Planta Med 2020; 86(11): 776-781
DOI: 10.1055/a-1179-1050
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

α-Glucosidase Inhibitory Depsidones from the Lichen Parmotrema tsavoense

Thuc-Huy Duong
1   Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2   Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
,
Tai-Xuan-Hoa Hang
3   Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
,
Pierre Le Pogam
4   Équipe “Pharmacognosie-Chimie des Substances Naturelles”, BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
,
Thanh-Nha Tran
3   Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
,
Dinh-Hung Mac
5   Department of Organic Chemistry, University of Science, Vietnam National University, Ha Noi, Vietnam
,
Minh-Hiep Dinh
6   Management Board of Agricultural Hi-Tech Park, Ho Chi Minh City, Vietnam
,
Jirapast Sichaem
7   Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang, Thailand
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 17. Januar 2020
revised 01. Mai 2020

accepted 11. Mai 2020

Publikationsdatum:
29. Mai 2020 (online)

Abstract

Chemical investigation of the lichen Parmotrema tsavoense led to the isolation of 5 new depsidones, parmosidones F – J (1 – 5). These compounds were structurally elucidated using spectroscopic methods including HRESIMS and 2D NMR data. Compounds 1, 3, and 4 were evaluated for their inhibition of α-glucosidase. All exhibited potent α-glucosidase inhibitory activity with IC50 values ranging from 10.7 to 17.6 µM, which was much lower than that of the positive control acarbose (IC50 449 µM).

Supporting Information

 
  • References

  • 1 Tabish SA. Is diabetes becoming the biggest epidemic of the twenty-first century?. Int J Health Sci (Qassim) 2007; 1: 3-8
  • 2 Kumar S, Narwal S, Kumar V, Prakash O. α-Glucosidase inhibitors from plants: a natural approach to treat diabetes. Pharmacogn Rev 2011; 5: 19-29
  • 3 Thadhani VM, Karunaratne V. Potential of lichen compounds as antidiabetic agents with antioxidative properties: a review. Oxidative Med Cell Longev 2017; 2017: 1-10
  • 4 Karunaratne V, Thadhani VM, Khan SN, Choudhary MI. Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka. J Natl Sci Found Sri 2014; 42: 95-98
  • 5 Bogner E, Wastlhuber R, Schlegl I, Loos E. Glycogen, amylase and α-glucosidase as possible components in the glucose release system of the cyanobiont of Peltigera horizontalis. Partial purification and characterization. Symbiosis 1993; 14: 485-494
  • 6 Duong TH, Chavasiri W, Boustie J, Nguyen KPP. New meta-depsidones and diphenyl ethers from the lichen Parmotrema tsavoense (Krog & Swinscow) Krog & Swinscow, Parmeliaceae. Tetrahedron 2015; 71: 9684-9691
  • 7 Duong TH, Beniddir MA, Genta-Jouve G, Aree T, Chollet-Krugler M, Boustie J, Ferron S, Sauvager A, Nguyen HH, Chavasiri W, Le Pogam P. Tsavoenones A–C: unprecedented polyketides with a 1,7-dioxadispiro[4.0.4.4]tetradecane core from the lichen Parmotrema tsavoense. . Org Biomol Chem 2018; 16: 5913-5919
  • 8 Duong TH, Beniddir MA, Boustie J, Nguyen KP, Chavasiri W, Bernadat G, Le Pogam P. DP4-assisted structure elucidation of isodemethylchodatin, a new norlichexanthone derivative meager in H-Atoms, from the lichen Parmotrema tsavoense . Molecules 2019; 24: 1527
  • 9 Nguyen DM, Do LM, Nguyen VT, Chavasiri W, Mortier J, Nguyen PP. Phenolic compounds from the lichen Lobaria orientalis . J Nat Prod 2017; 80: 261-268
  • 10 Gunzinger J, Tabacchi R. Isolement et identification de lʼacide furfurique, nouvelle depsidone du lichen Pseudevernia furfuracea (L.). Ach Helv Chim Acta 1985; 68: 1936-1939
  • 11 Kinoshita K, Takatori K, Narui T. A novel secondary metabolite from Lethariella sernanderi . Heterocycles 2004; 63: 1023-1026
  • 12 Culberson CF. Chemical and botanical Guide to Lichen Products. Chapel Hill: University of North Carolina Press; 1969: 85-93
  • 13 Elix JA, Whitton AA, Sargent MV. Recent Progress in the Chemistry of Lichen Substances. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of organic natural Products. Vienna: Springer; 1984: 103-234
  • 14 Elix JA, Jones AJ, Lajide L, James PW. Two new diphenyl ethers and a new depside from the lichen Micarea prasina Fr. Aust J Chem 1984; 37: 2349-2364
  • 15 Elix JA, Gaul KL. The interconversion of the lichen depsides para- and meta-scrobiculin, and the biosynthetic implications. Aust J Chem 1986; 39: 613-624
  • 16 Elix JA, Jenie UA, Parker JL. A novel synthesis of the lichen depsidones divaronic acid and stenosporonic acid, and the biosynthetic implications. Aust J Chem 1987; 40: 1451-1464
  • 17 Elix JA, Naidu R, Thor G. Cyclographin, a new depsidone from the lichen Catarraphia dictyoplaca . Aust J Chem 1995; 48: 635-649
  • 18 Huneck S. New Results on the Chemistry of Lichen Substances. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of organic natural Products. Vienna: Springer; 2001: 1-276
  • 19 Boustie J, Grube M. Lichens – a promising source of bioactive secondary metabolites. Plant Genet Resour 2005; 3: 273-287
  • 20 Schinkovitz A, Le Pogam P, Derbré S, Roy-Vessieres E, Blanchard P, Thirumaran SL, Breard D, Aumond MC, Zehl M, Urban E, Kaur A. Secondary metabolites from lichen as potent inhibitors of advanced glycation end products and vasodilative agents. Fitoterapia 2018; 131: 182-188
  • 21 Kekuda TP, Lavanya D, Pooja R. Lichens as promising resources of enzyme inhibitors: A review. J Drug Deliv Ther 2019; 9: 665-676
  • 22 Kumar K, Siva B, Sarma VU, Mohabe S, Reddy AM, Boustie J, Tiwari AK, Rao NR, Babu KS. UPLC-MS/MS quantitative analysis and structural fragmentation study of five Parmotrema lichens from the Eastern Ghats. J Pharm Biomed Anal 2018; 156: 45-57
  • 23 Rama Krishna B, Ramakrishna S, Rajendra S, Madhusudana K, Mallavadhani UV. Synthesis of some novel orsellinates and lecanoric acid related depsides as α-glucosidase inhibitors. J Asian Nat Prod Res 2019; 21: 1013-1027
  • 24 Gómez-Serranillos MP, Fernández-Moriano C, González-Burgos E, Divakar PK, Crespo A. Parmeliaceae family: phytochemistry, pharmacological potential and phylogenetic features. RSC Adv 2014; 4: 59017-59047
  • 25 Verma N, Behera BC, Sharma BO. Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid. Hacettepe J Biol Chem 2012; 40: 7-21
  • 26 Nguyen TH, Um BH, Kim SM. Two unsaturated fatty acids with potent α-glucosidase inhibitory activity purified from the body wall of sea cucumber (Stichopus japonicus). J Food Sci 2011; 76: H208-H214