Rofo 2020; 192(06): 537-548
DOI: 10.1055/a-1123-7944
Review

Low-Field Magnetic Resonance Imaging

Artikel in mehreren Sprachen: English | deutsch
Hans-Martin Klein
MRI, Medical Center Siegerland Airport, Burbach, Germany
› Institutsangaben

Abstract

Background For more than two decades, the focus of technological progress in MRI was restricted to systems with a field strength of 1.5 T and higher. Low- and mid-field MRI systems, which offer some specific advantages, are vanishing from the market. This article is intended to initiate a re-evaluation of the factor ‘field strength’ in MR imaging.

Method Literature review was carried out using MEDLINE database (via Pubmed) over a time span from 1980 to 2019 using free-text and Medical Subject headings (MeSH). Article selection was based on relevance and evidence.

Results and Conclusion Low-field MR systems are meanwhile rare in clinical imaging. MRI systems with a lower field strength provide a reduced signal-noise ratio (SNR) and spectral differentiation. However, these systems offer a variety of advantages: Shorter T1 relaxation, better T1 contrast, fewer metal artifacts, reduced susceptibility and chemical shift artifacts, fewer dielectric effects, better tissue penetration, less RF-power deposition, fewer ‘missile effects’, reduced effect on biomedical implants such as shunt valves, less energy and helium consumption. If we free ourselves from the constraints of high-field strength, we are able to offer multiple medical, economic and ecologic advantages to our patients. The development of high-quality low-field MRI is possible and necessary.

Key Points:

  • Static magnetic field strength is only one of many parameters influencing image quality in MR imaging.

  • Lower field strength results in a lower signal-to-noise ratio (SNR).

  • Modern MR systems offer technical tools to improve signal strength and reduce noise. This makes it possible to provide a diagnostic SNR at a lower field strength.

  • Low-field MR systems offer important advantages which have to be made available to our patients.

Citation Format

  • Klein H-M. Low-Field Magnetic Resonance Imaging. Fortschr Röntgenstr 2020; 192: 537 – 548



Publikationsverlauf

Eingereicht: 21. November 2019

Angenommen: 23. Januar 2020

Artikel online veröffentlicht:
12. Mai 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Rinck P. Magnetic resonance in medicine. Oxford: Blackwell scientific publications; 1993. ISBN: 0-632-03789-4
  • 2 Kaufman L, Arakawa M, Hale J. et al. Accessible magnetic resonance imaging. Magn Reson Q 1989; 5: 283-297
  • 3 Parizel PM, Dijkstra HA, Geenen GP. et al. Low field vs. High field MR imaging of the knee: A comparison of signal behavior and diagnostic performance. Eur J Radiol 1995; 19: 132-138
  • 4 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/criteria-significant-risk-investigations-magnetic-resonance-diagnostic-devices-guidance-industry-and
  • 5 Aghaeifar A, Zhou J, Heule R. et al. A 32-channel multi-coil setup optimized for human brain shimming at 9.4T. Magn Res Med 2018; 80: 1714-1725
  • 6 Ertürk MA, Wu X, Eryaman Y. et al. Towards body imaging at 10.5 T. Magn Reson Med 2017; 77: 434-443
  • 7 Edelstein WA, Hayes CE, Souza SP. et al. The NMR phased array. Magn Res Med 1990; 16: 192-225
  • 8 Günther RW. Mündliche Mitteilung.
  • 9 Blümich B. Virtual special issue: Magnetic resonance at low fields. J Magn Reson 2016; 274: 145-147
  • 10 Ladd ME, Bachert P, Meyerspeer M. et al. Pros and cons of ultra-high-field MRI/MRS for human application. Prog Nucl Magn Reson Spectrosc 2018; 109: 1-50
  • 11 Guerin B, Villena JF, Polimeridis AG. et al. The ultimate signal-to-noise ratio in reallistic body models. Magn Reson Med 2017; 78: 19569-1980
  • 12 https://www.gkv-spitzenverband.de/media/dokumente/krankenversicherung_1/aerztliche_versorgung/qualitaetssicherung/qualitaetssicherung_1/qs_sonstige_vereinbarungen/OS_Kernspintomografie_1-2015.pdf
  • 13 Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging 2000; 12: 2-19
  • 14 Wehrli F. Principles of Magnetic Resonance. In: Stark B. Magnetic Resonance Imaging. 14. Mosby; 1992
  • 15 Kuhl CK. et al. Whole Body High-Field Strength (3.0-T) MR imaging in Clinical practice. Radiology 2008; 246: 675-696
  • 16 Maubon AJ, Feru JM, Berger V. et al. Effect of Field Strength on MR Images: Comparison of the Same Subject at 0.5, 1.0, and 1.5 T. Radiographics 1999; 19: 4
  • 17 Fischer HW, Rinck PA, van Haverbecke Y. et al. Nuclear relaxation of human brain gray and white matter: analysis of field dependence and implications for MRI. Magn Res Med 1990; 16: 317-334
  • 18 Kuhl CK, Kooijman H, Gieseke J. et al. Effect of B1 inhomogeneity on breast MR imaging at 3.0 T. Radiology 2007; 244: 929-930
  • 19 Collins CM, Liu W, Schreiber W. et al. Central brightening due to constructive interference with, without, and despite dielectric reonance. J Magn Reson Imaging 2005; 21: 192-196
  • 20 Rinck PA, Muller RN. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol 1999; 9: 998-1004
  • 21 Klein HM, Buchal R, Achenbach U. et al. Contrast-Enhanced MRA of Carotid and Vertebral Arteries: Open 0.35 vs. 1.5 T MRI. Clin Neuroradiol 2008; 18: 107-113
  • 22 von Grebmeier J. et al. In-vitro-und Patientenuntersuchung mittels MRT: Bedeutung metallischer Implantate. Fortschr Röntgenstr 1991; 154: 484-487
  • 23 Shellock FG. Radiofrequency energy induced heating during the MR procedures: a review. J Magn Reson Imaging 2000; 12: 30-36
  • 24 Duan W, Liu C, Zhang L. et al. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Radiat Res 2015; 183: 305-314
  • 25 Nadobny J, Klopfleisch R, Brinker G. et al. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-Body SAR, maximum temperature, and CEM43 _C due to RF irradiation in an MR Body coil of birdcage type at 123 MHz. Int J Hyperthermia 2015; 31: 409-420
  • 26 Hauger O, Dumont E, Chateil J. et al. Water excitation as an alternative to fat saturation in MR imaging: Preliminary results in musculoskeletal imaging. Radiology 2002; 224: 657-663
  • 27 Hammernik K, Klatzer T, Kobler E. et al. Learning a Variational Network for Reconstruction of Accelerated MRI Data. Magn Reson Med 2018; 79: 3055-3071
  • 28 Lee RK, Griffith JF, Lau YY. et al. Diagnostic Capability of low- versus high-field MRI for Lumbar Degenerative Disease. Spine 2015; 40: 382-391
  • 29 Tavernier T, Cotten A. High- versus low-field MR imaging. Radiol Clin Am 2005; 43: 673-681
  • 30 Kreitner KF, Hansen M, Schadmand-Fischer S. et al. Low-field MRI of the knee joint: results of a prospective, arthroscopically controlled study. RöFo 1999; 170: 35-40
  • 31 Kreitner KF, Loew R, Runkel M. et al. Low field MR arthrography of the shoulder joint: technique, indications, and clinical results. Eur Radiol 2003; 13: 320
  • 32 Raby N. Magnetic resonance imaging of suspected scaphoid fractures using a low field dedicated extremity MR system. Clin Radiol 2001; 56: 316-320
  • 33 Ahn JM, Kwak SM, Kang HS. et al. Evaluation of patellar cartilage in cadavers with a low field strength extremity-only magnet: Comparison of MR imaging sequences, with macroscopic findings as the standard. Radiology 1998; 208: 57-62
  • 34 Riel KA, Reinisch M, Kersting-Sommerhoff B. et al. 0.2-Tesla magnetic resonance of internal lesions of knee joint: a prospective arthroscopically controlled clinical study. Knee Surgs Sports Traumatol Arthroscop 1997; 7: 37-41
  • 35 Cotten A, Delfaut E, Demondion X. et al. MR imaging of the knee at 0.2 and 1.5 T: Correlation with surgery. Am J Roentgenol 2000; 174: 1093-1097
  • 36 Krampla W, Roesel M, Svoboda K. et al. MRI of the knee: how do field strength and radiologist's experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?. Eur Radiol 2009; 19: 1519-1528
  • 37 Magee T, Shapiro M, Williams D. Comparison of high-field-strength versus low-field-strength MRI of the shoulder. Am J Roentgenol 2003; 181: 1211-1215
  • 38 Loew R, Kreitner KF, Runkel M. et al. MR arthrogaphy of the shoulder: comparison of low field (0.2T) vs. High field (1.5T) imaging. Eur Radiol 2000; 10: 989-996
  • 39 Tung GA, Entzian D, Green A. et al. High-field and low-field MR imaging of superior glenoid labral tears and associated tendon injuries. Am J Roentgenol 2000; 174: 1107-1114
  • 40 Campbell-Washburn AE. et al. Opportunities in interventional and diagnostic imaging by using high performance low field strength MRI. Radiology 2019; 293: 384-393
  • 41 Pääkkö E, Reinikainen H, Lindholm EL. et al. Low-field versus high-field MRI in diagnosing breast disorders. Eur Radiol 2005; 15: 1361-1368
  • 42 Sittek H, Perlet C, Herrmann K. et al. MR mammography. Preoperative marking of non-palpable breast lesions with the Magnetom open at 0.2 T. Radiologe 1997; 37: 685-689
  • 43 Domalski S, Klein M. MR-Diffusion imaging in liver and other Body areas using HASTE and RARE technique. German patent application. 2006 DE 2006E21415
  • 44 Harvey SB, Smith FW, Hukins DW. Measurement of lumbar spine flexion-extension using a low-field open-magnet magnetic resonance scanner. Invest Radiol 1998; 33: 439-443
  • 45 Herfkens RJ, Higgins CB, Hricak H. et al. Nuclear magnetic resonance imaging of the cardiovascular system: normal and pathologic findings. Radiology 1983; 147: 749-759
  • 46 Rothschild PA, Domesek JM, Eastham ME. et al. MR imaging of excessively obese patients: the use of an open permanent magnet. Magn Reson Imaging 1992; 9: 151-154
  • 47 Klein HM, Meyners W, Neeb R. et al. Initial Clinical results with Cardiac MRI using an open low-field system. J Comp Ass Tomogr 2007; 31: 430-434
  • 48 Petersilge CA, Lewin JS, Duerk JL. et al. MR Arthrography of the shoulder: Rethinking traditional imaging procedures to meet the technical requirements of MR image guidance. Am J Roentgenol 1997; 169: 1453-1457
  • 49 Klüter S. Technical design and concept of a 0.35 T MR-Linac. Clinical and Translational Radiation Oncology 2019; 18: 98-101
  • 50 Klein HM. Clinical Low field strength Magnetic resonance imaging. Springer; 2016. ISBN: 9783319165165 (online)