Informationen aus Orthodontie & Kieferorthopädie 2020; 52(03): 203-209
DOI: 10.1055/a-1200-5845
Übersichtsartikel

CAD/CAM-gestützte Planung und Übertragungsmöglichkeiten von Brackets und Gaumenimplantaten

CAD/CAM Supported Planning and Transfer Options for Brackets and Palatal Implants
Rebecca Jungbauer
1   Poliklinik für Kieferorthopädie, Universitätsklinikum Regensburg
,
Philipp Eigenwillig
2   Private Praxis, Brandenburg an der Havel
,
Kathrin Becker
3   Poliklinik für Kieferorthopädie, Universitätsklinikum Düsseldorf
,
Peter Proff
1   Poliklinik für Kieferorthopädie, Universitätsklinikum Regensburg
› Author Affiliations

Zusammenfassung

In der Kieferorthopädie kommen digitale Technologien zunehmend zum Einsatz. Während zunächst einzelne Arbeitsschritte, wie die Patientenverwaltung oder kieferorthopädische Diagnostik digital durchgeführt wurden, gibt es inzwischen einen Trend hin zu einem vollständig digitalisierten Workflow. Während digitale Technologien häufig die Stuhlzeit verkürzen, kann die digitale Vorbereitungszeit am Computer länger sein. Durch moderne Softwarelösungen lassen sich allerdings auch diese Arbeitsschritte effizient gestalten: Mithilfe entsprechender Software lässt sich bspw. die gewünschte Position der Brackets inklusive einer Übertragungsschablone im Rahmen der Multibracket-Behandlung vorab virtuell planen. Die Schablone kann im Anschluss mittels additiver Fertigungsverfahren (3D-Druck) in einem Labor oder in der Zahnarztpraxis hergestellt werden. Auch für eine skelettale Verankerung kann ähnlich zur zahnärztlichen Implantologie die Insertionsposition digital geplant und über Insertionsschablonen in den Patientenmund übertagen werden. Durch eine Überlagerung von DVT- oder FRS-Daten mit einem digitalen Modell kann die Position hinsichtlich des individuellen Knochenangebots optimiert werden.

Das Ziel dieses Artikels ist es, einen Überblick über die Möglichkeiten der Bracket- und Mini-Implantat-Planung sowie Möglichkeiten zur Übertragung der virtuellen Planung in den Mund des Patienten klinisch vorzustellen und diese im Zusammenhang mit aktueller Literatur zu diskutieren.

Abstract

Digital technologies are increasingly employed in orthodontics. Whereas only parts of the orthodontic workflow were carried out digitally at the beginning, e. g. patient administration or diagnostics, there is now a trend towards a completely digitalized workflow. While reduced chair time is associated with the digital workflow, preparation time at the computer can be higher. However, modern software solutions significantly improve efficiency. With the help of software tools, the desired position of the brackets, including a transfer template, can be virtually planned on the computer as part of the multibracket treatment. The template will then be produced in a laboratory or in the dental practice using additive manufacturing processes (3D printing). Similar to implant dentistry, the insertion position for skeletal anchorage devices can be digitally planned and transferred to the patient’s mouth through insertion guides. By superimposing CBCT or lateral cephalograms with a digital model, the localization of the implants can be optimized with regard to the individual bone supply.

The aim of this article is to present a clinical overview of the possibilities of bracket and orthodontic mini-implant planning with a digital model as well as possibilities for transferring the virtual planning into the patient's mouth and to discuss them considering recent literature.



Publication History

Article published online:
11 September 2020

© 2020. Thieme. All rights reserved.

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Rekow ED. Digital dentistry: The new state of the art – Is it disruptive or destructive?. Dental Materials. 2020 36. 9-24 doi:10.1016/j.dental.2019.08.103
  • 2 Israel M, Kusnoto B, Evans CA. et al. A comparison of traditional and computer-aided bracket placement methods. Angle Orthod 2011; 81: 828-835 DOI: 10.2319/072110-425.1.
  • 3 Christensen LR, Cope JB. Digital technology for indirect bonding. Seminars in Orthodontics 2018; 24: 451-460. doi:10.1053/j.sodo.2018.10.009
  • 4 Andrews LF. The straight-wire appliance, origin, controversy, commentary. J Clin Orthod 1976; 10: 99-114
  • 5 Grünheid T, Lee MS, Larson BE. Transfer accuracy of vinyl polysiloxane trays for indirect bonding. Angle Orthod 2016; 86: 468-474. doi:10.2319/042415-279.1
  • 6 Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997; 31: 763-767
  • 7 Wilmes B, Beykirch S, Ludwig B. et al. The B-Mesialslider for non-compliance space closure in cases with missing upper laterals. Seminars in Orthodontics 2018; 24: 66-82 DOI: 10.1053/j.sodo.2018.01.007.
  • 8 Ludwig B, Glasl B, Kinzinger GSM. et al. The skeletal frog appliance for maxillary molar distalization. J Clin Orthod 2011; 45: 77-84 quiz 91
  • 9 Wilmes B, Nienkemper M, Ludwig B. et al. Upper-molar intrusion using anterior palatal anchorage and the Mousetrap appliance. J Clin Orthod 2013; 47: 314-320 quiz 328
  • 10 Kakali L, Alharbi M, Pandis N. et al. Success of palatal implants or mini-screws placed median or paramedian for the reinforcement of anchorage during orthodontic treatment: a systematic review. Eur J Orthod 2019; 41: 9-20 DOI: 10.1093/ejo/cjy015.
  • 11 Becker K, Wilmes B, Grandjean C. et al. Skelettal verankerte Molarenmesialisierung mittels digitalisierter Modelle und zweier Oberflächenregistrierungsverfahren: Analyse der Behandlungseffekte. J Orofac Orthop 2018; 79: 11-18 DOI: 10.1007/s00056-017-0108-y.
  • 12 Poggio PM, Incorvati C, Velo S. et al. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006; 76: 191-197 DOI: 10.1043/0003-3219(2006)076[0191:SZAGFM]2.0.CO;2.
  • 13 Chaimanee P, Suzuki B, Suzuki EY. “Safe zones” for miniscrew implant placement in different dentoskeletal patterns. Angle Orthod 2011; 81: 397-403. doi:10.2319/061710-111.1
  • 14 Becker K, Unland J, Wilmes B. et al. Is there an ideal insertion angle and position for orthodontic mini-implants in the anterior palate? A CBCT study in humans. Am J Orthod Dentofacial Orthop 2019; 156: 345-354 DOI: 10.1016/j.ajodo.2018.09.019.
  • 15 Kim H-J, Yun H-S, Park H-D. et al. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofacial Orthop 2006; 130: 177-182 DOI: 10.1016/j.ajodo.2004.12.024.
  • 16 Ludwig B, Glasl B, Bowman SJ. et al. Anatomical guidelines for miniscrew insertion: palatal sites. J Clin Orthod 2011; 45: 433-441 quiz 467
  • 17 Ryu J-H, Park JH, Vu Thi Thu T. et al. Palatal bone thickness compared with cone-beam computed tomography in adolescents and adults for mini-implant placement. Am J Orthod Dentofacial Orthop 2012; 142: 207-212 DOI: 10.1016/j.ajodo.2012.03.027.
  • 18 Gracco A, Lombardo L, Cozzani M. et al. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthop 2008; 134: 361-369 DOI: 10.1016/j.ajodo.2007.01.027.
  • 19 Winsauer H, Vlachojannis C, Bumann A. et al. Paramedian vertical palatal bone height for mini-implant insertion: a systematic review. Eur J Orthod 2014; 36: 541-549 DOI: 10.1093/ejo/cjs068.
  • 20 Becker K, Gabriele de R, Dallatana G. et al. 3-D-Planung für Implantate in der Kieferorthopädie. Implantologie. 2018 26. 147-154
  • 21 Li Y, Mei L, Wei J. et al. Effectiveness, efficiency and adverse effects of using direct or indirect bonding technique in orthodontic patients: a systematic review and meta-analysis. BMC Oral Health 2019; 19: 137 DOI: 10.1186/s12903-019-0831-4.
  • 22 Layman B. Digital Bracket Placement for Indirect Bonding. J Clin Orthod 2019; 53: 387-396
  • 23 Andrews LF. The straight-wire appliance. Explained and compared. J Clin Orthod 1976; 10: 174-195
  • 24 Xue C, Xu H, Guo Y. et al. Accurate bracket placement using a computer-aided design and computer-aided manufacturing-guided bonding device: An in vivo study. Am J Orthod Dentofacial Orthop 2020; 157: 269-277 DOI: 10.1016/j.ajodo.2019.03.022.
  • 25 Zachrisson BU, Brobakken BO. Clinical comparison of direct versus indirect bonding with different bracket types and adhesives. Am J Orthod 1978; 74: 62-78 doi:10.1016/0002-9416(78)90046-5
  • 26 Duarte MEA, Gribel BF, Spitz A. et al. Reproducibility of digital indirect bonding technique using three-dimensional (3D) models and 3D-printed transfer trays. Angle Orthod 2020; 90: 92-99 DOI: 10.2319/030919-176.1.
  • 27 Oliveira de NS, Gribel BF, Neves LS. et al. Comparison of the accuracy of virtual and direct bonding of orthodontic accessories. Dental Press J Orthod 2019; 24: 46-53 DOI: 10.1590/2177-6709.24.4.046-053.oar.
  • 28 Castilla AE, Crowe JJ, Moses JR. et al. Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques. Angle Orthod 2014; 84: 607-614 DOI: 10.2319/070113-484.1.
  • 29 Schmid J, Brenner D, Recheis W. et al. Transfer accuracy of two indirect bonding techniques-an in vitro study with 3D scanned models. Eur J Orthod 2018; 40: 549-555 DOI: 10.1093/ejo/cjy006.
  • 30 Pottier T, Brient A, Turpin YL. et al. Accuracy evaluation of bracket repositioning by indirect bonding: hard acrylic CAD/CAM versus soft one-layer silicone trays, an in vitro study. Clin Oral Investig. DOI: 10.1007/s00784-020-03256-x
  • 31 Ciuffolo F, Epifania E, Duranti G. et al. Rapid prototyping: a new method of preparing trays for indirect bonding. Am J Orthod Dentofacial Orthop 2006; 129: 75-77. DOI: 10.1016/j.ajodo.2005.10.005.
  • 32 Wilmes B, Drescher D. A miniscrew system with interchangeable abutments. J Clin Orthod 2008; 42: 574-580 quiz 595
  • 33 Graf S, Vasudavan S, Wilmes B. CAD-CAM design and 3-dimensional printing of mini-implant retained orthodontic appliances. Am J Orthod Dentofacial Orthop 2018; 154: 877-882. doi:10.1016/j.ajodo.2018.07.013
  • 34 King KS, Lam EW, Faulkner MG. et al. Vertical bone volume in the paramedian palate of adolescents: a computed tomography study. Am J Orthod Dentofacial Orthop 2007; 132: 783-788 DOI: 10.1016/j.ajodo.2005.11.042.
  • 35 Eastman TR. ALARA and digital imaging systems. Radiol Technol 2013; 84: 297-298
  • 36 Kim Y-J, Lim S-H, Gang S-N. Comparison of cephalometric measurements and cone-beam computed tomography-based measurements of palatal bone thickness. Am J Orthod Dentofacial Orthop 2014; 145: 165-172 doi:10.1016/j.ajodo.2013.10.009
  • 37 Jung BA, Wehrbein H, Heuser L. et al. Vertical palatal bone dimensions on lateral cephalometry and cone-beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res 2011; 22: 664-668 DOI: 10.1111/j.1600-0501.2010.02021.x.
  • 38 Maino BG, Paoletto E, Lombardo L. et al. A Three-Dimensional Digital Insertion Guide for Palatal Miniscrew Placement. J Clin Orthod 2016; 50: 12-22
  • 39 Gabriele de O, Dallatana G, Riva R. et al. The easy driver for placement of palatal mini-implants and a maxillary expander in a single appointment. J Clin Orthod 2017; 51: 728-737
  • 40 Cassetta M, Altieri F, Di Giorgio R. et al. Palatal orthodontic miniscrew insertion using a CAD-CAM surgical guide: description of a technique. Int J Oral Maxillofac Surg 2018; 47: 1195-1198 DOI: 10.1016/j.ijom.2018.03.018.
  • 41 Cantarella D, Savio G, Grigolato L. et al. A New Methodology for the Digital Planning of Micro-Implant-Supported Maxillary Skeletal Expansion. Med Devices (Auckl) 2020; 13: 93-106 DOI: 10.2147/MDER.S247751.
  • 42 Möhlhenrich SC, Brandt M, Kniha K. et al. Accuracy of orthodontic mini-implants placed at the anterior palate by tooth-borne or gingiva-borne guide support: a cadaveric study. Clin Oral Investig 2019; 23: 4425-4431 DOI: 10.1007/s00784-019-02885-1.