Rofo 2020; 192(08): 754-763
DOI: 10.1055/a-1100-0127
Oncologic Imaging

Radiomics Analysis of Multiparametric PET/MRI for N- and M-Staging in Patients with Primary Cervical Cancer

Radiomics-Analyse anhand der multiparametrischen PET/MRT für das N- und M-Staging von Patientinnen mit primärem Zervixkarzinom
Lale Umutlu
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
,
Felix Nensa
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
,
Aydin Demircioglu
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
,
Gerald Antoch
2   Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, D-40225 Dusseldorf, Germany
,
Ken Herrmann
3   Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
,
Michael Forsting
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
,
Johannes Stefan Grueneisen
1   Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
› Author Affiliations

Zusammenfassung

Zielsetzung Ziel dieser Studie war die Evaluierung des prädiktiven Potenzials der Radiomics-Analyse zur Bestimmung des N- und M-Stadiums des primären Zervixkarzinoms anhand multiparametrischer 18F-FDG-PET/MRT-Bildgebung.

Material und Methoden 30 Patientinnen mit einem histologisch gesicherten, primären und therapienaiven Zervixkarzinom unterzogen sich einer multiparametrischen 18F-FDG-PET/MRT-Untersuchung unter Verwendung eines dedizierten Untersuchungsprotokolls des weiblichen Beckens. Nach Segmentierung der Primärtumoren wurden quantitative Bildparameter mittels der Radiomic-Image-Processing-Toolbox bestimmt. Insgesamt wurden 45 verschiedene quantitative Bildmerkmale jeweils anhand der T2-gewichteten TSE-Sequenzen, der nativen und kontrastmittelgestützten T1-gewichteten TSE-Sequenzen, der ADC-Map, verschiedenen Perfusionsparametern (Ktrans, Kep, Ve and iAUC) und den 18F-FDG-PET-Datensätzen für jeden Tumor extrahiert. Die statistische Analyse zur Bestimmung des N- und M-Stadiums erfolgte unter der Verwendung der Python 3.5 und Scikit-learn-Software-Bibliothek für maschinelles Lernen.

Ergebnisse Insgesamt zeigte sich eine höhere Genauigkeit zur Prädiktion des korrekten M-Stadiums im Vergleich zum N-Stadium. Zur Prädiktion des korrekten M-Stadiums zeigten sich unter der Verwendung von SVM und SVM-RFE zur Feature-Auswahl die besten Ergebnisse mit einer Sensitivität von 91 %, einer Spezifität von 92 % und einer Fläche unter der Kurve (AUC) von 0,97. Die höchste Genauigkeit für die Bestimmung des N-Stadiums erfolgte unter der Verwendung von RBF-SVM und MIFS zur Feature-Auswahl mit einer Sensitivität von 83 %, einer Spezifität von 67 % und einer Fläche unter der Kurve (AUC) von 0,82.

Schlussfolgerung Die Radiomics-Analyse von multiparametrischen PET/MR-Datensätzen ermöglicht eine präzise Prädiktion des M- und N-Stadiums von Patientinnen mit primärem Zervixkarzinom und könnte damit supportiv zur nichtinvasiven Tumor-Phänotypisierung und Patientenstratifizierung eingesetzt werden.

Kernaussagen:

  • Die Radiomics-Analyse der multiparametrischen PET/MRT ermöglicht die Prädiktion des Metastasierungsstatus des Zervixkarzinoms.

  • Die Prädiktion des M-Stadiums ist der Prädiktion des N-Stadiums überlegen.

  • Die multiparametrische PET/MRT bietet eine valide Plattform für Radiomics-Analysen.

Citation Format

  • Umutlu L, Nensa F, Demircioglu A et al. Radiomics Analysis of Multiparametric PET/MRI for N- and M-Staging in Patients with Primary Cervical Cancer. Fortschr Röntgenstr 2020; 192: 754 – 763

Abstract

Purpose The aim of this study was to investigate the potential of multiparametric 18F-FDG PET/MR imaging as a platform for radiomics analysis and machine learning algorithms based on primary cervical cancers to predict N- and M-stage in patients.

Materials and Methods A total of 30 patients with histopathological confirmation of primary and untreated cervical cancer were prospectively enrolled for a multiparametric 18F-FDG PET/MR examination, comprising a dedicated protocol for imaging of the female pelvis. The primary tumor in the uterine cervix was manually segmented on post-contrast T1-weighted images. Quantitative features were extracted from the segmented tumors using the Radiomic Image Processing Toolbox for the R software environment for statistical computing and graphics. 45 different image features were calculated from non-enhanced as well as post-contrast T1-weighted TSE images, T2-weighted TSE images, the ADC map, the parametric Ktrans, Kep, Ve and iAUC maps and PET images, respectively. Statistical analysis and modeling was performed using Python 3.5 and the scikit-learn software machine learning library for the Python programming language.

Results Prediction of M-stage was superior when compared to N-stage. Prediction of M-stage using SVM with SVM-RFE as feature selection obtained the highest performance providing sensitivity of 91 % and specificity of 92 %. Using receiver operating characteristic (ROC) analysis of the pooled predictions, the area under the curve (AUC) was 0.97. Prediction of N-stage using RBF-SVM with MIFS as feature selection reached sensitivity of 83 %, specificity of 67 % and an AUC of 0.82.

Conclusion M- and N-stage can be predicted based on isolated radiomics analyses of the primary tumor in cervical cancers, thus serving as a template for noninvasive tumor phenotyping and patient stratification using high-dimensional feature vectors extracted from multiparametric PET/MRI data.

Key points:

  • Radiomics analysis based on multiparametric PET/MRI enables prediction of the metastatic status of cervical cancers

  • Prediction of M-stage is superior to N-stage

  • Multiparametric PET/MRI displays a valuable platform for radiomics analyses 



Publication History

Received: 28 August 2019

Accepted: 05 January 2020

Article published online:
30 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016; 278: 563-577 . doi:10.1148/radiol.2015151169
  • 2 Lambin P, Rios-Velazquez E, Leijenaar R. et al Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48: 441-446 . doi:10.1016/j.ejca.2011.11.036
  • 3 Parmar C, Grossmann P, Bussink J. et al Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep 2015; 5: 13087 . doi:10.1038/srep13087
  • 4 Hawkins S, Wang H, Liu Y. et al Predicting Malignant Nodules from Screening CT Scans. J Thorac Oncol 2016; 11: 2120-2128 . doi:10.1016/j.jtho.2016.07.002
  • 5 Kalpathy-Cramer J, Mamomov A, Zhao B. et al Radiomics of Lung Nodules: A Multi-Institutional Study of Robustness and Agreement of Quantitative Imaging Features. Tomography 2016; 2: 430-437 . doi:10.18383/j.tom.2016.00235
  • 6 Grossmann P, Stringfield O, El-Hachem N. et al Defining the biological basis of radiomic phenotypes in lung cancer. Elife 2017; 6 DOI: 10.7554/eLife.23421.
  • 7 Sarabhai T, Tschischka A, Stebner V. et al Simultaneous multiparametric PET/MRI for the assessment of therapeutic response to chemotherapy or concurrent chemoradiotherapy of cervical cancer patients: Preliminary results. Clin Imaging 2018; 49: 163-168 . doi:10.1016/j.clinimag.2018.03.009
  • 8 Lee DH, Kim SH, Im SA. et al Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study. Eur Radiol 2015; 015 (26) 2771-2778 . doi:10.1007/s00330-015-4105-5
  • 9 Lohmann P, Kocher M, Ceccon G. et al Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clin 2018; 20: 537-542 . doi:10.1016/j.nicl.2018.08.024
  • 10 Huang SY, Franc BL, Harnish RJ. et al Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer 2018; 4: 24 . doi:10.1038/s41523-018-0078-2
  • 11 Lucia F, Visvikis D, Vallieres M. et al External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 2018; 46: 864-877 . doi:10.1007/s00259-018-4231-9
  • 12 Vallieres M, Freeman CR, Skamene SR. et al A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015; 60: 5471-5496 . doi:10.1088/0031-9155/60/14/5471
  • 13 Flechsig P, Frank P, Kratochwil C. et al Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients. Mol Imaging Biol 2017; 19: 315-322 . doi:10.1007/s11307-016-0996-z
  • 14 Schindelin J, Arganda-Carreras I, Frise E. et al Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676-682 . doi:10.1038/nmeth.2019
  • 15 Jodogne SBC, Devillers M, Lenaerts E. et al Orthanc – A Lightweight, restful DICOM server for healthcare and medical research. IEEE 10th International Symposium on 2013. Available from: 2013 https://ieeexplore.ieee.org/document/6556444/
  • 16 Carlson J. Radiomics: Radiomic Image Processing Toolbox. R package version 0.1.2. 2016. Available from: https://cran.r-project.org/package=radiomics
  • 17 Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016 Available from: https://www.r-project.org/
  • 18 Pecorelli S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet 2009; 105: 103-104
  • 19 Pecorelli S, Zigliani L, Odicino F. Revised FIGO staging for carcinoma of the cervix. Int J Gynaecol Obstet 2009; 105: 107-108 . doi:10.1016/j.ijgo.2009.02.009
  • 20 Grueneisen J, Schaarschmidt BM, Beiderwellen K. et al Diagnostic value of diffusion-weighted imaging in simultaneous 18F-FDG PET/MR imaging for whole-body staging of women with pelvic malignancies. J Nucl Med 2014; 55: 1930-1935 . doi:10.2967/jnumed.114.146886
  • 21 Aerts HJ, Velazquez ER, Leijenaar RT. et al Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006 . doi:10.1038/ncomms5006
  • 22 Pinker K, Shitano F, Sala E. et al Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging 2018; 47: 604-620 . doi:10.1002/jmri.25870
  • 23 Smith CP, Czarniecki M, Mehralivand S. et al Radiomics and radiogenomics of prostate cancer. Abdom Radiol (NY) 2018; 44: 2021-2029 . doi:10.1007/s00261-018-1660-7
  • 24 Grove O, Berglund AE, Schabath MB. et al Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One 2015; 10: e0118261 . doi:10.1371/journal.pone.0118261
  • 25 Bonekamp D, Kohl S, Wiesenfarth M. et al Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values. Radiology 2018; DOI: 10.1148/radiol.2018173064:173064.
  • 26 Ma W, Ji Y, Qi L. et al Breast cancer Ki67 expression prediction by DCE-MRI radiomics features. Clin Radiol 2018; 73: 909.e1-909.e5 . doi:10.1016/j.crad.2018.05.027
  • 27 Park H, Lim Y, Ko ES. et al Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Clin Cancer Res 2018; 24: 4705-4714 . doi:10.1158/1078-0432.CCR-17-3783
  • 28 Kim SH, Song BI, Kim BW. et al Predictive Value of [(18)F]FDG PET/CT for Lymph Node Metastasis in Rectal Cancer. Sci Rep 2019; 9: 4979 . doi:10.1038/s41598-019-41422-8