. J. Am. Chem. Soc. 2002; 124: 13396
  • 24 Cho Y.-H, Kina A, Shimada T, Hayashi T. J. Org. Chem. 2004; 69: 3811
  • 25 Feng J, Bi X, Xue X, Li N, Shi L, Gu Z. Nat. Commun. 2020; 11: 4449
  • 26 Bi X, Feng J, Xue X, Gu Z. Org. Lett. 2021; 23: 3201
  • 27 Liu Y, Tse Y.-LS, Kwong FY, Yeung Y.-Y. ACS Catal. 2017; 7: 4435
  • 28 Zhao K, Duan L, Xu S, Jiang J, Fu Y, Gu Z. Chem 2018; 4: 599
  • 29 Chao Z, Ma M, Gu Z. Org. Lett. 2020; 22: 6441
  • 30 Xu S, Zhao K, Gu Z. Adv. Synth. Catal. 2018; 360: 3877
  • 31 Luo J, Zhang T, Wang L, Liao G, Yao Q.-J, Wu Y.-J, Zhan B.-B, Lan Y, Lin X.-F, Shi B.-F. Angew. Chem. Int. Ed. 2019; 58: 6708
  • 32 Wang Q, Cai Z.-J, Liu C.-X, Gu Q, You S.-L. J. Am. Chem. Soc. 2019; 141: 9504
  • 33 Liao G, Yao Q.-J, Zhang Z.-Z, Wu Y.-J, Huang D.-Y, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 3661
  • 34 Gustafson JL, Lim D, Miller SJ. Science (Washington, D. C.) 2010; 328: 1251
  • 35 Miyaji R, Asano K, Matsubara S. J. Am. Chem. Soc. 2015; 137: 6766
  • 36 Miyaji R, Asano K, Matsubara S. Chem.–Eur. J. 2017; 23: 9996
  • 37 Gustafson JL, Lim D, Barrett KT, Miller SJ. Angew. Chem. Int. Ed. 2011; 50: 5125
  • 38 Staniland S, Adams RW, McDouall JJW, Maffucci I, Contini A, Grainger DM, Turner NJ, Clayden J. Angew. Chem. Int. Ed. 2016; 55: 10755
  • 39 Hornillos V, Carmona JA, Ros A, Iglesias-Sigüenza J, López-Serrano J, Fernández R, Lassaletta JM. Angew. Chem. Int. Ed. 2018; 57: 3777
  • 40 Ramírez-López P, Ros A, Estepa B, Fernández R, Fiser B, Gómez-Bengoa E, Lassaletta JM. ACS Catal. 2016; 6: 3955
  • 41 Ros A, Estepa B, Ramírez-López P, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2013; 135: 15730
  • 42 Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
  • 43 Carmona JA, Hornillos V, Ramírez-López P, Ros A, Iglesias-Sigüenza J, Gómez-Bengoa E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2018; 140: 11067
  • 44 Hornillos V, Ros A, Ramírez-López P, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. Chem. Commun. (Cambridge) 2016; 52: 14121
  • 45 Ramírez-López P, Ros A, Romero-Arenas A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2016; 138: 12053
  • 46 Hazra CK, Dherbassy Q, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2014; 53: 13871
  • 47 Dherbassy Q, Djukic J.-P, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2018; 57: 4668
  • 48 Ma Y.-N, Zhang H.-Y, Yang S.-D. Org. Lett. 2015; 17: 2034
  • 49 Jolliffe JD, Armstrong RJ, Smith MD. Nat. Chem. 2017; 9: 558
  • 50 Zhang J, Wang J. Angew. Chem. Int. Ed. 2018; 57: 465
  • 51 Guo D, Zhang J, Zhang B, Wang J. Org. Lett. 2018; 20: 6284
  • 52 Moustafa GAI, Oki Y, Akai S. Angew. Chem. Int. Ed. 2018; 57: 10278
  • 53 Bringmann G, Breuning M, Endress H, Vitt D, Peters K, Peters E.-M. Tetrahedron 1998; 54: 10677
  • 54 Mori K, Itakura T, Akiyama T. Angew. Chem. Int. Ed. 2016; 55: 11642
  • 55 Clayden J. Angew. Chem. Int. Ed. Engl. 1997; 36: 949
  • 56 Yang J, Zhang J.-W, Bao W, Qiu S.-Q, Li S, Xiang S.-H, Song J, Zhang J, Tan B. J. Am. Chem. Soc. 2021; 143: 12924
  • 57 Ahmed A, Bragg RA, Clayden J, Lai LW, McCarthy C, Pink JH, Westlund N, Yasin SA. Tetrahedron 1998; 54: 13277
  • 58 Chan V, Kim JG, Jimeno C, Carroll PJ, Walsh PJ. Org. Lett. 2004; 6: 2051
  • 59 Gao Z, Qian J, Yang H, Hang X.-C, Zhang J, Jiang G. Chem. Commun. (Cambridge) 2020; 56: 7265
  • 60 Fugard AJ, Lahdenperä ASK, Tan JSJ, Mekareeya A, Paton RS, Smith MD. Angew. Chem. Int. Ed. 2019; 58: 2795
  • 61 Li S.-L, Wu Q, Yang C, Li X, Cheng J.-P. Org. Lett. 2019; 21: 5495
  • 62 Li S.-L, Yang C, Wu Q, Zheng H.-L, Li X, Cheng J.-P. J. Am. Chem. Soc. 2018; 140: 12836
  • 63 Barrett KT, Miller SJ. J. Am. Chem. Soc. 2013; 135: 2963
  • 64 Barrett KT, Metrano AJ, Rablen PR, Miller SJ. Nature (London) 2014; 509: 71
  • 65 Clayden JP, Lai LW. Angew. Chem. Int. Ed. 1999; 38: 2556
  • 66 Clayden J, McCarthy C, Cumming JG. Tetrahedron Lett. 2000; 41: 3279
  • 67 Clayden J, Lai LW, Helliwell M. Tetrahedron 2004; 60: 4399
  • 68 Beak P, Anderson DR, Curtis MD, Laumer JM, Pippel DJ, Weisenburger GA. Acc. Chem. Res. 2000; 33: 715
  • 69 Clayden J. Chem. Commun. (Cambridge) 2004; 127
  • 70 Clayden J, Lai LW. Tetrahedron Lett. 2001; 42: 3163
  • 71 Clayden J, Johnson P, Pink JH, Helliwell M. J. Org. Chem. 2000; 65: 7033
  • 72 Andersen KK. Tetrahedron Lett. 1962; 93
  • 73 Solladié G, Hutt J, Girardin A. Synthesis 1987; 173
  • 74 Clayden J, Mitjans D, Youssef LH. J. Am. Chem. Soc. 2002; 124: 5266
  • 75 Clayden J, Stimson CC, Keenan M. Synlett 2005; 1716
  • 76 Mori K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 5633
  • 77 Jin L, Yao Q.-J, Xie P.-P, Li Y, Zhan B.-B, Han Y.-Q, Hong X, Shi B.-F. Chem 2020; 6: 497
  • 78 Song H, Li Y, Yao Q.-J, Jin L, Liu L, Liu Y.-H, Shi B.-F. Angew. Chem. Int. Ed. 2020; 59: 6576
  • 79 Li Z, Wang X, Cui Y.-M, Ma J.-H, Fang L.-L, Han L.-L, Yang Q, Xu Z, Xu L.-W. Chem.–Eur. J. 2021; 27: 4336
  • 80 Wang Y.-B, Wu Q.-H, Zhou Z.-P, Xiang S.-H, Cui Y, Yu P, Tan B. Angew. Chem. Int. Ed. 2019; 58: 13443
  • 81 Paley RS, Liu JM, Lichtenstein BR, Knoedler VL, Sanan TT, Adams DJ, Fernández J, Rablen PR. Org. Lett. 2003; 5: 309
  • 82 Kitagawa O, Kohriyama M, Taguchi T. J. Org. Chem. 2002; 67: 8682
  • 83 Terauchi J, Curran DP. Tetrahedron: Asymmetry 2003; 14: 587
  • 84 Kitagawa O, Takahashi M, Yoshikawa M, Taguchi T. J. Am. Chem. Soc. 2005; 127: 3676
  • 85 Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T. J. Am. Chem. Soc. 2006; 128: 12923
  • 86 Wright TB, Evans PA. Chem. Rev. 2021; 121: 9196
  • 87 Lu S, Ng SVH, Lovato K, Ong J.-Y, Poh SB, Ng XQ, Kürti L, Zhao Y. Nat. Commun. 2019; 10: 3061
  • 88 Yang G.-H, Zheng H, Li X, Cheng J.-P. ACS Catal. 2020; 10: 2324
  • 89 Ototake N, Morimoto Y, Mokuya A, Fukaya H, Shida Y, Kitagawa O. Chem.–Eur. J. 2010; 16: 6752
  • 90 Diener ME, Metrano AJ, Kusano S, Miller SJ. J. Am. Chem. Soc. 2015; 137: 12369
  • 91 Crawford JM, Stone EA, Metrano AJ, Miller SJ, Sigman MS. J. Am. Chem. Soc. 2018; 140: 868
  • 92 Yao Q.-J, Xie P.-P, Wu Y.-J, Feng Y.-L, Teng M.-Y, Hong X, Shi B.-F. J. Am. Chem. Soc. 2020; 142: 18266
  • 93 Zhang S, Yao Q.-J, Liao G, Li X, Li H, Chen H.-M, Hong X, Shi B.-F. ACS Catal. 2019; 9: 1956
  • 94 Zhang J, Xu Q, Wu J, Fan J, Xie M. Org. Lett. 2019; 21: 6361
  • 95 Vaidya SD, Toenjes ST, Yamamoto N, Maddox SM, Gustafson JL. J. Am. Chem. Soc. 2020; 142: 2198
  • 96 Ye C.-X, Chen S, Han F, Xie X, Ivlev S, Houk KN, Meggers E. Angew. Chem. Int. Ed. 2020; 59: 13552
  • 97 Kim A, Kim A, Park S, Kim S, Jo H, Ok KM, Lee SK, Song J, Kwon Y. Angew. Chem. Int. Ed. 2021; 60: 12279
  • 98 Adler T, Bonjoch J, Clayden J, Font-Bardía M, Pickworth M, Solans X, Solé D, Vallverdú L. Org. Biomol. Chem. 2005; 3: 3173
  • 99 Betson MS, Bracegirdle A, Clayden J, Helliwell M, Lund A, Pickworth M, Snape TJ, Worrall CP. Chem. Commun. (Cambridge) 2007; 754
  • 100 Clayden J, Turner H. Tetrahedron Lett. 2009; 50: 3216
  • 101 Clayden J, Worrall CP, Moran WJ, Helliwell M. Angew. Chem. Int. Ed. 2008; 47: 3234
  • 102 Clayden J, Senior J, Helliwell M. Angew. Chem. Int. Ed. 2009; 48: 6270