CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2019; 79(04): 396-401
DOI: 10.1055/a-0717-5275
GebFra Science
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Placental Perfusion Based on Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) and Its Predictive Value for Late-Onset Fetal Growth Restriction

Einsatz von Intravoxel-Incoherent-Motion-diffusionsgewichteter Bildgebung (IVIM-DWI) zur Bewertung der Plazentadurchblutung und die prognostische Wertigkeit für eine späte fetale Wachstumsrestriktion
Hui Shi
1   Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
,
Xianyue Quan
1   Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
,
Wen Liang
1   Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
,
Xinming Li
1   Department of Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
,
Bin Ai
2   Department of Medical Image, Guangzhou Women and Childrenʼs Medical Center, Guangzhou, China
,
Hongsheng Liu
2   Department of Medical Image, Guangzhou Women and Childrenʼs Medical Center, Guangzhou, China
› Author Affiliations
Further Information

Publication History

received 16 May 2018
revised 22 August 2018

accepted 26 August 2018

Publication Date:
12 December 2018 (online)

Abstract

Objective The aim of this study was to investigate placental blood perfusion in middle and late pregnancy and explore its predictive value for fetal growth restriction (FGR).

Methods All pregnant women included in the study were examined using placental intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). Three IVIM parameters (D, f, D*) were obtained for each pregnant woman and analyzed using Image J software. Perfusion fraction f is a radiological marker of placental perfusion. The pulsatility index (PI) of the uterine artery is used to indirectly evaluate placental function.

Results f-values were significantly lower in the late-onset FGR group compared to the normal late pregnancy group (19.07 vs. 27.78%). In addition, uterine artery PI values were markedly increased in the late-onset FGR group compared to the normal late pregnancy group (1.96 vs. 1.03), and neonatal weight was significantly lower in the late-onset FGR group (2.75 vs. 3.18 kg). There was a significant positive correlation between f-value, uterine artery PI and neonatal weight (r = 0.968, p < 0.01; r = 0.959, p < 0.01). There was a significant negative correlation between f-value and age of gestation (r = − 0.534, p < 0.01).

Conclusion Perfusion fraction f was strongly correlated with uterine artery blood flow resistance as measured by color Doppler and had a certain predictive value for late-onset FGR.

Zusammenfassung

ZIel Ziel dieser Studie war es, die Plazentadurchblutung während der mittleren und späten Schwangerschaft zu untersuchen und den prognostischen Wert für die fetale Wachstumsrestriktion zu erkunden.

Methode Alle in die Studie aufgenommenen schwangeren Frauen wurden mittels Intravoxel Incoherent Motion diffusionsgewichteter Bildgebung (IVIM-DWI) untersucht. Es wurden jeweils 3 IVIM Parameter (D, f, D*) für jede der schwangeren Frauen gewonnen, die Parameter wurden mithilfe der Image J Software analysiert. Der Perfusionsanteilswert f stellt ein radiologischer Marker für die Durchblutung der Plazenta dar. Der Pulsatilitätsindex (PI) der Nabelschnur kann zur indirekten Bewertung der Plazentafunktion benutzt werden.

Ergebnisse Die f-Werte der Gruppe mit spät einsetzender fetaler Wachstumsrestriktion waren deutlich niedriger verglichen mit der Gruppe von Frauen mit normaler Spätschwangerschaft (19,07 vs. 27,78%). Hinzu kam noch, dass die PI-Werte in der Gruppe mit spät einsetzender fetaler Wachstumsrestriktion deutlich erhöht waren, verglichen mit der Gruppe von Frauen mit normaler Spätschwangerschaft (1,96 vs. 1,03); auch das Geburtsgewicht war signifikant niedriger in der Gruppe mit spät einsetzender fetaler Wachstumsrestriktion (2,75 vs. 3,18 kg). Es gab eine signifikante positive Korrelation zwischen dem f-Wert, dem PI-Wert der Umbilikalgefäße und dem Geburtsgewicht (r = 0,968, p < 0,01; r = 0,959, p < 0,01). Ferner bestand eine statistisch signifikante negative Korrelation zwischen dem f-Wert und dem Gestationsalter (r = − 0,534, p < 0,01).

Schlussfolgerung Der Perfusionsanteilswert f korrelierte stark mit dem mit Farbdoppler gemessenen Strömungswiderstand in der Nabelschnur und hatte einen gewissen prognostischen Wert für die spät einsetzende fetale Wachstumsrestriktion.

 
  • References

  • 1 Figueras F, Caradeux J, Crispi F. et al. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol 2018; 218: S790-S802.e1
  • 2 Monaghan C, Thilaganathan B. Fetal Growth Restriction (FGR): How the Differences Between Early and Late FGR Impact on Clinical Management?. Journal of Fetal Medicine 2016; 3: 1-7 doi:10.1007/s40556-016-0098-7
  • 3 Le Bihan D, Breton E, Lallemand D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401-407
  • 4 Sara S, Peter L, Ajlana L. et al. OP003. Placental perfusion in normal pregnancy and in early and late preeclampsia: A magnetic resonance imaging study. Pregnancy Hypertens 2013; 3: 63
  • 5 Moore RJ, Strachan BK, Tyler DJ. et al. In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta 2000; 21: 726-732
  • 6 Ong SS, Tyler DJ, Moore RJ. et al. Functional magnetic resonance imaging (magnetization transfer) and stereological analysis of human placentae in normal pregnancy and in pre-eclampsia and intrauterine growth restriction. Placenta 2004; 25: 408-412
  • 7 Moore RJ, Issa B, Tokarczuk P. et al. In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T. Magn Reson Med 2000; 43: 295-302
  • 8 Riyami NA, Walker MG, Proctor LK. et al. Utility of head/abdomen circumference ratio in the evaluation of severe early-onset intrauterine growth restriction. J Obstet Gynaecol Can 2011; 33: 715-719
  • 9 Mifsud W, Sebire NJ. Placental Pathology in Early-Onset and Late-Onset Fetal Growth Restriction. Fetal Diagn Ther 2014; 36: 117-128
  • 10 Vedmedovska N, Rezeberga D, Teibe U. et al. Placental pathology in fetal growth restriction. Eur J Obstet Gynecol Reprod Biol 2011; 155: 36-40
  • 11 Kim SY, Lee SS, Byun JH. et al. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 2010; 255: 815-823
  • 12 Bulas D, Egloff A. Benefits and risks of MRI in pregnancy. Semin Perinatol 2013; 37: 301-304
  • 13 Dong SZ, Zhu M. Utility of fetal cardiac magnetic resonance imaging to assess fetuses with right aortic arch and right ductus arteriosus. J Matern Fetal Neonatal Med 2018; 31: 1627-1631
  • 14 Salomon C, Torres MJ, Illanes S. et al. Placental cell-derived exosomes increase in maternal circulation with gestational age. Placenta 2013; 34: A79-A80
  • 15 Andreou A, Koh DM, Collins DJ. et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428-434