Horm Metab Res 2020; 52(06): 435-447
DOI: 10.1055/a-1129-6947
Review

In situ Metabolite Mass Spectrometry Imaging: New Insights into the Adrenal Gland

Fengxia Li
1   Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, München, Germany
,
Annette Feuchtinger
1   Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, München, Germany
,
Axel Walch
1   Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, München, Germany
,
Na Sun
1   Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, München, Germany
› Author Affiliations
Funding Information: Deutsche Forschungsgemeinschaft (CRC/TRR 205 “The Adrenal: Central Relay in Health and Disease”, projects S01 to A.W.). Deutsche Krebshilfe (no. 70112617 to A.W.)

Abstract

The adrenal gland integrates catecholamine-producing neuroendocrine cells and steroid-producing cells with mesenchymal origin in a structured manner under one capsule and is a key regulator for vital bioactivity. In addition to adrenal-specific disease, dysregulation of adrenal hormones is associated with systemic effects, leading to undesirable metabolic and cardiovascular consequences. Mass spectrometry imaging (MSI) technique can simultaneously measure a broad range of biomolecules, including metabolites and hormones, which has enabled the study of tissue metabolic and hormone alterations in adrenal and adrenal-related diseases. Furthermore, this technique coupled with labeled immunohistochemistry staining has enabled the study of the pathophysiological adaptation of the adrenal gland under normal and abnormal conditions at different molecular levels. This review discusses the recent applications of in situ MSI in the adrenal gland. For example, the combination of formalin-fixed paraffin-embedded tissue microarray and MSI to tissues from patient cohorts has facilitated the discovery of clinically relevant prognostic biomolecules and generated promising hypotheses for new sights into physiology and pathophysiology of adrenal gland. MSI also has enabled the discovery of clinically significant tissue molecular (i. e., biomarker) and pathway changes in adrenal disease, particularly in adrenal tumors. In addition, MSI has advanced the ability to optimally identify and detect adrenal gland specific molecules. Thus, as a novel analytical methodology, MSI has provided unprecedented capabilities for in situ tissue study.



Publication History

Received: 16 December 2019

Accepted: 18 February 2020

Article published online:
29 April 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Dilillo M, Heijs B, McDonnell LA. Mass spectrometry imaging: How will it affect clinical research in the future?. Expert Rev Proteomics 2018; 15: 709-716
  • 2 Buck A, Aichler M, Huber K. et al. In situ metabolomics in cancer by mass spectrometry imaging. Adv Cancer Res 2017; 134: 117-132
  • 3 Qi M, Philip MC, Yang N. et al. Single cell neurometabolomics. Acs Chem Neurosci 2018; 9: 40-50
  • 4 Arentz G, Mittal P, Zhang C. et al. Applications of mass spectrometry imaging to cancer. Adv Cancer Res 2017; 134: 27-66
  • 5 Smith A, Piga I, Galli M. et al. Matrix-assisted laser desorption/ionisation mass spectrometry imaging in the study of gastric cancer: A mini review. Int J Mol Sci 2017; 18 pii. E2588 DOI: 10.3390/ijms18122588.
  • 6 Phillips L, Gill AJ, Baxter RC. Novel prognostic markers in triple-negative breast cancer discovered by MALDI-mass spectrometry imaging. Front Oncol 2019; 9: 379
  • 7 Peng X, Chen Z, Farshidfar F. et al. Molecular Characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep 2018; 23: 255-269.e254
  • 8 Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646-674
  • 9 Papathomas TG, Sun N, Chortis V. et al. Novel methods in adrenal research: A metabolomics approach. Histochem Cell Biol 2019; 151: 201-216
  • 10 Patel E. Fresh frozen versus formalin-fixed paraffin embedded for mass spectrometry imaging. Methods Mol Biol 2017; 1618: 7-14
  • 11 Buck A, Ly A, Balluff B. et al. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol 2015; 237: 123-132
  • 12 Ly A, Buck A, Balluff B. et al. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11: 1428-1443
  • 13 Buck A, Heijs B, Beine B. et al. Round robin study of formalin-fixed paraffin-embedded tissues in mass spectrometry imaging. Anal Bioanal Chem 2018; 410: 5969-5980
  • 14 Haase M, Willenberg HS, Bornstein SR. Update on the corticomedullary interaction in the adrenal gland. Endocr Dev 2011; 20: 28-37
  • 15 Hundemer GL, Vaidya A. Primary aldosteronism diagnosis and management: A clinical approach. Endocrinol Metab Clin North Am 2019; 48: 681-700
  • 16 van der Heijden C, Keating ST, Groh L. et al. Aldosterone induces trained immunity: The role of fatty acid synthesis. Cardiovasc Res 2020; 116: 317-328
  • 17 Liu B, Zhang TN, Knight JK. et al. The glucocorticoid receptor in cardiovascular health and disease. Cells 2019; 8 pii. E1227 DOI: 10.3390/cells8101227.
  • 18 Russell G, Lightman S. The human stress response. Nat Rev Endocrinol 2019; 15: 525-534
  • 19 Dekker TJ, Jones EA, Corver WE. et al. Towards imaging metabolic pathways in tissues. Anal Bioanal Chem 2015; 407: 2167-2176
  • 20 Sun N, Wu Y, Nanba K. et al. High-resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. Endocrinology 2018; 159: 1511-1524
  • 21 Sun N, Kunzke T, Sbiera S. et al. Prognostic relevance of steroid sulfation in adrenocortical carcinoma revealed by molecular phenotyping using high-resolution mass spectrometry imaging. Clin Chem 2019; 65: 1276-1286
  • 22 Heeren RMA. Getting the picture: The coming of age of imaging MS. International J Mass S pectrom. 2015; 377: 672-680
  • 23 Vaysse PM, Heeren RMA, Porta T. et al. Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 2017; 142: 2690-2712
  • 24 Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 1997; 69: 4751-4760
  • 25 Chaurand P, Schwartz SA, Billheimer D. et al. Integrating histology and imaging mass spectrometry. Anal Chem 2004; 76: 1145-1155
  • 26 Todd PJ, Schaaff TG, Chaurand P. et al. Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 2001; 36: 355-369
  • 27 Abdelhamid HN. Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Anal Chem 2017; 89: 68-98
  • 28 Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113: 2309-2342
  • 29 Cobice DF, Goodwin RJ, Andren PE. et al. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol 2015; 172: 3266-3283
  • 30 Duenas ME, Larson EA, Lee YJ. Toward mass spectrometry imaging in the metabolomics scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications. Front Plant Sci 2019; 10: 860
  • 31 Balluff B, Schone C, Hofler H. et al. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136: 227-244
  • 32 McDonnell LA, van Remoortere A, de Velde N. et al. Imaging mass spectrometry data reduction: Automated feature identification and extraction. J Am Soc Mass Spectrom 2010; 21: 1969-1978
  • 33 Wishart DS, Feunang YD, Marcu A. et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res; 2018 46. D608-D617
  • 34 Palmer A, Phapale P, Chernyavsky I. et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Meth 2017; 14: 57-60
  • 35 Vinaixa M, Schymanski EL, Neumann S. et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. Trend Anal Chem 2016; 78: 23-35
  • 36 Ceglarek U, Leichtle A, Brugel M. et al. Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol Cell Endocrinol 2009; 301: 266-271
  • 37 Bowen BP, Northen TR. Dealing with the unknown: Metabolomics and metabolite atlases. J Am Soc Mass Spectrom 2010; 21: 1471-1476
  • 38 Alexandrov T. MALDI imaging mass spectrometry: Statistical data analysis and current computational challenges. BMC Bioinformatics 2012; 13 (Suppl 16) S11
  • 39 Galli M, Zoppis I, Smith A. et al. Machine learning approaches in MALDI-MSI: Clinical applications. Expert Rev Proteomics 2016; 13: 685-696
  • 40 Balluff B, Buck A, Martin-Lorenzo M. et al. Integrative clustering in mass spectrometry imaging for enhanced patient stratification. Proteomics Clin Appl 2019; 13: e1800137
  • 41 Leuschner J, Schmidt M, Fernsel P. et al. Supervised non-negative matrix factorization methods for MALDI imaging applications. Bioinformatics 2019; 35: 1940-1947
  • 42 Abdelmoula WM, Balluff B, Englert S. et al. Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data. Proc Natl Acad Sci USA 2016; 113: 12244-12249
  • 43 Balluff B, Rauser S, Ebert MP. et al. Direct molecular tissue analysis by MALDI imaging mass spectrometry in the field of gastrointestinal disease. Gastroenterology 2012; 143: 544-549.e542
  • 44 Kurreck A, Vandergrift LA, Fuss TL. et al. Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer Prostatic Dis 2018; 21: 297-305
  • 45 Quanico J, Franck J, Wisztorski M. et al. Progress and potential of imaging mass spectrometry applied to biomarker discovery. Methods Mol Biol 2017; 1598: 21-43
  • 46 McDonnell LA, Angel PM, Lou S. et al. Mass spectrometry imaging in cancer research: Future perspectives. Adv Cancer Res 2017; 134: 283-290
  • 47 Balluff B, Hanselmann M, Heeren RM. Mass spectrometry imaging for the investigation of intratumor heterogeneity. Adv Cancer Res 2017; 134: 201-230
  • 48 Murakami M, Rhayem Y, Kunzke T. et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight 2019; 4 pii. 130356 DOI: 10.1172/jci.insight.130356.
  • 49 Sugiura Y, Takeo E, Shimma S. et al. Aldosterone and 18-oxocortisol coaccumulation in aldosterone-producing lesions. Hypertension 2018; 72: 1345-1354
  • 50 Manier ML, Spraggins JM, Reyzer ML. et al. A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry. J Mass Spectrom 2014; 49: 665-673
  • 51 Kaya I, Brulls SM, Dunevall J. et al. On-Tissue Chemical Derivatization of Catecholamines Using 4-( N-Methyl)pyridinium Boronic Acid for ToF-SIMS and LDI-ToF Mass Spectrometry Imaging. Anal Chem 2018; 90: 13580-13590
  • 52 Takeo E, Sugiura Y, Uemura T. et al. Tandem mass spectrometry imaging reveals distinct accumulation patterns of steroid structural isomers in human adrenal glands. Anal Chem 2019; 91: 8918-8925
  • 53 Cobice DF, Mackay CL, Goodwin RJ. et al. Mass spectrometry imaging for dissecting steroid intracrinology within target tissues. Anal Chem 2013; 85: 11576-11584
  • 54 Zhang Z, Sugiura Y, Mune T. et al. Immunohistochemistry for aldosterone synthase CYP11B2 and matrix-assisted laser desorption ionization imaging mass spectrometry for in-situ aldosterone detection. Curr Opin Nephrol Hypertens 2019; 28: 105-112
  • 55 Malmberg P, Jennische E, Nilsson D. et al. High-resolution, imaging TOF-SIMS: novel applications in medical research. Anal Bioanal Chem 2011; 399: 2711-2718
  • 56 Wu C, Ifa DR, Manicke NE. et al. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 2010; 135: 28-32
  • 57 Wang X, Han J, Pan J. et al. Comprehensive imaging of porcine adrenal gland lipids by MALDI-FTMS using quercetin as a matrix. Anal Chem 2014; 86: 638-646
  • 58 Dufresne M, Masson JF, Chaurand P. Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal Chem 2016; 88: 6018-6025
  • 59 Stoeckli M, Staab D, Schweitzer A. et al. Imaging of a beta-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J Am Soc Mass Spectrom 2007; 18: 1921-1924
  • 60 Khatib-Shahidi S, Andersson M, Herman JL. et al. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 2006; 78: 6448-6456
  • 61 Chaurand P, Cornett DS, Angel PM. et al. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics. 2011 10. O110.004259
  • 62 Luo Z, He J, Chen Y. et al. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal Chem 2013; 85: 2977-2982
  • 63 Guignat L, Bertherat J. The diagnosis of Cushing’s syndrome: An Endocrine Society Clinical Practice Guideline: Commentary from a European perspective. Eur J Endocrinol 2010; 163: 9-13
  • 64 Duan K, Mete O. Clinicopathologic correlates of primary aldosteronism. Arch Pathol Lab Med 2015; 139: 948-954
  • 65 Duan K, Gomez Hernandez K, Mete O. Clinicopathological correlates of adrenal Cushing’s syndrome. J Clin Pathol 2015; 68: 175-186
  • 66 Erickson LA, Rivera M, Zhang J. Adrenocortical carcinoma: review and update. Adv Anat Pathol 2014; 21: 151-159
  • 67 Ctvrtlik F, Koranda P, Tichy T. Adrenal disease: A clinical update and overview of imaging. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158: 23-34
  • 68 Jochmanova I, Pacak K. Pheochromocytoma: The first metabolic endocrine cancer. Clin Cancer Res 2016; 22: 5001-5011
  • 69 Lenders JWM, Williams TA, Reincke M. et al. Diagnosis of endocrine disease: 18-Oxocortisol and 18-hydroxycortisol: Is there clinical utility of these steroids?. Eur J Endocrinol 2018; 178: R1-R9
  • 70 Arlt W, Lang K, Sitch AJ. et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2017; 2 pii. 93136. DOI: 10.1172/jci.insight.93136..
  • 71 Gerards J, Heinrich DA, Adolf C. et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J Clin Endocrinol Metab 2019; 104: 3192-3202
  • 72 Sun N, Meyer LS, Feuchtinger A. et al. Mass spectrometry imaging establishes 2 distinct metabolic phenotypes of aldosterone-producing cell clusters in primary aldosteronism. Hypertension 2020; 75: 634-644
  • 73 Lanekoff I, Kurczy ME, Hill R. et al. Time of flight mass spectrometry imaging of samples fractured in situ with a spring-loaded trap system. Anal Chem 2010; 82: 6652-6659
  • 74 Roddy TP, Cannon DM, Ostrowski SG. et al. Identification of cellular sections with imaging mass spectrometry following freeze fracture. Anal Chem 2002; 74: 4020-4026
  • 75 Roddy TP, Cannon DM, Meserole CA. et al. Imaging of freeze-fractured cells with in situ fluorescence and time-of-flight secondary ion mass spectrometry. Anal Chem 2002; 74: 4011-4019
  • 76 Lovric J, Dunevall J, Larsson A. et al. Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 2017; 11: 3446-3455
  • 77 Mohammadi AS, Li X, Ewing AG. Mass spectrometry imaging suggests that cisplatin affects exocytotic release by alteration of cell membrane lipids. Anal Chem 2018; 90: 8509-8516