Pneumologie 2020; 74(09): 585-600
DOI: 10.1055/a-1186-7333
Symposiumsbericht

Expertentreffen COPD: Technologische Innovationen in der Pneumologie – Facetten aus Diagnostik und Therapie[*]

Technological Innovations in Pulmonology – Examples from Diagnostics and Therapy
W. Randerath
 1   Klinik für Pneumologie und Allergologie, Krankenhaus Bethanien, Solingen
,
M. Dreher
 2   Klinik für Pneumologie und Internistische Intensivmedizin, Medizinische Klinik V, Universitätsklinikum Aachen
,
D. Gompelmann
 3   Klinische Abteilung für Pulmologie, Universitätsklinik Innere Medizin II, Wien
,
M. Held
 4   Missioklinik, Klinikum Würzburg Mitte, Zentrum für Thoraxmedizin Würzburg, Medizinische Klinik mit Schwerpunkt Pneumologie und Beatmungsmedizin
,
R. Koczulla
 5   Fachzentrum für Pneumologie, Schön Klinik Berchtesgadener Land und Universitätsklinikum Marburg
,
T. Köhnlein
 6   Pneumologisches Facharztzentrum Teuchern
,
G. Rohde
 7   Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt
,
J. Wälscher
 8   Pneumologie, Ruhrlandklinik, Universitätsmedizin Essen
,
H. Watz
 9   Pneumologisches Forschungsinstitut an der LungenClinic Großhansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL)
,
G. Steinkamp
10   Medizinisch-wissenschaftliches Publizieren, Schwerin
› Author Affiliations

Zusammenfassung

Ein wesentlicher Anteil der aktuellen technologischen Entwicklungen in der Pneumologie liegt in den verschiedenen Bereichen der Informationstechnologie. Das Spektrum reicht dabei von Smartphone-Apps, die im täglichen Leben oder der Praxis von Patienten oder Ärzten angewandt werden sollen, bis hin zum Einsatz der künstlichen Intelligenz in der Früherkennung. Die Diagnose-Genauigkeit von Apps zur Symptomanalyse ist dabei zurzeit noch sehr limitiert. Forschungsprojekte beschäftigen sich mit der Integration von Symptomen und Funktionsparametern in der Früherkennung, aber auch mit der Mobilitätserfassung als prognostischem Marker bei der COPD. Eine große Herausforderung stellt das Lungenkrebs-Screening mittels Computertomografie dar. Hier kann künstliche Intelligenz helfen, riesige Datenmengen zu bewältigen. Die Qualität hängt jedoch vom suffizienten Training der Systeme ab. Technologische Entwicklungen prägen alle Felder der Pneumologie. Sie erlauben in der diagnostischen und interventionellen Endoskopie die verbesserte Biopsietechnik und mikrostrukturelle Bildgebung. Methoden der Lungenfunktionsdiagnostik ermöglichen die differenzierte Analyse von atemmechanischen Störungen und können in die Beatmungstechnologie überführt werden. Die Translation von Grundlagenerkenntnissen zum Mikrobiom kann perspektivisch helfen, COPD-Exazerbationen besser zu verstehen und zielgerichteter zu behandeln.

Abstract

A significant proportion of the current technological developments in pneumology originate from the various areas of information technology. The spectrum ranges from smartphone apps to be used in daily life or in patient care to the use of artificial intelligence in screening and early detection of diseases. The diagnostic accuracy of apps for symptom analysis is currently very limited. Research projects are performed on the integration of symptoms and functional parameters into early detection, but also on mobility measurements as a prognostic marker in COPD. Lung cancer screening using computed tomography represents a major challenge. Here, artificial intelligence can help radiologists to cope with huge amounts of data. However, the quality of the software depends on the sufficient training of the system. Technological developments shape all fields of pneumology. For diagnostic and interventional endoscopy, they offer improved biopsy techniques and microstructural imaging. Advances in lung function measurements allow the differentiated analysis of respiratory mechanical disorders, and they could be transferred to ventilation technology. The translation of basic findings about the lung microbiome into patient care may perspectively help to better understand and treat COPD exacerbations.

* Die Veranstaltung wurde von der Boehringer Ingelheim Pharma GmbH & Co. KG gefördert.




Publication History

Article published online:
14 July 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Mannino DM, Thomashow B. COUNTERPOINT: Can Screening for COPD Improve Outcomes?. No Chest 2020; 157: 9-12
  • 2 Siu AL, Bibbins-Domingo K, Grossman DC. et al. Screening for Chronic Obstructive Pulmonary Disease: US Preventive Services Task Force Recommendation Statement. JAMA 2016; 315: 1372-1377
  • 3 Martinez FJ, Mannino D, Leidy NK. et al. A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195: 748-756
  • 4 Alblooshi A, Alkalbani A, Albadi G. et al. Is forced oscillation technique the next respiratory function test of choice in childhood asthma. World J Methodol 2017; 7: 129-138
  • 5 Brashier B, Salvi S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe (Sheff) 2015; 11: 57-65
  • 6 Berger KI, Goldring RM, Oppenheimer BW. POINT: Should Oscillometry Be Used to Screen for Airway Disease? Yes. Chest 2015; 148: 1131-1135
  • 7 Winkler J, Hagert-Winkler A, Wirtz H. et al. Die moderne Impulsoszillometrie im Spektrum lungenfunktioneller Messmethoden. Pneumologie 2009; 63: 461-469
  • 8 Rigau J, Montserrat JM, Wöhrle H. et al. Bench model to simulate upper airway obstruction for analyzing automatic continuous positive airway pressure devices. Chest 2006; 130: 350-361
  • 9 Randerath WJ, Schraeder O, Galetke W. et al. Autoadjusting CPAP therapy based on impedance efficacy, compliance and acceptance. Am J Respir Crit Care Med 2001; 163: 652-657
  • 10 Crisafulli E, Pisi R, Aiello M. et al. Prevalence of Small-Airway Dysfunction among COPD Patients with Different GOLD Stages and Its Role in the Impact of Disease. Respiration 2017; 93 : 32-41
  • 11 Williamson PA, Short PM, Clearie KL. et al. Paradoxical trough effects of triple therapy with budesonide/formoterol and tiotropium bromide on pulmonary function outcomes in COPD. Chest 2010; 138: 595-604
  • 12 Biddiscombe M, Saleem A, Meah S. et al. Efficacy of the device in targeting tiotropium to the small airways in COPD. Eur Respir J 2018; 52: 1017 DOI: 10.1183/13993003.congress-2018.PA1017.
  • 13 Raghu G, Remy-Jardin M, Myers J. et al. The 2018 Diagnosis of Idiopathic Pulmonary Fibrosis Guidelines: Surgical Lung Biopsy for Radiological Pattern of Probable Usual Interstitial Pneumonia Is Not Mandatory. Am J Respir Crit Care Med 2019; 200: 1089-1092
  • 14 Romagnoli M, Colby TV, Suehs CM. et al. Cryobiopsy Compared with Surgical Lung Biopsy in ILD: Reply to Maldonado et al., Froidure et al., Bendstrup et al., Agarwal et al., Richeldi et al., Rajchgot et al., and Quadrelli et al. Am J Respir Crit Care Med 2019; 200: 944-946
  • 15 Troy LK, Grainge C, Corte TJ. et al. Diagnostic accuracy of transbronchial lung cryobiopsy for interstitial lung disease diagnosis (COLDICE): A prospective, comparative study. Lancet Respir Med 2020; 8: 171-181
  • 16 Goorsenberg A, Kalverda KA, Annema J. et al. Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases. Respiration 2020; 99: 190-205
  • 17 Wijmans L, Bonta PI, Rocha-Pinto R. et al. Confocal Laser Endomicroscopy as a Guidance Tool for Transbronchial Lung Cryobiopsies in Interstitial Lung Disorder. Respiration 2019; 97: 259-263
  • 18 Wijmans L, Yared J, de Bruin DM. et al. Needle-based confocal laser endomicroscopy for real-time diagnosing and staging of lung cancer. Eur Respir J 2019; 53: 1801520
  • 19 Yarmus LB, Mallow C, Pastis N. et al. First-in-Human Use of a Hybrid Real-Time Ultrasound-Guided Fine-Needle Acquisition System for Peripheral Pulmonary Lesions: A Multicenter Pilot Study. Respiration 2019; 98: 527-533
  • 20 Fielding DIK, Bashirzadeh F, Son JH. et al. First Human Use of a New Robotic-Assisted Fiber Optic Sensing Navigation System for Small Peripheral Pulmonary Nodules. Respiration 2019; 98: 142-150
  • 21 Herth FJF, Eberhardt R, Sterman D. et al. Bronchoscopic transparenchymal nodule access (BTPNA): First in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 2015; 70: 326-332
  • 22 Lahousse L, Seys LJM, Joos GF. et al. Epidemiology and impact of chronic bronchitis in chronic obstructive pulmonary disease. Eur Respir J 2017; 50: 1602470 DOI: 10.1183/13993003.02470-2016 .
  • 23 Valipour A, Ing A, Williamson J. et al. Late Breaking Abstract – First-in-Human Results of Bronchial Rheoplasty: An Endobronchial Treatment For Chronic Bronchitis (CB). In: Interventional Pulmonology. European Respiratory Society; 2018: OA2162
  • 24 Slebos D-J, Breen D, Coad J. et al. Safety and Histological Effect of Liquid Nitrogen Metered Spray Cryotherapy in the Lung. Am J Respir Crit Care Med 2017; 196: 1351-1352
  • 25 Slebos D-J, Shah PL, Herth FJF. et al. Safety and Adverse Events after Targeted Lung Denervation for Symptomatic Moderate to Severe Chronic Obstructive Pulmonary Disease (AIRFLOW). A Multicenter Randomized Controlled Clinical Trial. Am J Respir Crit Care Med 2019; 200: 1477-1486
  • 26 Ramirez J. Bronchopulmonary lavage. New techniques and observations. Dis Chest 1966; 50: 581-588
  • 27 Hammon WE, McCaffree DR, Cucchiara AJ. A comparison of manual to mechanical chest percussion for clearance of alveolar material in patients with pulmonary alveolar proteinosis (phospholipidosis). Chest 1993; 103: 1409-1412
  • 28 Kumar AB, Schweiger HW. Intraoperative use of a chest physiotherapy system during whole lung lavage for pulmonary alveolar proteinosis. Ther Adv Respir Dis 2012; 6: 239-242
  • 29 Perez A, Rogers RM. Enhanced alveolar clearance with chest percussion therapy and positional changes during whole-lung lavage for alveolar proteinosis. Chest 2004; 125: 2351-2356
  • 30 Bonella F, Bauer PC, Griese M. et al. Wash-out kinetics and efficacy of a modified lavage technique for alveolar proteinosis. Eur Respir J 2012; 40: 1468-1474
  • 31 Evsyutina Y, Komkova I, Zolnikova O. et al. Lung microbiome in healthy and diseased individuals. WJR 2017; 7: 39
  • 32 Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15: 259-270
  • 33 Dickson RP, Erb-Downward JR, Freeman CM. et al. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Ann Am Thorac Soc 2015; 12: 821-830
  • 34 Marsland BJ, Gollwitzer ES. Host-microorganism interactions in lung diseases. Nat Rev Immunol 2014; 14: 827-835
  • 35 Edwards MR, Bartlett NW, Hussell T. et al. The microbiology of asthma. Nat Rev Microbiol 2012; 10: 459-471
  • 36 Hilty M, Burke C, Pedro H. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 2010; 5: e8578
  • 37 Erb-Downward JR, Thompson DL, Han MK. et al. Analysis of the lung microbiome in the „healthy“ smoker and in COPD. PLoS ONE 2011; 6: e16384
  • 38 Pragman AA, Kim HB, Reilly CS. et al. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 2012; 7: e47305
  • 39 Ederveen THA, Ferwerda G, Ahout IM. et al. Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. Microbiome 2018; 6: 10
  • 40 Teo SM, Mok D, Pham K. et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17: 704-715
  • 41 Molyneaux PL, Mallia P, Cox MJ. et al. Outgrowth of the bacterial airway microbiome after rhinovirus exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2013; 188: 1224-1231
  • 42 Cox MJ, Ege MJ, von Mutius E. The Lung Microbiome. Sheffield, United Kingdom: European Respiratory Society; 2019
  • 43 Addressing Challenges in Microbiome DNA Analysis (25.2.2020). New England Biolabs. Im Internet (Stand: 25.2.2020): international.neb.com/tools-and-resources/feature-articles/addressing-challenges-in-microbiome-dna-analysis
  • 44 Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet 2013; 29: 51-58
  • 45 Aberle DR, Adams AM, Berg CD. et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011; 365: 395-409
  • 46 de Koning HJ, van der Aalst CM, de Jong PA. et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N Engl J Med 2020; 382: 503-513
  • 47 Ather S, Kadir T, Gleeson F. Artificial intelligence and radiomics in pulmonary nodule management: Current status and future applications. Clin Radiol 2020; 75: 13-19
  • 48 Nasrullah N, Sang J, Alam MS. et al. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors (Basel) 2019; 19: 3722 DOI: 10.3390/s19173722.
  • 49 Armato SG, McLennan G, Bidaut L. et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Med Phys 2011; 38: 915-931
  • 50 Liu K, Li Q, Ma J. et al. Evaluating a Fully Automated Pulmonary Nodule Detection Approach and Its Impact on Radiologist Performance. Radiology: Artificial Intelligence 2019; 1: e180084
  • 51 Li D, Mikela Vilmun B, Frederik Carlsen J. et al. The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review. Diagnostics (Basel) 2019; 9: 207 DOI: 10.3390/diagnostics9040207.
  • 52 Weikert T, Akinci D'Antonoli T, Bremerich J. et al. Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D Segmentation of Primary Lung Tumors. Contrast Media Mol Imaging 2019; 2019: 1545747
  • 53 Morris JN, Heady JA, Raffle PA. et al. Coronary heart-disease and physical activity of work. Lancet 1953; 262: 1111-1120
  • 54 Wen CP, Wai JPM, Tsai MK. et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. The Lancet 2011; 378: 1244-1253
  • 55 Wen CP, Wai JPM, Tsai MK. et al. Minimal amount of exercise to prolong life: To walk, to run, or just mix it up?. J Am Coll Cardiol 2014; 64: 482-484
  • 56 Watz H, Waschki B, Meyer T. et al. Physical activity in patients with COPD. Eur Respir J 2009; 33: 262-272
  • 57 Demeyer H, Waschki B, Polkey M. et al. The survival effect of physical activity in patients with COPD: Every step counts. In: Physiotherapists. European Respiratory Society; 2017: OA512
  • 58 Donaire-Gonzalez D, Gimeno-Santos E, Balcells E. et al. Benefits of physical activity on COPD hospitalisation depend on intensity. Eur Respir J 2015; 46: 1281-1289
  • 59 Waschki B, Kirsten AM, Holz O. et al. Disease Progression and Changes in Physical Activity in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 192: 295-306
  • 60 Fried LP, Tangen CM, Walston J. et al. Frailty in older adults: Evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146-M156
  • 61 Karpman C, Benzo R. Gait speed as a measure of functional status in COPD patients. Int J Chron Obstruct Pulmon Dis 2014; 9: 1315-1320
  • 62 Burtin C, Ter Riet G, Puhan MA. et al. Handgrip weakness and mortality risk in COPD: A multicentre analysis. Thorax 2016; 71: 86-87
  • 63 Jette AM, Haley SM, Coster WJ. et al. Late life function and disability instrument: I. Development and evaluation of the disability component. J Gerontol A Biol Sci Med Sci 2002; 57: M209-M216
  • 64 Kessler R, Ståhl E, Vogelmeier C. et al. Patient Understanding, Detection, and Experience of COPD Exacerbations. Chest 2006; 130: 133-142
  • 65 Vogelmeier C. et al. S2k – Leitlinie zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). Pneumologie 2018; 72: 253-308
  • 66 Tschirsich M, Brodowski C, Zilch A. “Hacker hin oder her”: Die elektronische Patientenakte kommt!. Pressemitteilung 36. Chaos Computer Congress in Leipzig. Aufgerufen am 27.12.2019
  • 67 Bhatt SP, Patel SB, Anderson EM. et al. Video Telehealth Pulmonary Rehabilitation Intervention in Chronic Obstructive Pulmonary Disease Reduces 30-Day Readmissions. Am J Respir Crit Care Med 2019; 200: 511-513
  • 68 Jungmann SM, Klan T, Kuhn S. et al. Accuracy of a Chatbot (Ada) in the Diagnosis of Mental Disorders: Comparative Case Study With Lay and Expert Users. JMIR Form Res 2019; 3: e13863