Int J Sports Med 2021; 42(02): 161-168
DOI: 10.1055/a-1082-1372
Training & Testing

Determination of Maximum Accumulated Oxygen Deficit Using Backward Extrapolation

1   Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Rio Claro, Instituto de Biociências UNESP, Rio Claro, Brazil
2   Physical Education, Centro Universitaro UNIFAFIBE, Bebedouro, Brazil
,
3   Rehabilitation and Functional performance, University of São Paulo, Ribeirão Preto, Brazil
,
Nayan Xavier Ribeiro
4   Physical Education, USP EEFERP, Ribeirao Preto, Brazil
,
Ronaldo Bucken Gobbi
5   São Paulo , Physical Education, Rio Claro, Brazil
,
Tarine Botta de Arruda
4   Physical Education, USP EEFERP, Ribeirao Preto, Brazil
,
Marcelo Papoti
6   School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
› Institutsangaben
Funding We would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the financial support (13/15322–3) and the support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - 1783785).

Abstract

This study aimed to compare the Maximum Accumulated Oxygen Deficit determined by the conventional method (MAODC) with that determined by the backward extrapolation technique (MAODEXTR) in runners. Fourteen runners underwent a maximal incremental test for determination of iVO2MAX, ten submaximal efforts (50–95% of iVO2MAX for 7 min). During the submaximal efforts oxygen consumption (VO2) values were obtained conventionally and through the backward extrapolation technique (~ 3 s after the end of each effort). A supramaximal effort (110% of iVO2MAX) (tLimC) and five supramaximal bouts (tLimEXTR) were performed. MAODC and MAODEXTR were determined from the difference between the VO2 accumulated during tLimC and tLimEXTR and the predicted values. The tLimC was lower than tLimEXTR (164.06±36.32 s, 200.23±63.78 s, p<0.05). No significant differences were found between absolute and relative MAODC and MAODEXTR values, however, low intraclass correlations (0.26 and 0.24), high typical errors (2.03 L and 24 mL∙kg−1) were observed, and coefficients of variation (46 and 48%), respectively. The graphical analysis of the differences showed agreement and correlation between the methods (r=0.86 and 0.85). Thus, it can be concluded that the MAODEXTR is not a valid method for estimating the anaerobic capacity of runners, moreover, unreliable.



Publikationsverlauf

Eingereicht: 05. Juni 2019

Angenommen: 01. Dezember 2019

Artikel online veröffentlicht:
13. September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Noordhof DA, de Koning JJ, Foster C. The maximal accumulated oxygen deficit method: A valid and reliable measure of anaerobic capacity?. Sports Med 2010; 40: 285-302 10.2165/11530390-000000000-00000
  • 2 Andrade VL, Zagatto AM, Kalva CA. et al. Running-based anaerobic sprint test as a procedure to evaluate anaerobic power. Int J Sports Med 2015; 36: 1156-1162. DOI: 10.1055/s-0035-1555935.
  • 3 Bertuzzi RCM, Franchini E, Ugrinowitsch C. et al. Predicting MAOD using only a supramaximal exhaustive test. Int J Sports Med 2010; 31: 477-481. DOI: 10.1055/s-0030-1253375.
  • 4 Zagatto A, Redkva P, Loures J. et al. Anaerobic contribution during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit. Scand J Med Sci Sports 2011; 21: e222-e230 DOI: 10.1111/j.1600-0838.2010.01258.x.
  • 5 Campos EZ, Kalva-Filho CA, Gobbi RB. et al. Anaerobic contribution determined in swimming distances: relation with performance. Front Physiol 2017; 8: 755 DOI: 10.3389/fphys.2017.00755.
  • 6 Chaverri D, Iglesias X, Schuller T. et al. Estimating peak oxygen uptake based on postexercise measurements in swimming. Appl Physiol Nutr Metab 2016; 41: 588-596. DOI: 10.1139/apnm-2015-0524.
  • 7 Montpetit RR. VO2 peak during free swimming using the backward extrapolation of the O2 recovery curve. Sports Med 1981; 47: 385-391
  • 8 Rochcongar P. The validation of backward extrapolation of submaximal oxygen consumption from the oxygen recovery curve. Eur J Appl Physiol Occup Physiol 1991; 63: 135-139
  • 9 Sleivert G, Mackinnon LT. The validation of backward extrapolation of submaximal oxygen consumption from the oxygen recovery curve. Eur J Appl Physiol Occup Physiol 1991; 63: 135-139
  • 10 Bickham D, Le Rossignol P, Gibbons C. et al. Re-assessing accumulated oxygen deficit in middle-distance runners. J Sci Med Sport 2002; 5: 372-382
  • 11 Harriss DJ, Macsween A, Atkinson G. Standards for ethics in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817
  • 12 de Andrade VL, Kalva-Filho CA, Campos EZ. et al. Maximal accumulated oxygen deficit is influenced by chronological age and is related to intensity of VO2peak. Sport Sci Health 2019; 15: 109-114 DOI: 10.1007/s11332-018-0493-7.
  • 13 Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: The past, the present, and the future. Int J Sports Physiol Perform 2017; 12: S22-s28. 10.1123/ijspp.2016-0388
  • 14 Junior PB, de Andrade VL, Campos EZ. et al. Effect of endurance training on the lactate and glucose minimum intensities. J Sports Sci Med 2018; 17: 117-123
  • 15 Hopkins WG. Measures of reliability in sports medicine and science. Sports Med 2000; 30: 1-15
  • 16 Giavarina D. Understanding Bland Altman analysis. Biochem Med (Zagreb) 2015; 25: 141-151 10.11613/BM.2015.015
  • 17 Rowntree D. Statistics Without Tears - A Primer for Non-Mathematicians. London: Penguin; 1991
  • 18 Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998; 26: 217-238. 10.2165/00007256-199826040-00002
  • 19 Souza AC, NMC Alexandre, Guirardello EB. Psychometric properties in instruments evaluation of reliability and validity. Epidemiol Serv Saude 2017; 26: 649-659. 10.5123/s1679-49742017000300022
  • 20 Bangsbo J, Gollnick PD, Graham TE. et al. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990; 422: 539-559
  • 21 Green S, Dawson BT, Goodman C. et al. Anaerobic ATP production and accumulated O2 deficit in cyclists. Med Sci Sports Exerc 1996; 28: 315-321
  • 22 Ishii H, Nishida Y. Effect of lactate accumulation during exercise-induced muscle fatigue on the sensorimotor cortex. J Phys Ther Sci 2013; 25: 1637-1642 10.1589/jpts.25.1637
  • 23 Ou YE, Lin ZM, Hua DM. et al. Evaluation of carbon dioxide rebreathing during exercise assisted by noninvasive ventilation with plateau exhalation valve. Int J Chron Obstruct Pulmon Dis 2017; 12: 291-298 DOI: 10.2147/COPD.S121637.
  • 24 Pollak KA, Swenson JD, Vanhaitsma TA. et al. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol 2014; 99: 368-380 DOI: 10.1113/expphysiol.2013.075812.
  • 25 Silva DFD, Nakamura FY, Machado FA. Efeitos do uso da máscara para análise de gases sobre variáveis fisiológicas e perceptuais máximas e submáximas durante um teste incremental. Revista Brasileira de Educação Física e Esporte 2016; 30: 523-531
  • 26 Doherty M, Smith PM, Schroder K. Reproducibility of the maximum accumulated oxygen deficit and run time to exhaustion during short-distance running. J Sports Sci 2000; 18: 331-338. 10.1080/026404100402395
  • 27 Jacobs I, Bleue S, Goodman J. Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can J Appl Physiol 1997; 22: 231-243
  • 28 Weber CL, Schneider DA. Reliability of MAOD measured at 110% and 120% of peak oxygen uptake for cycling. Med Sci Sports Exerc 2001; 33: 1056-1059