CC BY-NC-ND 4.0 · Sports Med Int Open 2020; 4(02): E39-E44
DOI: 10.1055/a-1146-4236
Training & Testing
Eigentümer und Copyright ©Georg Thieme Verlag KG 2020

Adaption of Maximal Glycolysis Rate after Resistance Exercise with Different Volume Load

Nico Nitzsche
1   Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
,
Julian Christian Lenz
1   Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
,
Pjotr Voronoi
1   Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
,
Henry Schulz
1   Institute of Human Movement Science and Health, Technische Universitat Chemnitz, Chemnitz, Germany
› Author Affiliations
Further Information

Publication History

received 22 February 2020
revised 24 March 2020

accepted 25 March 2020

Publication Date:
23 April 2020 (online)

Abstract

The aim of this study was to investigate the effect of six-weeks of resistance training with different volume load on the maximum glycolysis rate. 24 male strength-trained volunteers were assigned in a high volume low load (50% of their 1RM with 5 sets and reps up to muscle failure) and a low volume high load (70% of their 1RM with 5 sets of ten reps) resistance exercise group. The resistance training performed 3 days per week over 6 weeks. The maximum glycolysis rate was determined using isokinetic force testing before and after the intervention. There was a significant increase in glycolysis rate over the training period across all subjects (p=0.032). High volume low load exercise increased significantly from 0.271±0.067 mmol·l−1·s−1 to 0.298±0.067 mmol·l−1·s−1 (p=0.022) and low volume high load exercise showed no significant changes from 0.249±0.122 mmol·l−1·s−1 to 0.291±0.089 mmol·l−1·s−1 (p=0.233). No significant effect on glycolysis rate was observed between the training groups (p=0.650). Resistance training increases glycolysis rate regardless of volume load.

 
  • References

  • 1 Freitas de MC, Gerosa-Neto J, Zanchi NE. et al. Role of metabolic stress for enhancing muscle adaptations: Practical applications. World J Methodol 2017; 7: 46-54 . doi:10.5662/wjm.v7.i2.46
  • 2 Takada S, Okita K, Suga T. et al. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol 2012; 113: 199-205 . doi:10.1152/japplphysiol.00149.2012
  • 3 Yanagisawa O, Sanomura M. Effects of low-load resistance exercise with blood flow restriction on high-energy phosphate metabolism and oxygenation level in skeletal muscle. Interv Med Appl Sci 2017; 9: 67-75
  • 4 Arazi H, Mirzaei B, Heidari N. Neuromuscular and metabolic responses to three different resistance exercise methods. Asian J Sports Med 2014; 5: 30-38
  • 5 Rogatzki MJ, Wright GA, Mikat RP. et al. Blood ammonium and lactate accumulation response to different training protocols using the parallel squat exercise. J Strength Cond Res 2014; 28: 1113-1118
  • 6 Wirtz N, Wahl P, Kleinöder H. et al. Lactate kinetics during multiple set resistance exercise. J Sports Sci Med 2014; 13: 73-77
  • 7 Crewther B, Cronin J, Keogh J. Possible stimuli for strength and power adaptation: Acute metabolic responses. Sports Med 2006; 36: 65-78 . doi:10.2165/00007256-200636010-00005
  • 8 Fernandes T, Soci U, Melo S. et al. Signaling pathways that mediate skeletal muscle hypertrophy: effects of exercise training. In Cseri J ed. Skeletal Muscle - From Myogenesis to Clinical Relations. London: InTech; 2012
  • 9 Burgomaster KA, Howarth KR, Phillips SM. et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008; 586: 151-160 ; doi:10.1113/jphysiol.2007.142109
  • 10 Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 1988; 20: 132-134
  • 11 Haun CT, Vann CG, Osburn SC. et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One 2019; 14: e0215267 . doi:10.1371/journal.pone.0215267
  • 12 Heck H, Schulz H. Diagnostics of anaerobic power and capacity. Dtsch Z Sportmed 2002; 53: 202-212
  • 13 Mader A. Aussagekraft der Laktatleistungskurve in Kombination mit anaeroben Tests zur Bestimmung der Stoffwechselkapazität. In Clasing D Ed. Stellenwert der Laktatbestimmung in der Leistungsdiagnostik: 32 Tabellen. Stuttgart u. a.: G. Fischer. 1994: 133-152
  • 14 Nitzsche N, Zschäbitz D, Baumgärtel L. et al. The effect of isokinetic resistance load on glycolysis rate. In Ferrauti A, Platen P, Grimminger-Seidensticker E et al. , (Eds.) 22nd Annual Congress of the European College of Sport Science: 5–8th July 2017, Metropolis Ruhr - Germany: book of abstracts. Bochum: Bochumer Universitätsverlag Westdeutscher Universitätsverlag; 2017. 558
  • 15 Nitzsche N, Baumgärtel L, Maiwald C. et al. Reproducibility of blood lactate concentration rate under isokinetic force loads. Sports 2018; 6: 1-8 . doi:10.3390/sports6040150
  • 16 Adam J, Ohmichen M, Ohmichen E. et al. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport 2015; 32: 97-102 ; doi:10.5604/20831862.1134311
  • 17 Hommel J, Öhmichen S, Rudolph UM. et al. Effects of six-week sprint interval or endurance training on calculated power in maximal lactate steady state. Biol Sport 2019; 36: 47-54 . doi:10.5114/biolsport.2018.78906
  • 18 ACSM Progression models in resistance training for healthy adults. Med Sci Sports Exerc 2009; 41: 687-708 . doi:10.1249/MSS.0b013e3181915670
  • 19 Scott BR, Duthie GM, Thornton HR. et al. Training monitoring for resistance exercise: theory and applications. Sports Med 2016; 46: 687-698 . doi:10.1007/s40279-015-0454-0
  • 20 Mangine GT, Hoffman JR, Gonzalez AM. et al. The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiol Rep 2015; 3: e12472 . doi:10.14814/phy2.12472
  • 21 Gonzalez AM, Hoffman JR, Townsend JR. et al. Intramuscular anabolic signaling and endocrine response following high volume and high intensity resistance exercise protocols in trained men. Physiol Rep 2015; 3: e12466 . doi:10.14814/phy2.12466
  • 22 Ogasawara R, Loenneke JP, Thiebaud RS. et al. Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med 2013; 04: 114-121 . doi:10.4236/ijcm.2013.42022
  • 23 Schoenfeld BJ, Ratamess NA, Peterson MD. et al. Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. J Strength Cond Res 2014; 28: 2909-2918 . doi:10.1519/JSC.0000000000000480
  • 24 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817 . doi:10.1055/a-1015-3123
  • 25 Nitzsche N, Zschäbitz D, Baumgärtel L. et al. Einfluss der Methode zur Bestimmung des alaktaziden Zeitintervalls bei isokinetischen Kraftbelastungen. In Schwirtz A, Mess F, Demetriou Y et al. Eds. Innovation & Technologie im Sport. Hamburg: Feldhaus Edition Czwalina; 2017. 215
  • 26 Haff GG, Triplett NT. Eds. Essentials of strength training and conditioning. 4th ed. Champaign, IL, Windsor, ON, Leeds: Human Kinetics; 2016
  • 27 Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed., Hoboken: Taylor and Francis; 2013
  • 28 Tesch PA, Thorsson A, Essén-Gustavsson B. Enzyme activities of FT and ST muscle fibers in heavy-resistance trained athletes. J Appl Physiol 1989; 67: 83-87 . doi:10.1152/jappl.1989.67.1.83
  • 29 Ozaki H, Loenneke JP, Thiebaud RS. et al. Resistance training induced increase in VO2max in young and older subjects. Eur Rev Aging Phys Act 2013; 10: 107-116 . doi:10.1007/s11556-013-0120-1
  • 30 Bell GJ, Syrotuik D, Martin TP. et al. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol 2000; 81: 418-427 . doi:10.1007/s004210050063
  • 31 Nelson AG, Arnall DA, Loy SF. et al. Consequences of combining strength and endurance training regimens. Phys Ther 1990; 70: 287-294 . doi:10.1093/ptj/70.5.287
  • 32 Tesch PA, Alkner BA. Acute and chronic muscle metabolic adaptations to strength training. In Komi PV Ed. Strength and Power in Sport. Oxford, UK: Blackwell Science Ltd; 2003: 265-280
  • 33 Hoppeler H, Baum O, Lurman G. et al. Molecular mechanisms of muscle plasticity with exercise. Compr Physiol 2011; 1: 1383-1412 . doi:10.1002/cphy.c100042
  • 34 Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol 2016; 219: 205-213 . doi:10.1242/jeb.128207
  • 35 Buitrago S, Wirtz N, Yue Z. et al. Effects of load and training modes on physiological and metabolic responses in resistance exercise. Eur J Appl Physiol 2012; 7: 2739-2748
  • 36 Gorostiaga EM, Navarro-Amézqueta I, Calbet JAL. et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One 2012; 7: e40621 . doi:10.1371/journal.pone.0040621
  • 37 Nitzsche N, Jürgens S, Schulz H. Effekte eines achtwöchigen progressiven Rope-Trainings auf die Leistungsfähigkeit der oberen Extremitäten. Ger J Exerc Sport Res 2019; 49: 493-502 . doi:10.1007/s12662-019-00587-0
  • 38 Zouloumian P, Freund H. Lactate after exercise in Man: II. Mathematical model. Eur J Appl Physiol Occup Physiol 1981; 46: 135-147
  • 39 Bangsbo J, Johansen L, Graham T. et al. Lactate and H+effluxes from human skeletal muscles during intense, dynamic exercise. J Physiol 1993; 462: 115-133
  • 40 Mikulski T, Ziemba A, Nazar K. Influence of body carbohydrate store modification on catecholamine and lactate responses to graded exercise in sedentary and physically active subjects. J Physiol Pharmacol 2008; 59: 603-616