neuroreha 2021; 13(01): 27-31
DOI: 10.1055/a-1255-4870
Aus der Praxis

Robotergestützte Mobilisierungstherapie mit künstlicher Intelligenz

Von der Intensivstation bis zur fortgeschrittenen Frührehabilitation
Marion Egger
,
Martina Steinböck
,
Erfan Shahriari
,
Friedemann Müller

Der Einsatz von therapieunterstützenden Robotern könnte in der intensivmedizinischen Frührehabilitation für eine deutliche Vereinfachung der Mobilisierung sorgen. Gezeigt wird dies anhand des neuen robotischen Geräts VEMO.



Publikationsverlauf

Artikel online veröffentlicht:
17. März 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Morone G, Paolucci S, Cherubini A. et al. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 2017; 13: 1303-1311 DOI: 10.2147/NDT.S114102.
  • 2 Dohle C, Müller F, Stephan KM. Technische Entwicklungen zur Rehabilitation der Mobilität (Technical Developments for Rehabilitation of Mobility). Aktuelle Neurologie 2017; 44 (08) 549-554
  • 3 Lee SH, Park G, Cho DY. et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific Reports 2020; 10 (01) 1806 DOI: 10.1038/s41598–020–58630–2.
  • 4 Ancona E, Quarenghi A, Simonini M. et al. Effect of verticalization with Erigo® in the acute rehabilitation of severe acquired brain injury. Neurological sciences: Official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2019; 40: 2073-2080 DOI: 10.1007/s10072–019–03917–0.
  • 5 Luther MS, Krewer C, Muller F. et al. Comparison of orthostatic reactions of patients still unconscious within the first three months of brain injury on a tilt table with and without integrated stepping: A prospective, randomized crossover pilot trial. Clinical Rehabilitation 2008; 22: 1034-1041 DOI: 10.1177/0269215508092821.
  • 6 Zhang L, Hu W, Cai Z. et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PloS one 2019; 14: e0223185 DOI: 10.1371/journal.pone.0223185.
  • 7 Worraphan S, Thammata A, Chittawatanarat K. et al. Effects of inspiratory muscle training and early mobilization on weaning of mechanical ventilation: A systematic review and network meta-analysis. Archives of Physical Medicine and Rehabilitation 2020; 101: 2002-2014 DOI: 10.1016/j.apmr.2020.07.004.
  • 8 Nydahl P. Studienlage bestätigt Nutzen der Frühmobilisierung. PflegenIntensiv 2020; 05: 10
  • 9 Starrost K, Lotze M. Folgen von Bettruhe und Immobilisation. neuroreha 2015; 7: 105-108
  • 10 Parry SM, Knight LD, Connolly B. et al. Factors influencing physical activity and rehabilitation in survivors of critical illness: A systematic review of quantitative and qualitative studies. Intensive care medicine 2017; 43: 531-542 DOI: 10.1007/s00134–017–4685–4.
  • 11 Nydahl P, Sricharoenchai T, Chandra S. et al. Safety of patient mobilization and rehabilitation in the intensive care unit: Systematic review with meta-analysis. Annals of the American Thoracic Society 2017; 14: 766-777 DOI: 10.1513/AnnalsATS.201611–843SR.
  • 12 Mertens J, Eichborn F von. Kopf hoch! Mobilisationsbarrieren in der neurologischen Frührehabilitation. neuroreha 2020; 12: 171-175
  • 13 van den Brand R, Heutschi J, Barraud Q. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012; 336: 1182-1185 DOI: 10.1126/science.1217416.