2.12 Industrial Applications of Fluorine Chemistry in Plasma Etch Gases
Book
Editor: Paquin, J.-F.
Title: Modern Strategies in Organofluorine Chemistry 2
Online ISBN: 9783132458307; Book DOI: 10.1055/b000000927
early view © Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Nevado, C.; You, S.-L.
Type: Multivolume Edition
Abstract

Reactive ion etching is a key technology in the production of advanced semiconductor devices with a resolution of down to sub-10-nm scales. Depending on the exact application, NF3, SF6 as well as complex fluoro(hydro)carbons are used to generate a plasma consisting of ions and other reactive species which converts silicon and its derivatives into volatile compounds. Recently, the development objectives of new etch gases have moved from pure performance to a more complex set of properties including low global warming potential (GWP) and compliance with regulation on fluoroorganic compounds (PFAS). The structure of fluorinated etch gases with low GWP incorporates chemically "weak spots" facilitating atmospheric degradation. The fragmentation in the energetic plasma environment can be predicted by computational methods, enabling the optimization of the ion composition for high etch rate or selectivity between different materials.
Key words
Bosch process - computational chemistry - fluorocarbons - fluoroorganic synthesis - global warming potential (GWP) - mass spectrometry - perfluoroalkyl substances (PFAS) - plasma chemistry - reactive ion etching- 5 Oehrlein GS, Brandstadter SM, Bruce RL, Chang JP, DeMott JC, Donnelly VM, Dussart R, Fischer A, Gottscho RA, Hamaguchi S, Honda M, Hori M, Ishikawa K, Jaloviar SG, Kanarik KJ, Karahashi K, Ko A, Kothari H, Kuboi N, Kushner MJ, Lill T, Luan P, Mesbah A, Miller E, Nath S, Ohya Y, Omura M, Park C, Poulose J, Rauf S, Sekine M, Smith TG, Stafford N, Standaert T, Ventzek PLG. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2024; 42: 41501
- 7 Syvret RG In: Organofluorine Chemical Gases of Industrial Importance in Semiconductor Materials Processing Wiley Hoboken, NJ 2022;
- 9 Darwent BdeB. National Standard Reference Data Series No. 31. National Bureau of Standards; Washington, D. C. 1970
- 11 Schaepkens M, Standaert TEFM, Rueger NR, Sebel PGM, Oehrlein GS, Cook JM. J. Vac. Sci. Technol., A 1999; 17: 26
- 12 Standaert TEFM, Schaepkens M, Rueger NR, Sebel PGM, Oehrlein GS. J. Vac. Sci. Technol., A 1998; 16: 239
- 13 Standaert TEFM, Hedlund C, Joseph EA, Oehrlein GS, Dalton TJ. J. Vac. Sci. Technol., A 2004; 22: 53
- 15 LINX-Consulting Electronics Specialty Gases Report. 2023 Accessed October , 2024 at: www.linx-consulting.com/reports-services/specialty-gases/
- 19 Woytek AJ, In: Fluorine: The First Hundred Years (1886–1986) Banks RE, Sharp DWA, Tatlow J.-C. Elsevier Sequoia New York 1986; 331
- 21 Siegemund G, Schwertfeger W, Feyring A, Smart B, Behr F, Vogel H, McKusick B, Kirsch P. Fluorine Compounds, Organic, in Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2016.
- 30 The National Institute for Occupational Safety and Health (NIOSH): Sulfur Pentafluoride; Accessed October , 2024 at: www.cdc.gov/niosh/pel88/5714-22.html.
- 32 Simmonds PG, Rigby M, Manning AJ, Park S, Stanley KM, McCulloch A, Henne S, Graziosi F, Maione M, Arduini J, Reimann S, Vollmer MK, Mühle J, OʼDoherty S, Young D, Krummel PB, Fraser PJ, Weiss RF, Salameh PK, Harth CM, Park M.-K, Arnold T, Rennick C, Steele LP, Mitrevski B, H. Ray HJW, Prinn RG. Atmos. Chem. Phys. 2020; 20: 7271
- 35 Mühle J, Trudinger CM, Western LM, Rigby M, Vollmer MK, Park S, Manning AJ, Say D, Ganesan A, Steele LP, Ivy DJ, Arnold T, Li S, Stohl A, Harth CM, Salameh PK, McCulloch A, OʼDoherty S, Park M.-K, Jo CO, Young D, Stanley KM, Krummel PB, Mitrevski B, Hermansen O, Lunder C, Evangeliou N, Yao B, Kim J, Hmiel B, Buizert C, Petrenko VV, Arduini J, Maione M, Etheridge DM, Michalopoulou E, Czerniak M, Severinghaus JP, Reimann S, Simmonds PG, Fraser PJ, Prinn RG, Weiss RF. Atmos. Chem. Phys. 2019; 19: 10335
- 37 Nakamura S, Itano M, Aoyama H, Shibahara K, Yokoyama S, Hirose M. Jpn. J. Appl. Phys. 2003; 42: 5759
- 38 Syvret RG. Discussion of Industrial Synthetic Routes to Hexafluoro-1,3-butadiene, C4F6. 2020 Accessed October , 2024 at: www.efcgases.com/blog/synthetic-routes-c4f6/
- 50 Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ. Integr. Environ. Assess. Manage. 2011; 7: 513
- 51 Williams J, Gaines LGT, Grulke CM, Lowe CN, Sinclair GFB, Samano V, Thillainadarajah I, Meyer B, Patlewicz G, Richard AM. Front. Environ. Sci. 2022; 10: 850019
- 52 GHGRP Electronics Manufacturing. United States Environmental Protection Agency Greenhouse Gas Reporting Program (GHGRP), 2018 Accessed October , 2024 at: www.epa.gov/ghgreporting/ghgrp-electronics-manufacturing
- 53 Minx JC, Lamb WF, Andrew RM, Canadell JG, Crippa M, Döbbeling N, Forster PM, Guizzardi D, Olivier J, Peters GP, Pongratz J, Reisinger A, Rigby M, Saunois M, Smith SJ, Solazzo E, Tian H. Earth Syst. Sci. Data 2021; 13: 5213
- 54 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018, Annex 6. United States Environmental Protection Agency; Accessed October , 2024 at: www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2018
- 55 Global Warming Potential Values. The Intergovernmental Panel on Climate Change (IPCC); Accessed October , 2024 at: www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf
- 59 Sugai H, Ghanashev I, Hosokawa M, Mizuno K, Nakamura K, Toyoda H, Yamaguchi K. Plasma Sources Sci. Technol. 2001; 10: 378
- 60 Pahl A. COMSOL Blog. (August 4, 2014); Accessed October , 2024 at: www.comsol.com/blogs/electron-energy-distribution-function
- 61 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT 2016