Paquin, J.-F. : Science of Synthesis: Modern Strategies in Organofluorine Chemistry 2 DOI: 10.1055/sos-SD-244-00015

2.12 Industrial Applications of Fluorine Chemistry in Plasma Etch Gases

More Information

Book

Editor: Paquin, J.-F.

Authors: Kirsch, P. ; Koike, T.

Title: Modern Strategies in Organofluorine Chemistry 2

Online ISBN: 9783132458307; Book DOI: 10.1055/b000000927

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Nevado, C.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Reactive ion etching is a key technology in the production of advanced semiconductor devices with a resolution of down to sub-10-nm scales. Depending on the exact application, NF3, SF6 as well as complex fluoro(hydro)carbons are used to generate a plasma consisting of ions and other reactive species which converts silicon and its derivatives into volatile compounds. Recently, the development objectives of new etch gases have moved from pure performance to a more complex set of properties including low global warming potential (GWP) and compliance with regulation on fluoroorganic compounds (PFAS). The structure of fluorinated etch gases with low GWP incorporates chemically "weak spots" facilitating atmospheric degradation. The fragmentation in the energetic plasma environment can be predicted by computational methods, enabling the optimization of the ion composition for high etch rate or selectivity between different materials.

 
  • 5 Oehrlein GS, Brandstadter SM, Bruce RL, Chang JP, DeMott JC, Donnelly VM, Dussart R, Fischer A, Gottscho RA, Hamaguchi S, Honda M, Hori M, Ishikawa K, Jaloviar SG, Kanarik KJ, Karahashi K, Ko A, Kothari H, Kuboi N, Kushner MJ, Lill T, Luan P, Mesbah A, Miller E, Nath S, Ohya Y, Omura M, Park C, Poulose J, Rauf S, Sekine M, Smith TG, Stafford N, Standaert T, Ventzek PLG. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2024; 42: 41501
  • 7 Syvret RG In: Organofluorine Chemical Gases of Industrial Importance in Semiconductor Materials Processing Wiley Hoboken, NJ 2022;
  • 9 Darwent BdeB. National Standard Reference Data Series No. 31. National Bureau of Standards; Washington, D. C. 1970
  • 14 Laermer F, Schilp A. US 5501893, 1992
  • 19 Woytek AJ, In: Fluorine: The First Hundred Years (1886–1986) Banks RE, Sharp DWA, Tatlow J.-C. Elsevier Sequoia New York 1986; 331
  • 20 Benning AF, Park JD, Krahler SE. US 2458551, 1947
  • 21 Siegemund G, Schwertfeger W, Feyring A, Smart B, Behr F, Vogel H, McKusick B, Kirsch P. Fluorine Compounds, Organic, in Ullmannʼs Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany 2016.
  • 22 Scherer O, Korinth J, Frisch P. GB 1025759, 1963
  • 23 Scherer O, Kühn H, Forche E. DE 1000798, 1952
  • 24 Lehms I, Kaden R, Mross D, Hass D. DD 215014, 1983
  • 29 Denbigh KG, Whytlaw-Gray R. J. Chem. Soc. 1934; 1346
  • 32 Simmonds PG, Rigby M, Manning AJ, Park S, Stanley KM, McCulloch A, Henne S, Graziosi F, Maione M, Arduini J, Reimann S, Vollmer MK, Mühle J, OʼDoherty S, Young D, Krummel PB, Fraser PJ, Weiss RF, Salameh PK, Harth CM, Park M.-K, Arnold T, Rennick C, Steele LP, Mitrevski B, H. Ray HJW, Prinn RG. Atmos. Chem. Phys. 2020; 20: 7271
  • 33 Harmon J. US 2404374, 1943
  • 34 Tatlow J.-C, Coe PL. DE 1205533, 1962
  • 35 Mühle J, Trudinger CM, Western LM, Rigby M, Vollmer MK, Park S, Manning AJ, Say D, Ganesan A, Steele LP, Ivy DJ, Arnold T, Li S, Stohl A, Harth CM, Salameh PK, McCulloch A, OʼDoherty S, Park M.-K, Jo CO, Young D, Stanley KM, Krummel PB, Mitrevski B, Hermansen O, Lunder C, Evangeliou N, Yao B, Kim J, Hmiel B, Buizert C, Petrenko VV, Arduini J, Maione M, Etheridge DM, Michalopoulou E, Czerniak M, Severinghaus JP, Reimann S, Simmonds PG, Fraser PJ, Prinn RG, Weiss RF. Atmos. Chem. Phys. 2019; 19: 10335
  • 39 Kuznetsov AS, Ozol SI, Rudovsky DN. RU 2264376, 2004
  • 40 Miller WT. US 2668182, 1950
  • 41 Haszeldine RN. J. Chem. Soc. 1952; 4423
  • 44 Bildinov IK, Zabolotskikh AV, Podsevalov PV. RU 2246477, 2003
  • 45 Bildinov IK, Zabolotskikh AV, Podsevalov PV. RU 2272017, 2003
  • 46 Tortelli V, Millefanti S, Carella S. US 8536387, 2008
  • 47 Hedrick V, Brandstadter S, Boggs J, Cohn M, Reddy GM, Ramachandran PV. WO 2006026400, 2005
  • 49 Ohno H, Ohi T. US 8030528, 2007
  • 50 Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SPJ. Integr. Environ. Assess. Manage. 2011; 7: 513
  • 51 Williams J, Gaines LGT, Grulke CM, Lowe CN, Sinclair GFB, Samano V, Thillainadarajah I, Meyer B, Patlewicz G, Richard AM. Front. Environ. Sci. 2022; 10: 850019
  • 53 Minx JC, Lamb WF, Andrew RM, Canadell JG, Crippa M, Döbbeling N, Forster PM, Guizzardi D, Olivier J, Peters GP, Pongratz J, Reisinger A, Rigby M, Saunois M, Smith SJ, Solazzo E, Tian H. Earth Syst. Sci. Data 2021; 13: 5213
  • 61 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01. Gaussian, Inc.; Wallingford, CT 2016