Sportverletz Sportschaden 2019; 33(02): 104-112
DOI: 10.1055/a-0625-8705
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Relationships Between Olympic Weightlifting Exercises, Peak Power of the Upper and Lower Limb, Muscle Volume and Throwing Ball Velocity in Elite Male Handball Players

Beziehungen zwischen der maximalen Beinkraft sowie der maximalen Leistung der oberen und unteren Extremität, des Muskelvolumens und der Wurfgeschwindigkeit bei Elitehandballspielern
Souhail Hermassi
1   Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
,
Karl Stefan Delank
2   Martin-Luther-Universität Halle-Wittenberg, Halle
,
Georg Fieseler
3   Helios Klinikum Warbung
,
Thomas Bartels
4   SportsClinic Halle
,
Mohamed Souhaiel Chelly
1   Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
,
Riadh Khalifa
1   Sport Science Program, College of Arts and Sciences, Qatar University, Doha, Qatar
,
Kevin Laudner
5   Illinois State University
,
Stephan Schulze
2   Martin-Luther-Universität Halle-Wittenberg, Halle
,
René Schwesig
2   Martin-Luther-Universität Halle-Wittenberg, Halle
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
11. Juli 2018 (online)

Abstract

Background This study aimed to investigate relationships between peak power (PP) as measured by upper limb (PPUL) and lower limb (PPLL) force velocity tests, maximal upper limb force assessed by clean and jerk (1RMCJ) and snatch (1RMSE) exercises, estimates of local muscle volume and throwing ball velocity.

Methods Thirty elite male handball players volunteered for the investigation (age: 20.3 ± 2.1 years; body mass: 82.5 ± 10.5 kg; height: 1.85 ± 0,07 %; body fat: 13.1 ± 2.1 %). Lower and upper limb force velocity tests were performed on appropriately modified forms of a Monark cycle ergometer with measurement of PPUL and PPLL, and the corresponding respective maximal forces (F0UL and F0LL) and velocities (V0UL and V0LL). Snatched (SN) and clean and jerk (CJ) exercises were performed to one repetition maximum (1RM). Handball throwing velocity was measured with jump shot (JS) without run-up (TW) and 3 steps shot (T3 step). Muscle volumes of the upper and lower limbs were estimated with a standard anthropometric kit.

Results The 1RM CJ proved to be the most important predictor for throwing velocity. All types of throwing showed a high correlation with this parameter (JS: r = 0.75; TW: r = 0.62; T3 step: r = 0.66). The highest relation was detected between jump shot and 1RM snatch technique (r = 0.82). The PPUL muscle volume correlated highly with PPUL absolute power (r = 0.70). In contrast, we did not find any comparable relations for the lower limb (muscle volume vs. PPUL absolute power: r = 0.07).

Conclusions Our results highlight the contribution of both lower and upper limbs to handball throwing velocity, suggesting the need for coaches to include upper and lower limb strength weightlifting exercises and power programs when improving the throwing velocity of handball players.

Zusammenfassung

Fragestellung Ziel der Studie war es, die Beziehungen zwischen der maximalen Ergometerleistung der oberen (PPUL) und unteren (PPLL) Extremität und der Maximalkraft (Umsetzen und Stoßen, olympisches Gewichtheben: Reißen) zur Wurfgeschwindigkeit und zum lokalen Muskelvolumen aufzuklären.

Material und Methoden 30 professionelle Handballspieler nahmen an der Untersuchung teil (Alter: 20,3 ± 2,1 Jahre; Gewicht: 82,5 ± 10,5 kg; Größe: 1,85 ± 0,07 m; Körperfett: 13,1 ± 2,1 %). Die Ergometrietests der oberen und unteren Extremität wurden auf einem modifizierten Ergometer (Monark-cycle) unter Messung der PPUL und PPLL durchgeführt. Hierbei wurden die maximalen Kräfte und Geschwindigkeiten ermittelt. Das 1RM wurde für die Testübungen olympisches Gewichtheben/Reißen (SN) sowie Umsetzen und Stoßen (CJ) bestimmt. Die maximalen Wurfgeschwindigkeiten wurden für 3 Wurftypen (Sprungwurf, Schlagwurf aus dem Stand, Schlagwurf aus der Bewegung (3 Schritte) mit Stemmschritt) gemessen. Überdies erfolgte die Messung der Muskelvolumina.

Ergebnisse Die Maximalkraftleistung in der Testübung Umsetzen und Stoßen erwies sich als wichtigster Prädiktor für die Wurfgeschwindigkeit. Alle Wurftypen korrelierten hoch mit den Maximalkraftparametern (Sprungwurf: r = 0,75; Schlagwurf/Stand: r = 0,62; Schlagwurf/Bewegung: r = 0,66). Die höchste Korrelation ließ sich für die Parameter Sprungwurf und SN berechnen (r = 0,82). Das Muskelvolumen der oberen Extremität korrelierte hoch mit der PPUL (r = 0,70). Im Gegensatz dazu fanden sich keine vergleichbaren Beziehungen zur unteren Extremität (Muskelvolumen untere Extremität vs. PPUL: r = 0,07).

Schlussfolgerung Die Ergebnisse bekräftigen die Notwendigkeit eines Maximalkrafttrainings im Bereich der oberen und unteren Extremität zum Zwecke der Erhöhung der Wurfgeschwindigkeit. Für die Trainingspraxis ergibt sich die Empfehlung, spezifische Kräftigungsprogramme in das Handballtraining zu integrieren.

 
  • References

  • 1 Hermassi S, Wollny R, Schwesig R. et al. Effects of in-season circuit training on physical abilities in male handball players. J Strength Cond Res 2017 , (Epub ahead of print)
  • 2 Hermassi S, Chelly MS, Fieseler G. et al. Effects of In-Season Explosive Strength Training on Maximal Leg Strength, Jumping, Sprinting, and Intermittent Aerobic Performance in Male Handball Athletes. Sportverl Sportschaden 2017; 31: 167-173
  • 3 van den Tillaar R, Ettema G. Effect of body size and gender in overarm throwing performance. Eur J Appl Physiol 2004; 91: 413-418
  • 4 Marques MC, van den Tillaar R, Vescovi JD. et al. Relationship between throwing velocity, muscle power, and bar velocity during bench press in elite handball players. Int J Sports Physiol Perform 2007; 2: 414-422
  • 5 Wagner H, Fuchs PX, von Duvillard SP. Specific physiological and biomechanical performance in elite, sub-elite and in non-elite male team handball players. J Sports Med Phys Fitness 58: 73-81
  • 6 Gorostiaga EM, Granados C, Ibáñez J. et al. Differences in physical fitness and throwing velocity among elite and amateur male handball players. Int J Sports Med 2005; 26: 225-232
  • 7 Toyoshima S, Hoshikawa T, Miyashita M. et al. Contribution of the body parts to throwing performance. In: Nelson RC, Morehouse CA. (eds) Biomechanics IV. Baltimore: University Park Press; 1974
  • 8 Visnapuu M, Jürimäe T. Handgrip strength and hand dimensions in young handball and basketball players. J Strength Cond Res 2007; 21: 923-929
  • 9 Chelly MS, Hermassi S, Shephard RJ. Relationships between power and strength of the upper and lower limb muscles and throwing velocity in male handball players. J Strength Cond Res 2010; 24: 1480-1487
  • 10 Hermassi S, Chelly MS, Tabka Z. et al. Effects of 8-week in-season upper and lower limb heavy resistance training on the peak power, throwing velocity, and sprint performance of elite male handball players. J Strength Cond Res 2011; 25: 2424-2433
  • 11 Fleck SJ, Smith SL, Craib MW. et al. Upper extremity isokinetic torque and throwing velocity in team handball. J Appl Sport Sci Res 1992; 6: 120-124
  • 12 Lidor R, Falk B, Arnon M. et al. Measurement of talent in team handball: the questionable use of motor and physical tests. J Strength Cond Res 2005; 19: 318-325
  • 13 Granados C, Izquierdo M, Ibáñez J. et al. Are there any differences in physical fitness and throwing velocity between national and international elite female handball players?. J Strength Cond Res 2013; 27: 723-732
  • 14 Arabatzi F, Kellis E. Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. J Strength Cond Res 2012; 26: 2192-2201
  • 15 Storey A, Smith HK. Unique aspects of competitive weightlifting: performance, training and physiology. Sports Med 2012; 42: 769-790
  • 16 Hackett D, Davies T, Soomro N. et al. Olympic weightlifting training improves vertical jump height in sportspeople: a systematic review with meta-analysis. Br J Sports Med 2016; 50: 865-872
  • 17 Hawley JA, Williams MM, Vickovic MM. et al. Muscle power predicts freestyle swimming performance. Br J Sports Med 1992; 26: 151-155
  • 18 McArdle W, Katch F, Katch V. Exercise Physiology: Energy, Nutrition & Human Performance. 6th. ed. Baltimore: Lippincott Williams & Wilkins; 2007
  • 19 Shephard RJ, Bouhlel E, Vandewalle H. et al. Muscle mass as a factor limiting physical work. J Appl Physiol 1988; 64: 1472-1479
  • 20 Shephard RJ, Vandewalle H, Bouhlel E. et al. Sex differences of physical working capacity in normoxia and hypoxia. Ergonomics 1988; 31: 1177-1192
  • 21 Womersley J, Durnin JV. An experimental study on variability of measurements of skinfold thickness on young adults. Hum Biol 1973; 45: 281-292
  • 22 Schrama PP, Stenneberg MS, Lucas C. et al. Intraexaminer reliability of hand-held dynamometry in the upper extremity: a systematic review. Arch Phys Med Rehabil 2014; 95: 2444-2469
  • 23 Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 2nd. ed. Upper Saddle River (NJ): Prentice-Hall; 2000
  • 24 Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15: 155-163
  • 25 Hopker J, Myers S, Jobson SA. et al. Validity and reliability of the Wattbike cycle ergometer. Int J Sports Med 2010; 31: 731-736
  • 26 Bayios IA, Anastasopoulou EM, Sioudris DS. et al. Relationship between isokinetic strength of the internal and external shoulder rotators and ball velocity in team handball. J Sports Med Phys Fitness 2001; 41: 229-235
  • 27 Viitasalo J, Mononen H, Norvapalo K. Release parameters at the foul line and the official result in javelin throwing. Sports Biomech 2003; 2: 15-34