Rofo 2021; 193(06): 644-651
DOI: 10.1055/a-1290-7817
Review

Lung Cancer Screening by Low-Dose Computed Tomography: Part 2 – Key Elements for Programmatic Implementation of Lung Cancer Screening

Lungenkrebs-Screening mittels Niedrigdosis-Computertomografie Teil 2 – Essenzielle Elemente für eine Implementierung eines Lungenkrebs-Screening-Programms
Stefan Delorme
1   Division of Radiology, German Cancer Research Centre, Heidelberg, Germany
,
Rudolf Kaaks
2   Division of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
3   Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Germany
› Author Affiliations

Abstract

Purpose For screening with low-dose CT (LDCT) to be effective, the benefits must outweigh the potential risks. In large lung cancer screening studies, a mortality reduction of approx. 20 % has been reported, which requires several organizational elements to be achieved in practice.

Materials and Methods The elements to be set up are an effective invitation strategy, uniform and quality-assured assessment criteria, and computer-assisted evaluation tools resulting in a nodule management algorithm to assign each nodule the needed workup intensity. For patients with confirmed lung cancer, immediate counseling and guideline-compliant treatment in tightly integrated regional expert centers with expert skills are required. First, pulmonology contacts as well as CT facilities should be available in the participant’s neighborhood. IT infrastructure, linkage to clinical cancer registries, quality management as well as epidemiologic surveillance are also required.

Results An effective organization of screening will result in an articulated structure of both widely distributed pulmonology offices as the participants’ primary contacts and CT facilities as well as central expert facilities for supervision of screening activities, individual clarification of suspicious findings, and treatment of proven cancer.

Conclusion In order to ensure that the benefits of screening more than outweigh the potential harms and that it will be accepted by the public, a tightly organized structure is needed to ensure wide availability of pulmonologists as first contacts and CT facilities with expert skills and high-level equipment concentrated in central facilities.

Key Points:

  • For lung cancer screening, elements must function optimally and be tightly organized.

  • Lung cancer screening requires a network of expert centers and collaborating facilities.

  • IT infrastructure, QM, epidemiological surveillance, and linkage to cancer registries are essential.

Citation Format

  • Delorme S, Kaaks R: Lung Cancer Screening by Low-Dose Computed Tomography: Part 2 – Key Elements for Programmatic Implementation of Lung Cancer Screening. Fortschr Röntgenstr 2021; 193: 644 – 651

Zusammenfassung

Ziel In einem erfolgreichen Lungenkrebs-Screening mit Niedrigdosis-CT (Low-Dose-CT, LDCT) müssen die Vorteile für die Teilnehmer die möglichen Risiken überwiegen. Die Senkung der Lungenkrebsmortalität in großen Screening-Studien betrug ca. 20 %. Um dies zu erzielen, müssen bei der Umsetzung eine Vielzahl organisatorischer Voraussetzungen erfüllt werden.

Material und Methoden Wichtigste Elemente sind ein effektives Einladungsverfahren, einheitliche und qualitätsgesicherte Kriterien und computergestützte Auswertungsverfahren zur Etablierung eines algorithmischen Verfahrens, das jedem Herdbefund die angemessene Intensität des Abklärungsverfahrens zuweist. Für Patienten mit nachgewiesenem Lungenkrebs ist die Verfügbarkeit unmittelbarer Beratung und leitliniengerechter Therapie in eng eingebunden Referenzzentren unabdingbar. Pneumologische Einrichtungen für Erstkontakt und klinische Betreuung der Teilnehmer sowie CT-Einrichtungen müssen wohnortnah verfügbar sein. Weitere Anforderungen sind IT-Infrastruktur, Anbindung an klinische Krebsregister, Qualitätsmanagement und epidemiologische Überwachung.

Ergebnisse Eine effektive Organisation des Screenings gewährleistet eine verzahnte Struktur aus wohnortnahen pneumologischen Einrichtungen als primäre Kontakte für die Teilnehmer und Referenzzentren, denen neben der Supervision der Screening-Aktivitäten die individuelle Abklärungsdiagnostik suspekter Befunde und die Behandlung nachgewiesener Bronchialkarzinome obliegt.

Schlussfolgerungen Um zu gewährleisten, dass der Nutzen des Screenings dessen möglichen ungünstigen Auswirkungen überwiegt, und damit es akzeptiert wird, ist eine dicht organisierte Struktur erforderlich, die zugleich eine breite Verfügbarkeit von pneumologischen Kontakten und CT-Einrichtungen und in Zentren integrierte Expertise und moderne Medizintechnik gewährleistet.

Kernaussagen:

  • Lungenkrebs-Screening erfordert optimal funktionierende und eng abgestimmte Abläufe.

  • Lungenkrebs-Screening erfordert eine Netzwerkstruktur aus Expertenzentren und kooperierenden Einrichtungen.

  • IT-Infrastruktur, QM, epidemiologische Überwachung und Anbindung an Krebsregister sind essenziell.



Publication History

Received: 10 July 2020

Accepted: 29 September 2020

Article published online:
19 November 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Aberle DR, Berg CD, Black WC. et al The National Lung Screening Trial: overview and study design. Radiology 2011; 258: 243-253 DOI: 10.1148/radiol.10091808.
  • 2 Aberle DR, Adams AM, Berg CD. et al Reduced lung-cancer mortality with low-dose computed tomographic screening. The New England Journal of Medicine 2011; 365: 395-409 DOI: 10.1056/NEJMoa1102873.
  • 3 de Koning HJ, van der Aalst CM, de Jong PA. et al Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. The New England Journal of Medicine 2020; 382: 503-513 DOI: 10.1056/NEJMoa1911793.
  • 4 Paci E, Puliti D, Lopes Pegna A. et al Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 2017; 72: 825-831 DOI: 10.1136/thoraxjnl-2016-209825.
  • 5 Infante M, Cavuto S, Lutman FR. et al Long-Term Follow-up Results of the DANTE Trial, a Randomized Study of Lung Cancer Screening with Spiral Computed Tomography. American Journal of Respiratory and Critical Care Medicine 2015; 191: 1166-1175 DOI: 10.1164/rccm.201408-1475OC.
  • 6 Pastorino U, Rossi M, Rosato V. et al Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. European Journal of Cancer Prevention: the official journal of the European Cancer Prevention Organisation 2012; 21: 308-315 DOI: 10.1097/CEJ.0b013e328351e1b6.
  • 7 Pastorino U, Silva M, Sestini S. et al Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy. Annals of Oncology: Official Journal of the European Society for Medical Oncology / ESMO 2019; 30: 1672 DOI: 10.1093/annonc/mdz169.
  • 8 Becker N, Motsch E, Trotter A. et al Lung cancer mortality reduction by LDCT screening – results from the randomised German LUSI trial. International Journal of Cancer Journal International du Cancer 2019; DOI: 10.1002/ijc.32486.
  • 9 Wille MM, Dirksen A, Ashraf H. et al Results of the Randomized Danish Lung Cancer Screening Trial with Focus on High-Risk Profiling. American Journal of Respiratory and Critical Care Medicine 2016; 193: 542-551 DOI: 10.1164/rccm.201505-1040OC.
  • 10 Kaaks R, Delorme S. Lung Cancer Screening by Low-Dose Computed Tomography – Part 1: Expected Benefits, Possible Harms, and Criteria for Eligibility and Population Targeting. Fortschr Röntgenstr 2020; 192: 1-9
  • 11 Becker N, Motsch E, Gross ML. et al Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round. Journal of Cancer Research and Clinical Oncology 2012; 138: 1475-1486 DOI: 10.1007/s00432-012-1228-9.
  • 12 Han SS, Ten Haaf K, Hazelton WD. et al The impact of overdiagnosis on the selection of efficient lung cancer screening strategies. International Journal of Cancer Journal International du Cancer 2017; 140: 2436-2443 DOI: 10.1002/ijc.30602.
  • 13 Cressman S, Ten Haaf K, Lam S. et al Risk-Targeted Lung Cancer Screening. Annals of Internal Medicine 2018; 169: 199-200 DOI: 10.7326/l18-0236.
  • 14 Ten Haaf K, Bastani M, Cao P. et al A comparative modeling analysis of risk-based lung cancer screening strategies. Journal of the National Cancer Institute 2019; DOI: 10.1093/jnci/djz164.
  • 15 Hüsing A, Kaaks R. Risk prediction models versus simplified selection criteria to determine eligibility for lung cancer screening – an analysis of German federal-wide survey and incidence data. Europen Journal of Epidemiology 2020 (in press)
  • 16 Tammemagi MC, Katki HA, Hocking WG. et al Selection criteria for lung-cancer screening. The New England Journal of Medicine 2013; 368: 728-736 DOI: 10.1056/NEJMoa1211776.
  • 17 Katki HA, Kovalchik SA, Petito LC. et al Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening. Annals of Internal Medicine 2018; 169: 10-19 DOI: 10.7326/m17-2701.
  • 18 Ten Haaf KK, Jeon J, Tammemagi MC. et al Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoS Medicine 2017; 14: e1002277 DOI: 10.1371/journal.pmed.1002277.
  • 19 Li K, Husing A, Sookthai D. et al Selecting High-Risk Individuals for Lung Cancer Screening: A Prospective Evaluation of Existing Risk Models and Eligibility Criteria in the German EPIC Cohort. Cancer Prev Res (Phila) 2015; 8: 777-785 DOI: 10.1158/1940-6207.capr-14-0424.
  • 20 Pistelli F, Aquilini F, Falaschi F. et al Smoking cessation in the ITALUNG lung cancer screening: what does “teachable moment” mean?. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco 2019; DOI: 10.1093/ntr/ntz148.
  • 21 Joseph AM, Rothman AJ, Almirall D. et al Lung Cancer Screening and Smoking Cessation Clinical Trials. SCALE (Smoking Cessation within the Context of Lung Cancer Screening) Collaboration. American Journal of Respiratory and Critical Care Medicine 2018; 197: 172-182 DOI: 10.1164/rccm.201705-0909CI.
  • 22 Peto R, Darby S, Deo H. et al Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 2000; 321: 323-329 DOI: 10.1136/bmj.321.7257.323.
  • 23 Wakai K, Marugame T, Kuriyama S. et al Decrease in risk of lung cancer death in Japanese men after smoking cessation by age at quitting: pooled analysis of three large-scale cohort studies. Cancer Science 2007; 98: 584-589 DOI: 10.1111/j.1349-7006.2007.00423.x.
  • 24 Brain K, Carter B, Lifford KJ. et al Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial. Thorax 2017; 72: 912-918 DOI: 10.1136/thoraxjnl-2016-209690.
  • 25 van der Aalst CM, van Klaveren RJ, van den Bergh KA. et al The impact of a lung cancer computed tomography screening result on smoking abstinence. The European Respiratory Journal 2011; 37: 1466-1473 DOI: 10.1183/09031936.00035410.
  • 26 Bueno J, Landeras L, Chung JH. Updated Fleischner Society Guidelines for Managing Incidental Pulmonary Nodules: Common Questions and Challenging Scenarios. Radiographics: a review publication of the Radiological Society of North America, Inc 2018; 38: 1337-1350 DOI: 10.1148/rg.2018180017.
  • 27 Oudkerk M, Devaraj A, Vliegenthart R. et al European position statement on lung cancer screening. The Lancet Oncology 2017; 18: e754-e766 DOI: 10.1016/s1470-2045(17)30861-6.
  • 28 Martin MD, Kanne JP, Broderick LS. et al Lung-RADS: Pushing the Limits. Radiographics: a review publication of the Radiological Society of North America, Inc 2017; 37: 1975-1993 DOI: 10.1148/rg.2017170051.
  • 29 Kauczor HU, Baird AM, Blum TG. et al ESR/ERS statement paper on lung cancer screening. European Radiology 2020; DOI: 10.1007/s00330-020-06727-7.
  • 30 Hasegawa M, Sone S, Takashima S. et al Growth rate of small lung cancers detected on mass CT screening. The British Journal of Radiology 2000; 73: 1252-1259 DOI: 10.1259/bjr.73.876.11205667.
  • 31 Silva M, Prokop M, Jacobs C. et al Long-Term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer 2018; 13: 1454-1463 DOI: 10.1016/j.jtho.2018.06.013.
  • 32 Robbins HA, Berg CD, Cheung LC. et al Identification of Candidates for Longer Lung Cancer Screening Intervals Following a Negative Low-Dose Computed Tomography Result. Journal of the National Cancer Institute 2019; 111: 996-999 DOI: 10.1093/jnci/djz041.
  • 33 Tammemägi MC, Ten Haaf K, Toumazis I. et al Development and Validation of a Multivariable Lung Cancer Risk Prediction Model That Includes Low-Dose Computed Tomography Screening Results: A Secondary Analysis of Data From the National Lung Screening Trial. JAMA Network Open 2019; 2: e190204 DOI: 10.1001/jamanetworkopen.2019.0204.
  • 34 Silva M, Milanese G, Pastorino U. et al Lung cancer screening: tell me more about post-test risk. Journal of Thoracic Disease 2019; 11: 3681-3688 DOI: 10.21037/jtd.2019.09.28.
  • 35 McWilliams A, Tammemagi MC, Mayo JR. et al Probability of cancer in pulmonary nodules detected on first screening CT. The New England Journal of Medicine 2013; 369: 910-919 DOI: 10.1056/NEJMoa1214726.
  • 36 Gonzalez Maldonado S, Delorme S, Husing A. et al Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. JAMA Network Open 2020; 3: e1921221 DOI: 10.1001/jamanetworkopen.2019.21221.
  • 37 Baldwin DR, Gustafson J, Pickup L. et al External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules. Thorax 2020; 75: 306-312 DOI: 10.1136/thoraxjnl-2019-214104.
  • 38 Pedersen JH, Rzyman W, Veronesi G. et al Recommendations from the European Society of Thoracic Surgeons (ESTS) regarding computed tomography screening for lung cancer in Europe. European Journal of Cardio-thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery 2017; 51: 411-420 DOI: 10.1093/ejcts/ezw418.
  • 39 Field JK, Zulueta J, Veronesi G. et al EU Policy on Lung Cancer CT Screening 2017. Biomedicine hub 2017; 2: 154-161 DOI: 10.1159/000479810.
  • 40 Herth FJF, Reinmuth N, Wormanns D. et al [Joint Statement of the German Radiological Society and the German Respiratory Society on a Quality-Assured Early Detection Program for Lung Cancer with Low-dose CT]. Pneumologie (Stuttgart, Germany) 2019; 73: 573-577 DOI: 10.1055/a-0984-8367.
  • 41 Black WC, Gareen IF, Soneji SS. et al Cost-effectiveness of CT screening in the National Lung Screening Trial. The New England Journal of Medicine 2014; 371: 1793-1802 DOI: 10.1056/NEJMoa1312547.
  • 42 Hofer F, Kauczor HU, Stargardt T. Cost-utility analysis of a potential lung cancer screening program for a high-risk population in Germany: A modelling approach. Lung Cancer (Amsterdam, Netherlands) 2018; 124: 189-198 DOI: 10.1016/j.lungcan.2018.07.036.
  • 43 Tomonaga Y, Ten Haaf K, Frauenfelder T. et al Cost-effectiveness of low-dose CT screening for lung cancer in a European country with high prevalence of smoking-A modelling study. Lung Cancer (Amsterdam, Netherlands) 2018; 121: 61-69 DOI: 10.1016/j.lungcan.2018.05.008.
  • 44 Treskova M, Aumann I, Golpon H. et al Trade-off between benefits, harms and economic efficiency of low-dose CT lung cancer screening: a microsimulation analysis of nodule management strategies in a population-based setting. BMC Medicine 2017; 15: 162 DOI: 10.1186/s12916-017-0924-3.