Zeitschrift für Orthomolekulare Medizin 2019; 17(02): 28-38
DOI: 10.1055/a-0920-7970
Wissen
© Georg Thieme Verlag KG Stuttgart · New York

Überleben bei ALS?

Kiefersanierung und Ausleitung mit Chelatbildnern können die Lebensqualität verbessern und das Überleben verlängern
Joachim Mutter
Further Information

Publication History

Publication Date:
19 July 2019 (online)

Zusammenfassung

Zahlreiche wissenschaftliche Arbeiten belegen einen Zusammenhang zwischen Schwermetallbelastungen und neurodegenerativen Erkrankungen wie ALS. Immer wieder in der Diskussion sind Zahnfüllungen aus Amalgam, die in Deutschland trotz vielzähliger gegenteiliger Belege noch immer als unschädlich eingestuft werden. Die WHO hat diese bereits 1991 als Hauptquelle für Quecksilberbelastungen eingestuft.

Für ALS gibt es bislang keine kurative Therapie, die Prognose ist in den meisten Fällen sehr ungünstig. Eine Ausleitungstherapie mit Chelatbildnern hat sich als nicht schädlich, sondern vielmehr lebensrettend und ursächlich gezeigt, was internationale wissenschaftliche Arbeiten bestätigen.

 
  • Literatur

  • 1 Nimmo A, Werley MS, Martin JS. et al. Particulate inhalation during the removal of amalgam restorations. J Prosthet Dent 1990; 63 (02) : 228-233
  • 2 Mayer R. Arbeitshygienische Untersuchungen bei der Verarbeitung von Silber-Zinn-Quecksilberlegierungen in der Mundhöhle. Dtsch Zahnärztl Z 1975; 30: 246
  • 3 WHO. Recommended Health-Based-Limits in occupational Exposure to Heavy Metals. WHO Technical report Series No 647. Genf: 1980
  • 4 Lettmeier B, Böse o. Reilly S, Drasch G. Proposal for a revised reference concentration (RFC) for mercury vapour in adults. Sci Total Environ 2010 . doi:10.1016/j.scitotenv.2010.04.027
  • 5 Paknahad M, Mortazavi SM, Shahidi S. et al. Effect of radiofrequency radiation from Wi-Fi devices on mercury release from amalgam restorations. J Environ Health Sci Eng 2016 doi: 10.1186/s40201-016-0253-z
  • 6 Mortazavi G, Mortazavi SM. Increased mercury release from dental amalgam restorations after exposure to electromagnetic fields as a potential hazard for hypersensitive people and pregnant women. Rev Environ Health 2015 doi: 10.1515/reveh-2015-0017
  • 7 Mortazavi SM, Mahbudi A, Atefi M. et al. An old issue and a new look: electromagnetic hypersensitivity caused by radiations emitted by GSM mobile phones. Technol Health Care 2011 doi: 10.3233/THC-2011-0641
  • 8 Mortazavi SM, Neghab M, Anoosheh SM. et al. A High-field MRI and mercury release from dental amalgam fillings. Int J Occup Environ Med 2014; 5 (02) : 101-105
  • 9 Mortazavi G, Mortazavi SM. Should pregnant women with dental amalgam fillings limit their exposure to electromagnetic fields to prevent the toxic effects of mercury in their foetuses? Technol Health Care 2015 doi: 10.3233/THC-150894
  • 10 Mortazavi SM, Paknahad M. Effect of magnetic resonance imaging on microleakage of amalgam restorations: an in vitro study. Dentomaxillofac Radiol 2016 doi: 10.1259/dmfr.20150187
  • 11 Mortazavi SM, Mortazavi G, Paknahad M. Dental metal-induced innate reactivity in keratinocytes. Toxicol In Vitro 2016 10.1016/j.tiv.2016.02.016
  • 12 Mortazavi G, Haghani M, Rastegarian N. et al. Increased release of mercury from dental amalgam fillings due to maternal exposure to electromagnetic fields as a possible mechanism for the high rates of autism in the offspring: Introducing a hypothesis. J Biomed Phys Eng 2016; 6 (01) : 41-46
  • 13 Mortazavi SM, Daiee E, Yazdi A. et al. Mercury release from dental amalgam restorations after magnetic resonance imaging and following mobile phone use. Pak J Biol Sci 2008; 15 11 (08) : 1142-1146
  • 14 Virtanen H, Keshvari J, Lappalainen R. The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field. Phys Med Biol 2007; 52 (05) : 1221-1236
  • 15 Virtanen H, Keshvari J, Lappalainen R. Interaction of radio frequency electromagnetic fields and passive metallic implants – a brief review. Bioelectromagnetics 2006; 27 (06) : 431-439
  • 16 Cherian MG, Hursh JB, Clarkson TW. et al. Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Arch Environ Health 1978; 33: 109-114
  • 17 Drasch G, Wanghofer E, Roider G. Are blood, urine, hair, and muscle valid bio-monitoring parameters for the internal burden of men with the heavy metals mercury, lead and cadmium? Trace Elem Electrolytes. 1997; 14: 116-123
  • 18 Gatti et al. New quality-control investigations on vaccines: Micro- and nanocontamination. Int J Vaccines Vaccin 2016 doi: 10.15406/ijvv.2017.04.00072
  • 19 Haley B.E. Mercury toxicity: Genetic susceptibility and synergistic effects. Medical Veritas 2005; 2: 535-542
  • 20 http://www.als-dd.de/klinik
  • 21 Tobin K, Gilthorpe MS, Rooney J. et al. Age-period-cohort analysis of trends in amyotrophic lateral sclerosis incidence. J Neurol 2016 doi: 10.1007/s00415-016-8215-z
  • 22 Pamphlett R, Bishop DP, Kum Jew S. et al. Age-related accumulation of toxic metals in the human locus ceruleus. PLoS ONE 2018; 13 (09) : e0203627
  • 23 www.arznei-telegramm.de/html/1996_07/9607066_01.html
  • 24 Stejskal VD, Danersund A, Lindvall A. et al. Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuroendocrinol Lett 1999; 20 (05) : 289-298
  • 25 Yu B, Pamphlett R. Environmental insults: critical triggers for amyotrophic lateral sclerosis. Transl Neurodegener 2017 doi: 10.1186/s40035-017-0087-3
  • 26 Khare SS, Ehmann WD, Kasarskis EJ. et al. Trace element imbalances in amyotrophic lateral sclerosis. Neurotoxicology 1990; 11 (03) : 521-532
  • 27 Davanipour Z, Sobel E, Vu H. et al. Electromagnetic field exposure and amyotrophic lateral sclerosis. Neuroepidemiology 1991; 10 (5 – 6): 308
  • 28 www.bioinitiative.org
  • 29 Gunnarsson LG, Bodin L, Soderfeldt B. et al. A case-control study of motor neurone disease: its relation to heritability, and occupational exposures, particularly to solvents. Br J Ind Med 1992; 49 (11) : 791-798
  • 30 Sienko DG, Davis JP, Taylor JA. et al. Amyotrophic lateral sclerosis. A case-control study following detection of a cluster in a small Wisconsin community. Arch Neurol 1990; 47 (01) : 38-41
  • 31 Mutter J, Naumann J, Walach H. et al. Amalgam: A risk analysis considering newest literature until 2005. Gesundheitswesen 2005; 67: 204-212
  • 32 Roos PM, Vesterberg O, Nordberg M. Metals in motor neuron diseases. Exp Biol Med (Maywood) 2006; 231 (09) : 1481-1487
  • 33 Kamel F, Umbach DM, Munsat TL. et al. Lead exposure and amyotrophic lateral sclerosis. Epidemiology 2002; 13 (03) : 311-319
  • 34 Kamel F, Umbach DM, Lehman TA. et al. Amyotrophic lateral sclerosis, lead, and genetic susceptibility: polymorphisms in the delta-aminolevulinic acid dehydratase and vitamin D receptor genes. Environ Health Perspect 2003; 111 (10) : 1335-1339
  • 35 Thier R, Bonacker D, Stoiber T. et al. Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 2003; 140–141 75-81
  • 36 Bonacker D, Stoiber T, Wang M. et al. Genotoxicity of inorganic mercury salts based on disturbed microtubule function. Arch Toxicol 2004; 78 (10) : 575-583
  • 37 Stoiber T, Bonacker D, Böhm KJ. et al. Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 2004; 563 (02) : 97-106
  • 38 Leong CC, Syed NI, Lorscheider FL. Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuroreport 2001; 12: 733-737
  • 39 Barber TE. Inorganic mercury intoxication reminiscent of amyotrophic lateral sclerosis. J Occup Med 1978; 20 (10) : 667-669
  • 40 Adams CR, Ziegler DK, Lin JT. Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 1983; 250: 642-643
  • 41 Schwarz S, Husstedt I, Bertram HP. et al. Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry 1996; 60 (06) : 698
  • 42 Kantarijan AD. A syndrom clinically resembling ALS following chronic mercurialism. Neurology 1961; 11: 639-644
  • 43 Brown JA. Chronic mercurialism. A cause of the clinical syndrom of ALS. Arch Neurol Psychiatry 1994; 72: 674-681
  • 44 Praline J, Guennoc AM, Limousin N. et al. ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg. 2007; 109 (10) : 880-883
  • 45 Pamphlett R, Waley P. Motor neuron uptake of low dose inorganic mercury. J Neurolo Sci 1996; 135: 63-67
  • 46 Pamphlett R, Coote P. Entry of low doses of mercury vapor into the nervous system. Neurotoxicologiy 1998; 19: 39-47
  • 47 Pamphlett R, Slater M, Thomas S. Oxidative damage to nucleic acids in motor neurons containing mercury. J Neurol Sci 1998; 159 (02) : 121-126
  • 48 Stankovic RK, Shingde M, Cullen KM. The experimental toxicology of metallic mercury on the murine peripheral motor system: a novel method of assessing axon calibre spectra using the phrenic nerve. J Neurosci Methods 2005; 30 147 (02) : 114-125
  • 49 Stankovic RK. Atrophy of large myelinated motor axons and declining muscle grip strength following mercury vapor inhalation in mice. Inhal Toxicol 2006; 18 (01) 57-69
  • 50 Kasarskis EJ, Ehmann WD, Markesbery WR. Trace metals in human neurodegenerative diseases. Prog Clin Biol Res 1993; 380: 299-310
  • 51 Brookes N. In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Toxicology 1992; 4 76 (03) : 245-256
  • 52 Nagaraja TN, Brookes N. Mercuric chloride uncouples glutamate uptake from the countertransport of hydroxyl equivalents. Am J Physiol 1996; 271 (5 Pt 1): C1487-1493
  • 53 Albrecht J, Matyja E. Glutamate: a potential mediator of inorganic mercury neurotoxicity. Metab Brain Dis 1996; 11 (02) 175-184
  • 54 Xu et al. Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors. Molecular Brain 2012 DOI: doi:10.1186/1756-6606-5-30 (KANN MAN WEGLASSEN: WAR EIN VORTRAG VOR DER US REGIIERUNG
  • 55 Deth RC. Truth revealed: New scientific discoveries regarding mercury in medicine and autism. Congressional Testimony before the U.S.House of Representatives. Subcommittee on human rights and wellness, Sept. 8. . ( 2004 )
  • 56 Waly M, Oltean H, Banerjee R. et al. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 2004; 9: 358-370
  • 57 James SJ, Cutler P, Melnyk S. et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004; 80: 1611-1617
  • 58 James SJ. Slikker W 3 rd, Melnyk S et al. Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 2005; 26: 1-8
  • 59 Olivieri G, Brack C, Muller-Spahn F. et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 2000; 74: 231-236
  • 60 Olivieri G, Novakovic M, Savaskan E. et al. The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 2002; 113: 849-855
  • 61 Mutter J, Naumann J, Sadaghiani C. et al. Mercury and autism. Response to the Letter of von Mühlendahl. Int J Hyg Environ Health 2005B;
  • 62 Nierenberg et al. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. NEJM 1998: 1672-1676
  • 63 Pamphlett R, Kum J. Age Related Uptake of Heavy Metals in Human Spinal Interneurons. PLoS ONE 2016 11. (9): doi:10.1371/journal.pone.0162260
  • 64 Pamphlett R, Kum Jew S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 2018; 31 (05) : 807-819
  • 65 Lechner J, von Baehr V. RANTES and fibroblast growth factor 2 in jawbone cavitations: triggers for systemic disease? Int J Gen Med 2013; 6: 277-290
  • 66 World Health Organisation (WHO). Environmental health criteria 118: inorganic mercury. Geneva: WHO; 1991
  • 67 Guzzi G, Grandi M, Cattaneo C. et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol 2006; 27 (01) : 42-45
  • 68 Drasch G, Schupp I, Höfl H. et al. Mercury burden of human fetal and infant tissues. Eur J Paediat 1994; 8: 607-610
  • 69 Lorscheider FL, Vimy MJ, Summers AO. Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J 1995; 9: 504-508
  • 70 Mutter J, Naumann J, Walach H. et al. Amalgam risk assessment with coverage of references up to 2005. Gesundheitswesen 2005; 67 (03) : 204-2016
  • 71 Mutter J. Is Dental Amalgam Safe for Humans? The European Commission’s SCENIHR Opinion. J Occup Med Toxicol 2011; 6: 2
  • 72 Harris HH, Vogt S, Eastgate H. et al. Migration of mercury from dental amalgam through human teeth. J Synchrotron Radiat 2008; 15 (Pt 2): 123-128
  • 73 Yin L, Yu K, Lin S. et al. Associations of blood mercury, inorganic mercury, methyl mercury and bisphenol A with dental surface restorations in the U.S.population, NHANES 2003-2004 and 2010-2012. Ecotoxicol Environ Saf 2016; 134 (P1): 213-225
  • 74 Leistevuo J, Leistevuo T, Helenius H. et al. Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Res 2001; 35 (03) : 163-166
  • 75 Heinze U, Edwardsson S, Dérand T. et al. Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scand J Dent Res 1983; 91 (02) : 150-152
  • 76 Hargreaves R. Persistent mercury in nerve cells 16 years after metallic mercury poisoning. Neuropathol Applied Neurobiol 1988; 14: 443-452
  • 77 He FS. et al. Prognosis of mercury poisoning in mercury refinery workers. Annals Academy of Medicine 1984; 2 (Suppl.): S389-393
  • 78 Kishi R. et al. Residual neurobehavioural effects associated with chronic exposure tomercury vapour. Occup Environ Med 1194; 51: 35-41
  • 79 Opitz H. et al. Demonstration of mercury in the human brain ans other organs 17 years after metallic mercuy exposure. Clin Neuropathol 1996; 15: 139-144
  • 80 Sugita M. The biological half-time of heavy metals. Int Arch Occup Environ Health 1978; 41: 25-40
  • 81 Takeuchi T. Mercury level and histochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neurotoxicology 1989; 10: 651-658
  • 82 Vimy MJ. et al. Estimation of mercury body burden from dental amalgam: Computer simulation of metabolic compartmental model. J Dent Res 1986; 65: 1417
  • 83 Arvidson B. Inorganic mercury is transported from muscular nerve terminals to spinal and brainstem motoneurons. Muscle Nerve 1992; 15: 1089-1094
  • 84 Arvidson B. A review of axonal transport of metals. Toxicology 1994; 88: 1-14
  • 85 Arvidson B, Arvidsson J. Retrograde axonal transport of mercury in primary sensory neurons innervating the tooth pulp in the rat. Neurosci Lett 1990; 115: 29-32
  • 86 Arvidson B, Arvidsson J, Johansson K. Mercury deposits in neurons of the trigeminal ganglia after insertion of dental amalgam in rats. Biometals 1994; 7: 261-263
  • 87 Stortebecker P. Mercury poisoning from dental amalgam through a direct nose-brain transport. Lancet 1989; 1: 1207
  • 88 Pamphlett R, Coote P. Entry of low doses of mercury vapor into the nervous system. Neurotoxicology 1998; 19: 39-47
  • 89 Tjalve H, Henriksson J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 1999; 20: 181-195
  • 90 Akyuz S, Caglar E. Pulpal uptake of mercury from lined amalgam restorations in guinea pigs. Eur J Oral Sci 2002; 110: 460-463
  • 91 Virtanen H, Keshvari J, Lappalainen R. Interaction of radio frequency electromagnetic fields and passive metallic implants–a brief review. Bioelectromagnetics 2006; 27 (06) : 431-439
  • 92 Drasch G. et al. The Mt. Diwata study on the Philippines 1999–assessing mercury intoxication of the population by small scale gold mining. Sci Total Environ 2001; 267 (1–3): 151-168
  • 93 Lettmeier B, Böse o Reilly S, Drasch G. Proposal for a revised reference concentration (RFC) for mercury vapour in adults. Sci Total Environ 2010 . doi:10.1016/j.scitotenv.2010.04.027
  • 94 World Health Organisation (WHO). . Mercury in Health care. Policy Paper. August 2005 . Available at URL: http://www.who.int/water_sanitation_health/medicalwaste/mercurypolpaper.pdf.
  • 95 Richardson et al. Mercury vapour (Hg0): Continuing toxicological uncertainties, and establishing a Canadian reference exposure level. Regulatory Toxicology and Pharmacology. 2009
  • 96 Olivieri G, Brack C, Muller-Spahn F. et al. Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 2000; 74: 231-236
  • 97 Olivieri G, Novakovic M, Savaskan E. et al. The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 2002; 113: 849-855
  • 98 www.europaem.de/chemical/mercury/Amalgamtrial.pdf
  • 99 Guzzi G, Grandi M, Cattaneo C. et al. Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol 2006; 27: 42-45
  • 100 Lorscheider FL, Vimy MJ, Summers AO. Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J 1995; 9: 504-508
  • 101 Lorscheider FL, Vimy MJ. Mercury exposure from “silver” fillings. Lancet 1991; 337: 1103
  • 102 Barregard L, Svalander C, Schutz A. et al. Cadmium, mercury, and lead in kidney cortex of the general Swedish population: a study of biopsies from living kidney donors. Environ Health Perspect 1999; 107: 867-871
  • 103 Drasch G, Schupp I, Hofl H. et al. Mercury burden of human fetal and infant tissues. Eur J Pediatr 1994; 153: 607-610
  • 104 Drasch et al. Einfluss von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnärztl Z. 1992; 47: 490-496
  • 105 Drasch G, Wanghofer E, Roider G. Are blood, urine, hair, and muscle valid bio-monitoring parameters for the internal burden of men with the heavy metals mercury, lead and cadmium? Trace Elem Electrolytes 1997; 14: 116-123
  • 106 Eggleston DW, Nylander M. Correlation of dental amalgam with mercury in brain tissue. J Prosthet Dent 1987; 58: 704-707
  • 107 Nylander M. Mercury in pituitary glands of dentists. Lancet 1986; 1: 442
  • 108 Nylander M, Friberg L, Lind B. Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J 1987; 11: 179-187
  • 109 Nylander M, Weiner J. Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 1991; 48: 729-734
  • 110 Weiner JA, Nylander M. The relationship between mercury concentration in human organs and different predictor variables. Sci Total Environ 1993; 138: 101-115
  • 111 www.bnz.de/amalgam/resolution_bnz.pdf
  • 112 http://www.umweltbedingt-erkrankte.de/downloads/Amalgamfuellungen_Seehofer/ReplikWassermann.pdf
  • 113 http://www.amalgam-informationen.de/dokument/dokument3.html
  • 114 Jirau-Colón et al. Rethinking the Dental Amalgam Dilemma: An Integrated Toxicological Approach. Int J Environ Res Public Health. 2019 doi:10.3390/ijerph16061036
  • 115 Aposhian HV, Morgan DL, Queen HL. et al. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J Toxicol Clin Toxicol 2003; 41 (04) : 339-347
  • 116 Rhede O, Pleva J. Recovery from amyotrophic lateral sclerosis and allergy after removal of dental amalgam. Int J Risk Safety Med 1994 4. 229–236
  • 117 Mangelsdorf I, Walach H, Mutter J. Healing of Amyotrophic Lateral Sclerosis: A Case Report. Complement Med Res 2017; 24 (03) : 175-181
  • 118 Kosnett MJ. et al. The role of chelation in the treatment of arsenic and mercury poisoning. J Med Toxicol 2013; 9 (04) : 347-354
  • 119 Aposhian HV. Mobilization of mercury and arsenic in humans by sodium 2,3-dimercapto-1-propane sulfonate (DMPS). Environ Health Perspect 1998; 106 (Suppl. 4): S1017-1025
  • 120 Bose-O’Reilly S, Drasch G, Beinhoff C. et al. The Mt. Diwata study on the Philippines 2000-treatment of mercury intoxicated inhabitants of a gold mining area with (2,3-Dimercapto-1-propane-sulfonic acid, Dimaval((R))). Sci Total Environ 2003; 307 (1–3): 71-82
  • 121 Napp LC, Moelgen C, Wegner F. et al. Multimodal elimination for intoxication with a lethal dose of organic mercury. Case Rep Crit Care 2019 2019:4275918.
  • 122 Bjørklund G, Mutter J, Aaseth J. Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol 2017; 91 (12) : 3787-3797
  • 123 Carter M, Abdi A, Naz F. et al. A mercury toxicity case complicated by hyponatremia and abnormal endocrinological test results. Pediatrics 2017 doi: 10.1542/peds.2016-1402
  • 124 Niu HX, Li SH, Li HY. et al. Clinicopathological features, diagnosis, and treatment of IgA nephropathy with minimal change disease related to exposure to mercury-containing cosmetics: a case report. Clin Nephrol 2017; 87 (04) : 196-201
  • 125 Gao Z, Ying X, Yan J. et al. Acute mercury vapor poisoning in a 3-month-old infant: A case report. Clin Chim Acta 2017; 465: 119-122
  • 126 Zhang L, Liu F, Peng Y. et al. Nephrotic syndrome of minimal change disease following exposure to mercury-containing skin-lightening cream. Ann Saudi Med 2014; 34 (03) : 257-261
  • 127 Bradberry SM, Sheehan TM, Barraclough CR. et al. DMPS can reverse the features of severe mercury vapor-induced neurological damage. Clin Toxicol (Phila) 2009; 47 (09) : 894-898
  • 128 Campbell G, Leitch D, Lewington A. et al. Minimal-change nephrotic syndrome due to occupational mercury vapor inhalation. Clin Nephrol 2009; 72 (03) : 216-219
  • 129 Setz JM, van der Linde AA, Gerrits GP. et al. EEG findings in an eleven-year-old girl with mercury intoxication. Clin EEG Neurosci 2008; 39 (04) : 210-213
  • 130 Xu Z, Yang J, Yu J. et al. Effects of BSO, GSH, Vit-C and DMPS on the nephrotoxicity of mercury. Toxicol Ind Health 2007; 23 (07) : 403-410
  • 131 Diaz D, Fonseca V, Aude YW. et al. Chelation therapy to prevent diabetes-associated cardiovascular events. Curr Opin Endocrinol Diabetes Obes 2018; 25 (04) : 258-266
  • 132 Lamas et al. EDTA chelation therapy alone and in combination with oral high-dose multivitamins and minerals for coronary disease: The factorial group results of the Trial to Assess Chelation Therapy. Am Heart J 2014; 168: 37-44.e5
  • 133 Schutzmeier et al. Efficacy of. N,N‘bis-(2-mercaptoethyl) isophthalamide on mercury intoxication: a randomized controlled trial. Environmental Health 2018 doi: https://doi.org/10.1186/s12940-018-0358-1
  • 134 Blaurock-Busch et al. Efficacy of DMSA therapy in a sample of Arab children with autistic spectrum disorder. Maedica A Journal of Clinical Medicine 2012; 7 (03) : 214-221
  • 135 Yassa et al. Autism: A form of lead and mercury toxicity. Environmentaltoxicologyandpharmacology 2014; 38: 1016-1024
  • 136 Adams J, Bara M, Geis E. et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part A–medical results. BMC Clin Pharmacol 2009 doi: http://dx.doi.org/10.1186/1472-6904-9-16
  • 137 Adams J, Bara M, Geis E. et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part B–behavioral results. BMC Clin Pharmacol 2009 http://dx.doi.org/10.1186/1472-6904-9-17
  • 138 Adams J, Audhya T, McDonough-Means S. et al. Toxicological status of childrenwith autism vs. neurotypical children and the associationwith autism severity. Biol Trace Elem Res 2013; 151 (02) : 171-180
  • 139 Autism Research Institute. Treatment Options forMercury / Metal Toxicity in Autism and Related Developmental Disabilities: Consensus Position Paper. 2005 www.autism.com
  • 140 Belyaev I, Dean A, Eger H. et al. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health 2016 doi: 10.1515/reveh-2016-0011
  • 141 Di Ciaula A. Towards 5 G communication systems: Are there health implications? Int J Hyg Environ Health 2018; 221 (03) : 367-375
  • 142 Hardell L, Carlberg M. Comments on the US National Toxicology Program technical reports on toxicology and carcinogenesis study in rats exposed to whole-body radiofrequency radiation at 900 MHz and in mice exposed to whole-body radiofrequency radiation at 1,900Mhz. Int J Oncol 2019; 54 (01) : 111-127
  • 143 Ahlbom A. Neurodegenerative diseases, suicide and depressive symptoms in relation to EMF. Bioelectromagnetics 2001; Suppl 5: S132-S143
  • 144 www.diagnose-funk.org
  • 145 www.emfdata.org
  • 146 www.bioinitiative.org
  • 147 www.kompetenzinitiative.org
  • 148 Mutter J. Gesund statt chronisch krank. 4. . Aufl. Natura Viva: 2009
  • 149 Mutter J. Lass Dich nicht vergiften. München: Gräfe und Unzer; 6. . Aufl. 2018
  • 150 Mutter J. Grün essen. Kirchzarten: VAK; 2018
  • 151 Mutter J. Entgiftung: Effektiv bei vielen Krankheiten.: om; 2016. 04 5-15