CC BY-NC-ND 4.0 · Planta Medica International Open 2020; 7(01): e12-e16
DOI: 10.1055/a-1094-9229
Original Papers
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Chemical Constituents of the Terrestrial Stems of Ephedra sinica and their PPAR-γ Ligand-Binding Activity

Yukiko Matsuo
1   School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Mayu Sasaki
1   School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Haruhiko Fukaya
1   School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Katsunori Miyake
1   School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Riko Takeuchi
2   School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Hidetoshi Kumata
2   School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
,
Yoshihiro Mimaki
1   School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 04. November 2019
revised 17. Dezember 2019

accepted 06. Januar 2020

Publikationsdatum:
12. Februar 2020 (online)

Abstract

Bioassay-guided fractionation of the MeOH extract of Ephedra sinica terrestrial stems, using a PPAR-γ ligand binding assay, resulted in the isolation of 10 compounds, including one new bisabolane-type sesquiterpenoid (10). The structure of the new compound was determined by extensive spectroscopic analysis, including two-dimensional (2D) NMR. Among the isolated compounds, the sitosterol derivatives (1 and 2), flavonoid glucoside (7), and the new sesquiterpenoid (10), showed significant PPAR-γ ligand-binding activity.

Supplementary Material

 
  • References

  • 1 Ministry of Health Law, Japan The Japanese pharmacopoeia. 17th edition Tokyo: Ministry of Health Law; 2016: 1589
  • 2 Minamizawa K, Goto H, Shimada Y, Terasawa K, Haji A. Effects of eppikahangeto, a Kampo formula, and Ephedrae herba against citric acid-induced laryngeal cough in guinea pigs. J Pharm Sci 2006; 101: 118-125
  • 3 Abourashed EA, Alfy AT, Khan IA, Walker L. Ephedra in perspective – a current review. Phytother Res 2003; 17: 703-712
  • 4 Kim HK, Choi YH, Chang WT, Verpoorte R. Quantitative analysis of ephedrine analogues from Ephedra species using 1H-NMR. Chem Pharm Bull 2003; 51: 1382-1385
  • 5 Amakura Y, Yoshimura M, Yamakami S, Yoshida T, Wakana D, Hyuga M, Goda Y. Characterization of phenolic constituents from Ephedra herb extract. Molecules 2013; 18: 5326-5334
  • 6 Nawwar MA, El-Sissi HI, Barakat HH. Flavonoid constituents of Ephedra alata . Phytochemistry 1984; 23: 2937-2939
  • 7 Shekelle P, Hardy ML, Morton SC, Maglione M, Suttorp M, Roth E, Jungvig L, Mojica WA, Gagné J, Rhodes S, McKinnon E. Ephedra and ephedrine for weight loss and athletic performance enhancement: Clinical efficacy and side effects. Evid Rep Technol Assess (Summ). 2003; 76: 1-4
  • 8 Kobayashi Y. Analgesic effects and side effects of ephedra herb extract and ephedrine alkaloids-free ephedra herb extract. Yakugaku Zasshi 2017; 137: 187-194
  • 9 Hyuga S, Hyuga M, Yoshimura M, Amakura Y, Goda Y, Hanawa T. Herbacetin, a constituent of ephedrae herba, suppresses the HGF-induced motility of human breast cancer MDA-MB-231 cells by inhibiting c-Met and Akt phosphorylation. Planta Med 2013; 79: 1525-1530
  • 10 Morales G, Sierra P, Mancilla A, Paredes A, Loyola LA, Gallardo O, Borquez J. Secondary metabolites from four medicinal plants from northern Chile: antimicrobial activity and biotoxicity against Artemia salina . J Chin Chem Soc 2003; 48: 13-18
  • 11 Cui EJ, Park JH, Park HJ, Chung IS, Kim JY, Yeon SW, Baek NI. Isolation of sterols from cowpea (Vigna sinensis) seeds and their promotion activity on HO-1. J Korean Soc Appl Biol Chem 2011; 54: 362-366
  • 12 Bernal F, Cuca L, Yamaguchi L. Coy-Barrera E. LC-DAD-UV and LC-ESI-MS-based analyses, antioxidant capacity, and antimicrobial activity of a polar fraction from Iryanthera ulei leaves. Rec Nat Prod 2013; 7: 152-156
  • 13 Kaouadji M, Morand JM, Garcia J. Further acylated kaempferol rhamnosides from Platanus acerifolia buds. J Nat Prod 1993; 56: 1618-1621
  • 14 Si CL, Yu GJ, Du ZG, Huang XF, Fan S, Du HS, Hu WC. A new cis-p-coumaroyl flavonol glycoside from the inner barks of Sophora japonica L. Holzforschung 2016; 70: 39-45
  • 15 Rawat MSM, Prasad D, Joshi RK, Pant G. Proanthocyanidins from Prunus armeniaca roots. Phytochemistry 1999; 50: 321-324
  • 16 Kim IS, Park YJ, Yoon SJ, Lee HB. Ephedrannin A and B from roots of Ephedra sinica inhibit lipopolysaccharide-induced inflammatory mediators by suppressing nuclear factor-κB activation in RAW 264.7 macrophages. Int Immunopharmacol 2010; 10: 1616-1625
  • 17 Okitsu T, Sato K, Iwatsuka K, Sawada N, Nakagawa K, Okano T, Wada A. Replacement of the hydrophobic part of 9-cis-retinoic acid with cyclic terpenoid moiety results in RXR-selective agonistic activity. Bioorg Med Chem 2011; 19: 2939-2949
  • 18 Matsuo Y, Maeda S, Ohba C, Fukaya H, Mimaki Y. Vetiverianines A, B, and C: Sesquiterpenoids from Vetiveria zizanioides Roots. J Nat Prod 2016; 79: 2175-2180
  • 19 Long C, Kakiuchi N, Takahashi A, Komatsu K, Cai S, Mikage M. Phylogenetic Analysis of the DNA Sequence of the Non-Coding Region of Nuclear Ribosomal DNA and Chloroplast of Ephedra Plants in China. Planta Med 2004; 70: 1080-1084