Planta Med 2020; 86(08): 520-537
DOI: 10.1055/a-1147-4671
Biological and Pharmacological Activity
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Anti-biofilm and Virulence Factor-Reducing Activities of Essential Oils and Oil Components as a Possible Option for Bacterial Infection Control

Jürgen Reichling
Formerly at the Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

received 20 February 2020
revised 25 March 2020

accepted 26 March 2020

Publication Date:
23 April 2020 (online)

Abstract

Pathogenic biofilm-associated bacteria that adhere to biological or nonbiological surfaces are a big challenge to the healthcare and food industries. Antibiotics or disinfectants often fail in an attempt to eliminate biofilms from those surfaces. Based on selected experimental research, this review deals with the potential biofilm-inhibiting, virulence factor-reducing, and biofilm-eradicating activities of essential oils and single essential oil compounds using Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Chromobacterium violaceum as model organisms. In addition, for the bacteria reviewed in this overview, different essential oils and essential oil compounds were reported to be able to modulate the expression of genes that are involved in the formation of autoinducer molecules, biofilms, and virulence factors. The anti-quorum sensing activity of some essential oils and single essential oil compounds was demonstrated using the gram-negative bacterium C. violaceum. Reporter strains of this bacterium produce the violet-colored compound violacein whose synthesis is regulated by quorum sensing autoinducer molecules called acylhomeserinlactones. Of great interest was the discovery that enantiomeric monoterpenes affected the quorum sensing regulation system in different ways. While the (+)-enantiomers of carvone, limonene, and borneol increased violacein formation, their (−)-analogues inhibited violacein production.

For the successful eradication of biofilms and the bacteria living inside them, it is absolutely necessary that the lipophilic volatile substances can penetrate into the aqueous channels of biofilms. As shown in recent work, hydrophilic nano-delivery systems encapsulating essential oils/essential oil compounds with antibacterial effects may contribute to overcome this problem.

 
  • References

  • 1 Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15: 167-193
  • 2 Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318-1322
  • 3 Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol 2009; 11: 1034-1043
  • 4 Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623-633
  • 5 Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008; 8: 43-58
  • 6 Billings N, Birjiniuk A, Samad TS, Doyle PS, Ribbeck K. Material properties of biofilms – key methods for understanding permeability and mechanics. Rep Prog Phys 2015; 78: 036601
  • 7 Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D, Wozniak DJ, Parsek MR. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10: 2183
  • 8 Petersen FC, Tao L, Scheie AA. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol 2005; 187: 4392-4400
  • 9 Spoering ALL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 2006; 9: 133-137
  • 10 Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol 2007; 189: 7945-7947
  • 11 Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56: 187-209
  • 12 Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiol 2001; 147: 3-9
  • 13 Rasamiravaka T, Vandeputte OM, Pottier L, Huet J, Rabemanantsoa C, Kiendrebeogo M, Andriantsimahavandy A, Rasamindrakotroka A, Stévigny C, Duez P, El Jaziri M. Pseudomonas aeruginosa biofilm formation and persistence, along with the production of quorum sensing-dependent virulence factors, are disrupted by a triterpenoid coumarate ester isolated from Dalbergia trichocarpa, a tropical legume. PLoS One 2015; 10: e0132791
  • 14 Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Nat Acad Sci U S A 2007; 104: 8113-8118
  • 15 Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combatting bacterial antibiotic resistance. Open Microbiol J 2014; 8: 6-14
  • 16 Fux CA, Stoodley P, Shirtliff M, Costerton JW. The functional Resistance of bacterial Biofilms. In: Mayers DL. ed. Antimicrobial Drug Resistance. Mechanisms of Drug Resistance, Volume 1. New York: Humana Press, a part of Springer Science + Business Media, LLC; 2009: 121-131
  • 17 Reichling J, Schnitzler P, Suschke U, Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forsch Komplementmed 2009; 16: 79-90
  • 18 Reichling J. Plant-microbe Interaction and secondary Metabolites with antiviral, antibacterial and antifungal Properties. In: Wink W. ed. Functions and Biotechnology of Plant secondary Metabolites. West Sussex, United Kingdom: Wiley-Blackwell; 2010: 214-347
  • 19 Schelz Z, Hohmann J, Molnar J. Recent advances in research of antimicrobial effects of essential oils and plant derived compounds on bacteria. Ethnomedicine 2010; 1: 179-201
  • 20 Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013; 6: 1451-1474
  • 21 Reichling J, Suschke U, Schneele J, Geiss HK. Antibacterial activity and irritation potential of selected essential oil components – structure-activity relationship. Nat Prod Comm 2006; 1: 1003-1012
  • 22 Dryden MS, Dailly S, Crouch M. A randomized, controlled trial of tea tree oil topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J Hosp Infect 2004; 56: 283-286
  • 23 Pattnaik S, Subramanyam VR, Rath CC. Effect of essential oils on the viability and morphology of Escherichia coli (SP-11). Microbios 1995; 84: 195-199
  • 24 Cox SD, Gustafson JE, Mann CM, Markham JL, Liew YC, Hartland RP, Bell HC, Warmington JR, Wyllie SG. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli . Lett Appl Microbiol 1998; 26: 355-358
  • 25 Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000; 88: 170-175
  • 26 Inoue Y, Shiraishi A, Hada T, Hirose K, Hamashima H, Shimada J. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 2004; 237: 325-331
  • 27 Reichling J, Harkenthal M, Geiss HK, Hoppe-Tichy T, Saller R. Electron microscopic and biochemical investigations on the antibacterial effects of Australian tea tree oil against Staphyloccocus aureus . Curr Top Phytochem 2002; 5: 77-84
  • 28 Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002; 46: 1914-1920
  • 29 Nostro A, Marino A, Ginestra G, Cellini L, Di Giulio M, Bisignano G. Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases. Biofouling 2017; 33: 470-480
  • 30 Siroli L, Patrignani F, Gardini F, Lanciotti R. Effects of sublethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis . Food Chem 2015; 182: 185-192
  • 31 Helander IM, Alakomi HL, Lavata-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGM, von Wright A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J Agric Food Chem 1998; 46: 3590-3595
  • 32 Rhayour K, Bouchikhi T, Tantaoui-Elaraki A, Sendide K, Remmal A. The mechanism of bactericidal action of oregano and clove essential oils and of their phenolic major components on Escherichia coli and Bacillus subtilis . J Essential Oil Res 2003; 15: 356-362
  • 33 Schelz Z, Molnar J, Hohmann J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006; 77: 279-285
  • 34 Richard KR, Lovvorn JL, Oliver SE, Ross SA, Benner KW, Kong MYF. Chromobacterium violaceum sepsis: rethinking conventional therapy to improve outcome. Am J Case Rep 2015; 16: 740-744
  • 35 Steindler L, Venturi V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 2007; 266: 1-9
  • 36 OʼLoughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 2013; 110: 17981-17986
  • 37 Weiland-Bräuer N, Pinnow N, Schmitz RA. Novel reporter for identification of interference with acyl homoserine lactone and autoinducer-2 quorum sensing. Appl Environ Microbiol 2015; 81: 1477-1489
  • 38 Noumi E, Merghni A, Alreshidi MM, Haddad O, Akmadar G, De Martino L, Mastouri M, Ceylan O, Snoussi M, Al-sieni A, De Feo V. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti-quorum sensing activity of Melaleuca alternifolia essential oil and its main component terpinen-4-ol. Molecules 2018; 23: 2672-2688
  • 39 Martín-Rodríguez AJ, Fernández JJ. A bioassay protocol for quorum sensing studies using Vibrio campbellii . Bio Protoc 2016; 6: e1866
  • 40 Deryabin D, Galadzhieva A, Kosyan D, Duskaev G. Plant-derived inhibitors of AHL-mediated quorum sensing in bacteria: modes of action. Int J Mol Sci 2019; 20: 5588
  • 41 MDowell P, Affas Z, Reynolds C, Holden MTG, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CER, Bycroft BW, Chan WC, Williams P. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus . Mol Microbiol 2001; 41: 503-512
  • 42 Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 2008; 279: 124-130
  • 43 Wood TK. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 2009; 11: 1-15
  • 44 Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 2005; 13: 27-33
  • 45 Rasamiravaka T, Labtani Q, Duez P, El Jazirihe M. Formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015; 2015: 759348
  • 46 Skandamis PN, Nychas GJ. Quorum sensing in the context of food microbiology. Appl Environ Microbiol 2012; 78: 5473-5482
  • 47 Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci U S A 2003; 100 (Suppl. 02) 14549-14554
  • 48 Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest 2003; 112: 1620-1625
  • 49 Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165-199
  • 50 Asfour HZ. Anti-quorum sensing natural compounds. J Microsc Ultrastruct 2018; 6: 1-10
  • 51 Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14: 11
  • 52 Fattahi S, Kafil HS, Nahai MR, Asgharzadeh M, Nori R, Aghazadeh M. Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hyg Infect Control 2015; 10: 11
  • 53 Dubern JF, Diggle SP. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 2008; 4: 882-888
  • 54 Folders J, Algra J, Roelofs MS, van Loon LC, Tommassen J, Bitter W. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol 2001; 183: 7044-7052
  • 55 Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa . Protein Cell 2015; 6: 26-41
  • 56 Dekimpe V, Deziel E. Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiol 2009; 155: 712-723
  • 57 Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 2012; 12: 2519-2538
  • 58 Bouhrour N, Bendali F. Venous catheters infections associated to Staphylococcus biofilms: worldwide problem of the 21st century. Immunol Res Ther J 2019; 2: 115-131
  • 59 Yadav S, Gupta RK. Multifunctional role and regulation of RNAIII of the Agr quorum sensing system in Staphylococcus aureus . Adv Microb Res 2017; 1: 001
  • 60 Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet 2008; 42: 541-564
  • 61 Szabó MA, Varga GZ, Hohmann J, Schelz Z, Szegedi E, Amaral L, Molnár J. Inhibition of quorum-sensing signals by essential oils. Phytother Res 2010; 24: 782-786
  • 62 Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I. Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 2009; 49: 354-360
  • 63 Ahmad A, Viljoen AM, Chenia HY. The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 2014; 60: 8-19
  • 64 Husain FM, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila . J Biosci 2013; 38: 835-844
  • 65 Husain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q, Khan MS, Alshabib NA. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front Microbiol 2015; 6: 420
  • 66 Rathinam P, Kumar HSV, Viswanathan P. Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 2017; 33: 624-639
  • 67 Kim YG, Lee JH, Gwon G, Kim SI, Park JG, Lee J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci Rep 2016; 6: 36377
  • 68 Lee JH, Kim YG, Lee J. Carvacrol-rich oregano oil and thymol-rich thyme red oil inhibit biofilm formation and the virulence of uropathogenic Escherichia coli . J Appl Microbiol 2017; 123: 1420-1428
  • 69 Zhao X, Liu Z, Liu Z, Meng R, Shi C, Chen X, Bu X, Guo N. Phenotype and RNA-seq-based transcriptome profiling of Staphylococcus aureus biofilms in response to tea tree oil. Microb Pathog 2018; 123: 304-313
  • 70 Kim ES, Kang SY, Kim YH, Lee YE, Choi NY, You YO. Chamaecyparis obtusa essential oil inhibits methicillin-resistant Staphylococcus aureus biofilm formation and expression of virulence factors. J Med Food 2015; 18: 810-817
  • 71 Al-Shabib NA, Husaina FM, Ahmad I, Baigc MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol Biotechnol Equip 2017; 31: 387-396
  • 72 Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One 2015; 10: e0119564
  • 73 Espina L, Pagán R, López D, García-Gonzalo D. Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus . Molecules 2015; 20: 11357-11372
  • 74 Firmino DF, Cavalcante TTA, Gomes GA, Firmino NCS, Rosa LD, de Carvalho MG, Catunda FEA. Antibacterial and antibiofilm activities of Cinnamomum Sp. essential oil and cinnamaldehyde: antimicrobial activities. ScientificWorldJournal 2018; 2018: 7405736
  • 75 Park H, Jang CH, Cho YB, Choi CH. Antibacterial effect of tea-tree oil on methicillin-resistant Staphylococcus aureus biofilm formation of the tympanostomy tube: an in vitro study. In Vivo 2007; 21: 1027-1030
  • 76 Wang W, Huang X, Yang H, Niu X, Li D, Yang C, Li L, Zou L, Qiu Z, Wu S, Li Y. Antibacterial activity and anti-quorum sensing mediated phenotype in response to essential oil from Melaleuca bracteata leaves. Int J Mol Sci 2019; 20: 5696
  • 77 Jafri H, Husain FM, Ahmad I. Antibacterial and antibiofilm activity of some essential oils and compounds against clinical strains of Staphylococcus aureus . J Biomed Ther Sci 2014; 1: 65-71
  • 78 Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 2007; 56: 519-523
  • 79 Kwiecinski J, Eick S, Wojcik K. Effect of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents 2009; 33: 343-447
  • 80 Oral NB, Vatanserver L, Duman-Aydin B, Sezer C, Güven A, Gülmez M, Baser KHC, Kürkcüoglu M. Effect of oregano essential oil on biofilms formed by staphylococci and Escherichia coli . Kafkas Univ Vet Fak Derg 2010; 16 (Suppl. A) S23-S29
  • 81 Budzynska A, Wwieckowska-Szakiel M, Sadowska B, Kalemba D, Rozalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol 2011; 60: 35-41
  • 82 Chamdit S, Siripermpool P. Antimicrobial effect of clove and lemongrass oils against planktonic cells and biofilms of Staphylococcus aureus . Mahidol Univ J Pharma Sci 2012; 39: 28-36
  • 83 Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 2012; 78: 4057-4061
  • 84 Landau E, Shapira R. Effects of subinhibitory concentrations of menthol on adaptation, morphological, and gene expression changes in enterohemorrhagic Escherichia coli . App Environ Microbiol 2012; 78: 5361-5367
  • 85 Kerekes EB, Deák E, Takó M, Tserennadmid R, Petkovits T, Vágvölgyi C, Krisch J. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related microorganisms. J Appl Microbiol 2013; 115: 933-942
  • 86 Coelho FL, Pereira MO. Exploring new Treatment Strategies for Pseudomonas aeruginosa Biofilm Infections based on Plant essential Oils. In: Méndez-Vilas A. ed. Microbial Pathogens and Strategies for combatting Them: Science Technology and Education. Badajoz: Formatex; 2013: 83-89
  • 87 Al-Shuneigat J, Al-Sarayreh S, Al-Saraireh Y, Al-Qudah M, Al-Tarawneh I. Effects of wild Thymus vulgaris essential oil on clinical isolates biofilm-forming bacteria. IOSR J Dent Med Sci 2014; 13: 62-66
  • 88 Luciardi MC, Blázquez MA, Cartagena E, Bardon A, Arena ME. Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa . LWT Food Sci Technol 2016; 68: 373-380
  • 89 Sambyal SS, Sharma P, Shrivastava D. Anti-biofilm activity of selected plant essential oils against Pseudomonas aeruginosa and Staphylococcus aureus . Int J Curr Microbiol App Sci 2017; 6: 444-450
  • 90 Merghnia A, Noumia E, Haddeda O, Dridia N, Panward H, Ceylane O, Mastouria M, Snoussif M. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microb Pathog 2018; 118: 74-80
  • 91 Pontes EKU, Melo HM, Nogueira JWA, Firmino NCS, de Carvalho MG, Catunda Júnior FEA, Cavalcante TTA. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus . Food Sci Biotechnol 2018; 28: 633-639
  • 92 Lu M, Dai T, Murray CK, Wu MX. Bactericidal property of oregano oil against multidrug-resistant clinical isolates. Front Microbiol 2018; 9: 2329
  • 93 Costa KAD, Oliveira JM, Lopes SP, Pereira MO, Piccoli RH. Antibacterial and anti-biofilm activity of cinnamon essential oil and eugenol. Cienc Rural 2019; 49: e20180314
  • 94 Lagha R, Abdallah FB, Al-Sarhan BO, Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules 2019; 24: 1161
  • 95 Melo ADB, Amaral AF, Schaefer G, Luciano FB, de Andrade C, Costa LB, Rostagno MH. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives. Can J Vet Res 2015; 79: 285-289
  • 96 Li T, Mei Y, He B, Sun X, Li J. Reducing quorum-sensing-mediated virulence factor expression and biofilm formation in Hafnia alvei by using the potential quorum sinsing inhibitor L-carvone. Front Microbiol 2019; 9: 3324
  • 97 Myszka K, Czaczyk K, Majcher M, Schmidt MT, Olkowicz M, Juzwa W. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgaris essential oil and its major bioactive compounds. Int Biodeterior Biodegrad 2016; 114: 252-259
  • 98 Condò C, Anacarso I, Sabia C, Iseppi R, Anfelli I, Forti L, de Niederhäusern S, Bondi M, Messi P. Antimicrobial activity of spices essential oils and its effectiveness on mature biofilms of human pathogens. Nat Prod Res 2020; 34: 567-574
  • 99 Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci Rep 2016; 6: 38126
  • 100 Bilia AR, Cuccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014; 2014: 651593
  • 101 Grumezescu AM. Essential oils and nanotechnology for combating microbial biofilms. Curr Org Chem 2013; 17: 90-96
  • 102 Duncan B, Li X, Landis RF, Kim ST, Gupta A, Wang LS, Ramanathan R, Tang R, Boerth JA, Rotelloa VM. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ASC Nano 2015; 9: 7775-7782
  • 103 Dohare S, Dubey SD, Kalia M, Verma P, Pandey H, Singh NK, Agarwal V. Anti-biofilm activity of Eucalyptus globulus oil encapsulated silica nanoparticles against E. coli biofilm. IJPSR 2014; 5: 5013-5018
  • 104 Cui H, Li W, Li C, Vittayapadung S, Li L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016; 32: 215-225
  • 105 Comin VM, Lopes LQ, Quatrin PM, de Souza ME, Bonez PC, Pintos FG, Raffin RP, Vaucher Rde A, Martinez DS, Santos RC. Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microb Pathog 2016; 93: 120-125
  • 106 Junka A, Żywicka A, Chodaczek G, Dziadas M, Czajkowska J, Duda-Madej A, Bartoszewicz M, Mikołajewicz K, Krasowski G, Szymczyk P, Fijałkowski K. Potential of biocellulose carrier impregnated with essential oils to fight against biofilms formed on hydroxyapatite. Sci Rep 2019; 9: 1256
  • 107 Balaure PC, Boarca B, Popescu RC, Savu D, Trusca R, Vasile BŞ, Grumezescu AM, Holban AM, Bolocan A, Andronescu E. Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. Int J Pharm 2017; 531: 35-46
  • 108 Perez AP, Perez N, Lozano CMS, Altube MJ, de Farias MA, Portugal RV, Buzzola F, Morilla MJ, Romero EL. The anti-MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. Phytomedicine 2019; 57: 339-351
  • 109 Han X, Parker TL. Essential oils diversely modulate genome-wide gene expression in human dermal fibroblasts. Cogent Medicine 2017; 4: 1307591
  • 110 Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification strategies for the development of antimicrobial urinary catheters: overview and advances. Glob Chall 2017; 2: 1700068
  • 111 Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif Cells Nanomed Biotechnol 2019; 47: 980-988
  • 112 Ribeiro-Santos R, Andrade M, Sanches-Silva A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci 2017; 14: 78-84