Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000144.xml
Zeitschrift für Orthomolekulare Medizin 2019; 17(02): 5-15
DOI: 10.1055/a-0922-5198
DOI: 10.1055/a-0922-5198
Wissen
Kurzschluss im Nervensystem: Ausgewählte Umweltfaktoren und Mikronährstoffe bei Multipler Sklerose
Further Information
Publication History
Publication Date:
19 July 2019 (online)
Zusammenfassung
Als Ursachen für die chronisch entzündliche Autoimmunerkrankung Multiple Sklerose (MS) werden neben einer genetisch bedingten Prädisposition Infektionen und weitere Faktoren wie Rauchen, Übergewicht, Fehlernährung, Stress und Vitamin-D-Mangel diskutiert. Die Ernährung hat über die Darmmikrobiota direkten Einfluss auf die Gesundheit des ZNS. Es zeichnet sich ab, dass eine Ernährung mit ω-3-Fettsäuren und viel Gemüse, Hülsenfrüchten und Vollkornprodukten durch positive Beeinflussung von Darmflora und Darmbarriere bei MS günstig wirkt. Besondere Bedeutung kommt Mikronährstoffen wie Antioxidanzien, Vitamin B12, Biotin und Vitamin A zu.
-
Literatur
- 1 Holstiege J, Steffen A, Goffrier B, Bätzing J. Epidemiologie der Multiplen Sklerose – eine populationsbasierte deutschlandweite Studie. Zentralinstitut für die kassenärztliche Versorgung in Deutschland. Versorgungsatlas-Bericht Nr. 17/09, 2017 . doi: 10.20364/VA-17.09
- 2 Goodin DS. The epidemiology of multiple sclerosis: insights to a causal cascade. Handb Clin Neurol 2016; 138: 173-206
- 3 Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med 2018; 378 (02) : 169-180
- 4 Lehmann PV, Rottlaender A, Kuerten S. The autoimmune pathogenesis of multiple sclerosis. Pharmazie 2015; 70 (01) : 5-11
- 5 Amato MP, Derfuss T, Hemmer B. et al. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult Scler 2017; Jan 6: 1352458516686847 . doi: 10.1177/1352458516686847
- 6 Guan Y, Jakimovski D, Ramanathan M. et al. The role of Epstein-Barr virus in multiple sclerosis: from molecular pathophysiology to in vivo imaging. Neural Regen Res 2019; 14 (03) : 373-386
- 7 Kleinewietfeld M, Manzel A, Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 2013; 496 (7446): 518-522
- 8 Handel AE, Williamson AJ, Disanto G. et al. Smoking and multiple sclerosis: An updated meta-analysis. PLoS One 2011; 6 (01) : 16149 . doi: 10.1371/journal.pone.0016149
- 9 Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord 2017; 14: 35-45
- 10 Ascherio A, Munger KL, White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 2014; 71 (03) : 306-314
- 11 Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21 (06) : 495-505
- 12 Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 2008; 233 (06) ): 674-688
- 13 La Rosa F, Clerici M, Ratto D. et al. The Gut-Brain Axis in Alzheimer’s Disease and Omega-3. A Critical Overview of Clinical Trials. Nutrients 2018; 10 (09) . pii: E1267 . doi: 10.3390/nu10091267
- 14 Menni C, Zierer J, Pallister T. et al. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci Rep 2017; 7 (01) : 1079
- 15 Swank RL, Dugan BB. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 1990; 336 (8706): 37-39
- 16 Herieka M, Erridge C. High-fat meal induced postprandial inflammation. Mol Nutr Food Res 2014; 58 (01) : 136-146
- 17 Teeman CS, Kurti SP, Cull BJ. et al. Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise. Nutr Metab (Lond) 2016; 13: 80 . eCollection 2016.
- 18 Haghikia A, Jörg S, Duscha A. et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015; 43 (04) : 817-829
- 19 Gold R. Multiple Sclerosis – Role of environmental Factors and Nutrition. Akt Neurol 2015; 42: 501-502
- 20 Esposito S, Bonavita S, Sparaco M. et al. The role of diet in multiple sclerosis: A review. Nutr Neurosci 2018; 21 (06) : 377-390
- 21 Bagur MJ, Murcia MA, Jiménez-Monreal AM. et al. Influence of Diet in Multiple Sclerosis: A Systematic Review. Adv Nutr 2017; 8 (03) : 463-472
- 22 Vitagione P, Mennella I, Ferracane R. et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 2015; 101 (02) : 251-261
- 23 Shinto L, Marracci G, Baldauf-Wagner S. et al. Omega-3-fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids 2009; 80 (2-3): 131-136
- 24 Ramirez-Ramirez V, Macias-Isalas MA, Ortiz G. et al. Efficacy of fish oil on serum of TNF-α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid Med Cell Longev 2013; 2013: 709493 . doi: 10.1155/2013/709493
- 25 Beckett JM, Bird ML, Pittaway JK, Ahuja KD. Diet and Multiple Sclerosis: Scoping Review of Web-Based Recommendations. Interact J Med Res 2019; 8 (01) : e10050
- 26 Allison DB, Bassaganya-Riera J, Burlingame B. et al. Goals in Nutrition Science 2015-2020. Front Nutr 2015; 2: 26
- 27 Fleck AK, Schuppan D, Wiendl H, Klotz L. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis. Int J Mol Sci 2017; 18 (07) . pii: E1526. doi: 10.3390/ijms18071526
- 28 Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125 (03) : 926-938
- 29 David LA, Maurice CF, Carmody RN. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505 (7484): 559-563
- 30 Smits SA, Leach J, Sonnenburg ED. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017; 357 (6353): 802-806
- 31 Calvo-Barreiro L, Eixarch H, Montalban X, Espejo C. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev 2018; 17 (02) : 165-174
- 32 Bravo JA, Forsythe P, Chew MV. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 2011; 108 (38) : 16050-16055
- 33 Tilg H, Moschen AR, Kaser A. Obesity and the microbiota. Gastroenterology 2009; 136 (05) : 1476-1483
- 34 Wu GD, Chen J, Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052): 105-108
- 35 Cosorich I, Dalla-Costa G, Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 2017; 3 (07) : e1700492 . doi: 10.1126/sciadv.1700492
- 36 Erny D, Hrabě de Angelis AL, Jaitin D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18 (07) : 965-977
- 37 Weinstein LI, Revuelta A, Pando RH. Catecholamines and acetylcholine are key regulators of the interaction between microbes and the immune system. Ann N Y Acad Sci 2015; 1351: 39-51
- 38 Berer K, Gerdes LA, Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A 2017; 114 (40) : 10719-10724
- 39 Christ A, Günther P, Lauterbach MAR. et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell 2018; 172 (1-2): 162-175
- 40 Tasset I, Agüera E, Sánchez-López F. et al. Peripheral oxidative stress in relapsing-remitting multiple sclerosis. Clin Biochem 2012; 45 (06) : 440-444
- 41 Wang P, Xie K, Wang C, Bi J. Oxidative stress induced by lipid peroxidation is related with inflammation of demyelination and neurodegeneration in multiple sclerosis. Eur Neurol 2014; 72 (3–4): 249-254
- 42 Socha K, Kochanowicz J, Karpioska E. et al. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr J 2014; 13: 62 . doi: 10.1186/1475-2891-13-62
- 43 Siotto M, Filippi MM, Simonelli I. et al. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients With Low Disability. Front Neurosci 2019; 13: 86
- 44 Moccia M, Capacchione A, Lanzillo R. et al. Coenzyme Q10 supplementation reduces peripheral oxidative stress and inflammation in interferon-β1a-treated multiple sclerosis. Ther Adv Neurol Disord 2019; 12: 1756286418819074 . doi: 10.1177/1756286418819074
- 45 Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153: 1-12
- 46 Zhai J, Bo Y, Lu Y. et al. Effects of Coenzyme Q10 on Markers of Inflammation: A Systematic Review and Meta-Analysis. PLoS One 2017; 12 (01) : e0170172 . doi: 10.1371/journal.pone.0170172
- 47 Sanoobar M, Eghtesadi S, Azimi A. et al. Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci 2015; 18 (04) : 169-176
- 48 Gröber U, Kisters K, Schmidt J. Neuroenhancement with Vitamin B12: Underestimated neurological significance. Nutrients 2013; 5 (12) : 5031-5045
- 49 Dardiotis E, Arseniou S, Sokratous M. et al. Vitamin B12, folate, and homocysteine levels and multiple sclerosis: A Meta-analysis. Mult Scler Relat Disord 2017; 17: 190-197
- 50 Fahmy EM, Elfayoumy NM, Abdelalim AM. et al. Relation of serum levels of homocysteine, vitamin B12 and folate to cognitive functions in multiple sclerosis patients. Int J Neurosci 2018 . doi: 10.1080/00207454.2018.1435538
- 51 Gröber U. Mikronährstoffe. Metabolic Tuning – Prävention – Therapie. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
- 52 Alfadhel M, Tabarki B. SLC19A3 Gene Defects Sorting the Phenotype and Acronyms: Review. Neuropediatrics 2018; 49 (02) : 83-92
- 53 Sedel F, Challe G, Vignal C. et al. A novel biotin sensitive leukodystrophy. J Inherit Metab Dis 2011; 34: S267
- 54 Sedel F, Papeix C, Bellanger A. et al. High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Mult Scler Relat Disord 2015; 4 (02) : 159-169
- 55 Tourbah A, Lebrun-Frenay C, Edan G. et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: A randomised, double-blind, placebo-controlled study. Mult Scler 2016; 22 (13) : 1719-1731
- 56 Mock DM. Biotin: From Nutrition to Therapeutics. J Nutr 2017; 147 (08) : 1487-1492
- 57 Spain R, Powers K, Murchison C. et al. Lipoic acid in secondary progressive MS: A randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm 2017; 4 (05) : e374
- 58 Bittner F, Murchison C, Koop D. et al. Lipoic Acid Pharmacokinetics at Baseline and 1 year in Secondary Progressive MS. Neurol Neuroimmunol Neuroinflamm 2017; 4 (05) : e380
- 59 Bitarafan S, Saboor-Yaraghi A, Sahraian MA. et al. Effect of Vitamin A Supplementation on fatigue and depression in Multiple Sclerosis patients: A Double-Blind Placebo-Controlled Clinical Trial. Iran J Allergy Asthma Immunol 2016; 15 (01) : 13-19
- 60 Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs 2014; 28 (04) : 291-299